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Abstract

In this paper, we introduce the concept of graph convergence for η-subdifferential
mapping of a nonconvex, proper, lower semi-continuous and subdifferential func-
tional on Banach space and discuss its existence and Lipschitz continuity. Further,
we prove equivalence between graph convergence and resolvent operator conver-
gence. We propose a new iterative algorithm for solving the system of generalized
implicit variational-like inclusions. Furthermore, we prove the existence of solu-
tion for the system of generalized implicit variational-like inclusions and discuss
the convergence of iterative sequences generated by proposed algorithm.

1 Introduction

Variational inequality theory has become a very effective and powerful tool in pure
and applied sciences and has been used in a large class of problems arising in differen-
tial equations, mechanics, optimization and control, contact problems in elasticity and
general equilibrium problems, see, [1, 3, 5, 8, 9, 10, 14, 15, 16]. Variational inclusion is
an important and useful generalization of the variational inequality. One of the most
important and interesting problem in the theory of variational inequality is the devel-
opment of an effi cient and implementable iterative algorithm for solving the variational
inequalities. Variational inclusions include variational, quasi-variational, variational-
like inequalities as special cases. In 1994, Hassouni and Moudafi [17] introduced and
studied a class of variational inclusions. Later, Adly [1], Huang [18], Ding [8, 11], Ding
and Luo [9] and Ding and Feng [12] have obtained some important generalizations of
the results in [17].
Recently, many authