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Abstract

The objective of the given paper is to study the local existence, uniqueness,
stability and other properties of solutions of an iterative fractional integrodifferen-
tial equation with deviating arguments. The Successive Approximation Method
is applied to the numerical solution of the iterative fractional integrodifferential
equation with deviating arguments.

1 Introduction

The study of iterative differential and integrodifferential equations is linked to the wide
applications of calculus in mathematical sciences. These equations are vital in the study
of infection models. They are related to the study of the motion of charged particles
with retarded interaction see [2, 24]. The development in the theory of iterative differ-
ential equation begins with the work of E. Eder [6]. In 1984, his studies revealed that
a solution of the functional differential equation x′ = x ◦ x is a function x : A −→ R
from an interval A ∈ R (i.e. a connected subset of R ) into R such that

x′(t) = x(x(t)),

x(t0) = x0, ∀ t0, x0 ∈ A

and proved the existence, uniqueness, analyticity and analytic dependence of solutions
on initial data.
Sui Sun Cheng et al. [3, 13, 21, 22], investigated analytic and exact solutions of an

iterative functional differential equation

y′(x) = f (x, y(h(x) + g(y(x)))) ,

y(x0) = x0,

and its variants.
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M. Lauran [12], investigated the existence and uniqueness results for first order
differential and iterative differential equations with deviating argument of the type

x′(t) = f (t, x(t), x(λt)) ,

and
x′(t) = f (t, x(t), x(x(t)), x(λx(t))) ,

with the initial condition
x(t0) = x0,

where t0, x0 ∈ [a, b], λ ∈ (0, 1).
In [7], Ibrahim investigated the existence and uniqueness of

Dαu(t) = f(t, u(u(t))),

u(0) = u0.

The differential and integral equations, in which the deviating arguments depend
on both the state variable x and t, are of importance in theory and practice see for
example [2, 24] and references therein.
Many papers have dealt with the existence, uniqueness and other properties of

solutions of special forms of the iterative integrodifferential equations (1)—(2), see
[8, 9, 10, 14, 16, 18, 20, 23, 25] and some of the references cited therein. In an in-
teresting paper [17] M. Podisuk has investigated the numerical solution of simple iter-
ative ordinary differential equations which inspired us to study the iterative fractional
integrodifferential equation with deviating argument of the type

Dαu(x) = f(x) +

∫ x

0

K(x, s)u(λu(s))ds, x, s ∈ J = [0, T ], 0 < α < 1, (1)

u(0) = u0, (2)

where Dα indicates the α-th Caputo fractional derivative, f(x) and K(x, s) are given
continuous functions, u(x) is the unknown function to be determined and u0 ∈ J, λ ∈
(0, 1).
The main tool employed in our analysis is based on an application of the Banach

contraction principle, theory of fractional calculus and Gronwall-Bellman’s integral
inequality.
The paper is organized as follows: Section 2, is dedicated to the preliminaries

and definitions. Section 3, presents the existence and uniqueness results for iterative
fractional integrodifferential equation with deviating argument. Section 4, focuses on
some examples to illustrate the theory.

2 Preliminaries and Definitions

In this section, we shall recall some definitions and properties of fractional derivatives
and fractional integrals, which will be used later. For more details see [11, 15, 19].
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DEFINITION 1. The fractional integral of order α with the lower limit zero for a
function f is defined as

Iαf(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α dt, x > 0, α > 0, (3)

provided the right side is point-wise defined on [0,∞), where Γ(·) is the gamma function.

DEFINITION 2. The Riemann-Liouville derivative of order α with the lower limit
zero for a function f : [0,∞)→ R can be written as

LDαf(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(t)

(x− t)α dt, x > 0, 0 < α < 1. (4)

DEFINITION 3. The Caputo derivative of order α for a function f : [0,∞) → R
can be written as

Dαf(x) =
1

Γ(1− α)

∫ x

0

f ′(t)

(x− t)α dt, x > 0, 0 < α < 1.

LEMMA 2.1 (Gronwall-Bellman’s Inequality [1]). Let u(x), f(x) be nonnegative
continuous functions defined on J = [α, α+ h] and c be a nonnegative constant. If

u(x) ≤ c+

∫ x

α

f(s)u(s)ds, x ∈ J,

then

u(x) ≤ c exp

(∫ x

α

f(s)ds

)
, x ∈ J.

LEMMA 2.2. If a function u ∈ C[0, T ] satisfies (1)—(2) in the closed interval [0, T ],
then the problems (1)—(2) are equivalent to the problem of finding a continuous solution
of the integral equation

u(x) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt.

PROOF. Applying Iα on both sides of equation (1) and using initial condition, we
get

u(x)− u0 = Iα
(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
,

u(x) = u0 + Iα
(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
,

u(x) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt.

LetB = C(J, J) be the Banach space equipped with the norm ‖u‖ = maxx∈[0,T ] |u(x)|.
For convenience, we are listing the following hypotheses used in our further discussion.
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(H1) There exists a constant kT such that kT = sup{|K(t, s)| : 0 ≤ s ≤ t ≤ T}.

(H2) There exists a constant M > 0 such that |u(x1)− u(x2)| ≤ M |x1 − x2|α for
u ∈ B, x1, x2 ∈ J, x1 ≤ x2 and 0 < α < 1.

(H3) There exists a constant L > 0 such that L = sup{|f(t)| : 0 ≤ t ≤ T}.

(H4) Let ρ = u0 + Tα(L+T 3kT )
Γ(α+1) ≤ T and T ≤M.

3 Local Existence and Uniqueness Result

Now, we intend to state and prove results related to iterative fractional integrodiffer-
ential equation with deviating arguments.

THEOREM 3.1. Suppose that the hypotheses (H1)—(H4) are satisfied and

Tα+1λkT (M + 1)

Γ(α+ 1)
< 1.

Then there is a unique solution to the problems (1)—(2).

PROOF. Let

S(ρ) = {u ∈ B : 0 ≤ u ≤ ρ and |u(x1)− u(x2)| ≤M |x1 − x2|α, x1, x2 ∈ J, x1 ≤ x2}.

To apply Banach contraction principle, we define an operator P : S(ρ)→ S(ρ) by

(Pu)(x) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt.

Now, we have

0 ≤ (P (u)) =

∣∣∣∣u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt

∣∣∣∣
≤ u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
|f(t) +

∫ t

0

K(t, s)u(λu(s))ds|
)
dt

≤ u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
|f(t)|+

∫ t

0

|K(t, s)||u(λu(s))|ds
)
dt

≤ u0 + L
Tα

Γ(α+ 1)
+ kT

TαT 3

Γ(α+ 1)

≤ u0 +
Tα(L+ T 3kT )

Γ(α+ 1)
= ρ.
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Also, for each 0 ≤ x1 ≤ x2 ≤ T, we have

Pu(x2)− Pu(x1)

=

∫ x1

0

(x2 − t)α−1 − (x1 − t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt

+

∫ x2

x1

(x2 − t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt

=
−1

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

](
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt

+
1

Γ(α)

∫ x2

x1

(x2 − t)α−1

(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt.

Hence,

|Pu(x2)− Pu(x1)|

≤
∣∣∣∣ 1

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

](
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ x2

x1

(x2 − t)α−1

(
f(t) +

∫ t

0

K(t, s)u(λu(s))ds

)
dt

∣∣∣∣
≤ 1

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

](
|f(t)|+

∫ t

0

|K(t, s)||u(λu(s))|ds
)
dt

+
1

Γ(α)

∫ x2

x1

(x2 − t)α−1

(
|f(t)|+

∫ t

0

|K(t, s)||u(λu(s))|ds
)
dt

≤ 1

Γ(α)

∫ x1

0

[
(x1 − t)α−1 − (x2 − t)α−1

]
(L+ kTT

3)dt

+
1

Γ(α)

∫ x2

x1

(x2 − t)α−1(L+ kTT
3)dt

≤ (L+ kTT
3)

Γ(α)

(∫ x1

0

(x1 − t)α−1dt−
∫ x1

0

(x2 − t)α−1dt+

∫ x2

x1

(x2 − t)α−1dt

)
≤ (L+ kTT

3)

Γ(α+ 1)
[xα1 − xα2 + 2(x2 − x1)α]

≤ 2(L+ kTT
3)

Γ(α+ 1)
|x2 − x1|α.



S. I. Unhale and S. D. Kendre 121

This shows that P maps from S(ρ) to S(ρ). Now, for all u, v ∈ S(ρ) we have

|(Pu)(x)− (Pv)(x)|

≤
∫ x

0

(x− t)α−1

Γ(α)

∫ t

0

|K(t, s)||u(λu(s)− v(λv(s))|dsdt

≤ kT
∫ x

0

(x− t)α−1

Γ(α)

∫ t

0

(|u(λu(s)− u(λv(s))|+ |u(λv(s))− v(λv(s))|)dsdt

≤ λkT
∫ x

0

(x− t)α−1

Γ(α)

∫ t

0

(M |u(s)− v(s)|+ |u(s))− v(s)|)dsdt

≤ λkT
∫ x

0

(x− t)α−1

Γ(α)

∫ t

0

(M + 1)|u(s)− v(s)|dsdt

≤ TλkT (M + 1)‖u− v‖
∫ x

0

(x− t)α−1

Γ(α)
dt

≤ Tα+1λkT (M + 1)

Γ(α+ 1)
‖u− v‖.

Hence we obtain

‖(Pu)(x)− (Pv)(x)‖ ≤ Tα+1λkT (M + 1)

Γ(α+ 1)
‖u− v‖.

Since
Tα+1λkT (M + 1)

Γ(α+ 1)
< 1,

by the Banach Contraction Principle, P has a unique fixed point. This means that the
equation (1)—(2) has unique solution.
The above theorem shows that there exists a unique solution to the problems (1)—

(2). However, it does not tell us how to find this solution. To find the solution of the
problems (1)—(2), we will define the following sequence

un+1(x) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)un(λun(s))ds

)
dt (5)

where n = 0, 1, 2, . . . and u0(x) is fixed functions of the class C1 mapping from
[0, T ] to [0, T ] such that |u0(x)| ≤ T . For this, we have the following theorem,

THEOREM 3.2. If the assumptions of the Theorem 3.1 are satisfied then the
sequences defined in (5) converges uniformly to the unique solution of the problems
(1)—(2).

PROOF. Let Uk = Maxx∈J |uk(x)− uk−1(x)|. Then

U1 = Maxx∈J |u1(x)− u0(x)|

= Maxx∈J

∣∣∣∣u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u0(λu0(s))ds

)
dt− u0(x)

∣∣∣∣
≤ Tα

Γ(α+ 1)
(L+ T 3kT ).
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Since u0 maps from [0, T ] to [0, T ], we see that we have

U1 ≤
Tα

Γ(α+ 1)
(L+ T 3kT ) ≤ T,

U2 = Maxx∈J |u2(x)− u1(x)|

= Maxx∈J

∣∣∣∣∫ x

0

(x− t)α−1

Γ(α)

[∫ t

0

K(t, s)

(
u1(λu1(s))− u0(λu0(s))

)
ds

]
dt

∣∣∣∣
≤Maxx∈J

∫ x

0

(x− t)α−1

Γ(α)

[∫ t

0

|K(t, s)

(
u1(λu1(s))− u0(λu0(s))

)
ds|
]
dt

≤ TU1 ≤ T 2.

Assume that result is true for n i.e. Un ≤ TUn−1 ≤ Tn. Now, we show that result
holds for n+ 1

Un+1 = Maxx∈J |un+1(x)− un(x)|

= Maxx∈J

∣∣∣∣∫ x

0

(x− t)α−1

Γ(α)

[∫ t

0

K(t, s)

(
un(λun(s))− un−1(λun−1(s))

)
ds

]
dt

∣∣∣∣
≤Maxx∈J

∫ x

0

(x− t)α−1

Γ(α)

[∫ t

0

|K(t, s)

(
un(λun(s))− un−1(λun−1(s))

)
ds|
]
dt

≤ TUn ≤ Tn+1.

Thus by induction, we have Uk ≤ T k. Since

u0 +
Tα(L+ T 3kT )

Γ(α+ 1)
≤ T,

we see that T < 1 when u0 ≥ 0.
Hence Uk tends to zero as k tends to infinity. Since the family {Uk} is the Arzela-

Ascoli family thus for every subsequence {ukj} of {Uk} there exists a subsequence {ukj}
uniformly convergent and the limit needs to be a solution of the problem (1)—(2). Thus,
the sequence {uk} tends uniformly to the unique solution of the problem (1)—(2).

THEOREM 3.3. Suppose that the hypotheses of the Theorem 3.1 hold. Let u1 and
u2 satisfy the equation (1) for 0 ≤ x ≤ T with u1(0) = u∗0 and u2(0) = u∗∗0 respectively
then

‖u1(x)− u2(x)‖ ≤ ‖u∗0 − u∗∗0 ‖ exp

{
λkT (M + 1)Tα+1

Γ(α+ 1)

}
for 0 ≤ x ≤ T, M > 0.

PROOF. Making use of Theorem 3.1, we have

u1(x) = u∗0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u1(λu1(s))ds

)
dt
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and

u2(x) = u∗∗0 +

∫ x

0

(x− t)α−1

Γ(α)

(
f(t) +

∫ t

0

K(t, s)u2(λu2(s))ds

)
dt.

Then

|u1(x)− u2(x)|

≤ |u∗0 − u∗∗0 |+
∣∣∣∣∫ x

0

(x− t)α−1

Γ(α)

∫ t

0

K(t, s) (u1(λu1(s))− u2(λu2(s))) dsdt

∣∣∣∣
≤ |u∗0 − u∗∗0 |+

∫ x

0

(x− t)α−1

Γ(α)
kT

∫ t

0

|u1(λu1(s))− u2(λu2(s))|dsdt|

≤ |u∗0 − u∗∗0 |

+kT

∫ x

0

(x− t)α−1

Γ(α)

∫ t

0

|u1(λu1(s))− u1(λu2(s)|+ |u1(λu2(s))− u2(λu2(s))|dsdt

≤ |u∗0 − u∗∗0 |+ λkT

∫ x

0

(x− t)α−1

Γ(α)

∫ t

0

[M + 1]|u1(s)− u2(s)|dsdt

≤ |u∗0 − u∗∗0 |+ λkT (M + 1)

∫ x

0

∫ t

0

(x− t)α−1

Γ(α)
|u1(s)− u2(s)|dsdt

≤ |u∗0 − u∗∗0 |+ λkT (M + 1)

∫ x

0

∫ x

s

(x− t)α−1

Γ(α)
|u1(s)− u2(s)|dtds

≤ |u∗0 − u∗∗0 |+ λkT (M + 1)

∫ x

0

|u1(s)− u2(s)|
(∫ x

s

(x− t)α−1

Γ(α)
dt

)
ds

≤ |u∗0 − u∗∗0 |+ λkT (M + 1)

∫ x

0

|u1(s)− u2(s)| (x− s)
α

Γ(α+ 1)
ds

≤ |u∗0 − u∗∗0 |+
λkT (M + 1)Tα

Γ(α+ 1)

∫ x

0

|u1(s)− u2(s)|ds.

Using Gronwall-Bellman’s inequality, we get

|u1(x)− u2(x)| ≤ |u∗0 − u∗∗0 |exp
(∫ x

0

λkT (M + 1)Tα

Γ(α+ 1)

)
ds

≤ |u∗0 − u∗∗0 |exp
(
λkT (M + 1)Tα+1

Γ(α+ 1)

)
.

Hence, we have

‖u1(x)− u2(x)‖ ≤ ‖u∗0 − u∗∗0 ‖exp
(
λkT (M + 1)Tα+1

Γ(α+ 1)

)
.

This completes the proof of Theorem 3.3.

4 Applications

In this section, we give the applications of our main results established in previous
section.
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EXAMPLE 4.1. Consider the following nonlinear iterative fractional integrodiffer-
ential equation with deviating arguments

Dαu(x) = 0.4 +

∫ x

0

u(
1

3
u(s))ds, 0 ≤ s ≤ x ≤ 0.5, (6)

u(0) = 0. (7)

Problem (6)—(7) is of the form (1)—(2) with T = 0.5, L = 0.4, kT = 1, λ = 1
3 , α = 1

2 and
M = 1 which satisfies

u0 +
Tα(L+ T 3kT )

Γ(α+ 1)
= 0 +

0.50.5(0.4 + (0.53))

Γ(3/2)
=

0.71(0.4 + 0.125)

0.88
= 0.423 < 0.5 = T

and
Tα+1(M + 1)λkT

Γ(α+ 1)
=

0.51.5(1 + 1) 1
3

Γ(3/2)
=

0.355(1 + 1) 1
3

0.88
= 0.27 < 1.

Since all the hypotheses of Theorem 3.1 are satisfied, therefore a unique solution of the
equations (6)—(7) exists.
Making use of Theorem 3.2, we find the approximate solution of (6)—(7) for various

values of α. Let u0(x) = 0 be the first approximation, then for α = 1/2

u1(x) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
0.4 +

∫ t

0

uo(
1

3
u0(s))ds

)
dt

= 0 +

∫ x

0

0.4 + 0

Γ 1
2

√
x− t

dt

= 0.451352
√
x,

u2(x) = 0 +

∫ x

0

0.4 +
∫ t

0
u1( 1

3u1(s))ds

Γ 1
2

√
x− t

dt =
0.174874x7/4 + 0.8

√
x√

π
.

Also, we can verify all the hypotheses of Theorem 3.1 for α = 1/3 and we obtain

u1(x) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
0.4 +

∫ t

0

uo(
1

3
u0(s))ds

)
dt

= 0 +

∫ x

0

0.4 + 0

Γ 1
3 (x− t) 23

dt

= 0.447939x
1
3 ,

u2(x) = 0 +

∫ x

0

0.4 +
∫ t

0
u1( 1

3u1(s))ds

Γ 1
3 (x− t) 23

dt

=
0.471207x13/9 + 1.2 3

√
x

Γ
(

1
3

) .

which is the approximate solution of (6)—(7) up to third iteration.
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EXAMPLE 4.2. Consider the following nonlinear iterative fractional integrodiffer-
ential equation with deviating arguments

Dαu(x) = 0.2 +

∫ t

0

su(
2

3
u(s))ds, 0 ≤ s ≤ x ≤ 0.5, (8)

u(0) = 0.25. (9)

Here T = 0.5, L = 0.2,M = 1, kT = 0.5, λ = 2
3 and α = 0.5, we have

u0 +
Tα(L+ T 3kT )

Γ(α+ 1)
= 0.25 +

0.50.5(0.2 + 0.53(0.5))

Γ(3/2)

= 0.25 +
0.71(0.2 + 0.0625)

0.88
= 0.46 < 0.5 = T.

Also

Tα+1(M + 1)λkT
Γ(α+ 1)

=
0.51.5(1 + 1) 2

3 (0.5)

Γ(3/2)
=

0.355(1 + 1)(0.33)

0.88
= 0.2689 < 1.

Since all the hypotheses of Theorem 3.1 are satisfied and therefore a unique solution
of the equations (8)—(9) exists.
Making use of Theorem 3.2, we find the approximate solution of (8)—(9) for various

values of α. Let u0(x) = 0.25 be the first approximation, then for α = 1/2

u1(x) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
0.2 +

∫ t

0

suo(
2

3
u0(s))ds

)
dt

= 0.25 +
0.133333x5/2 + 0.4

√
x√

π

and for α = 1/3, we have

u1(x) = u0 +

∫ x

0

(x− t)α−1

Γ(α)

(
0.2 +

∫ t

0

suo(
2

3
u0(s))ds

)
dt

= 0.25 +
0.241071x7/3 + 0.6 3

√
x

Γ
(

1
3

) .

which is the approximate solution of (8)—(9) up to second iteration.

5 Conclusion

In this study, we investigated the existence and uniqueness results for solution of iter-
ative fractional integrodifferential equation with deviating arguments. The fractional
derivatives are considered in the Caputo sense. We also utilized the Banach contraction
fixed-point theorem.
All numerical results are obtained by using Mathematica 11.
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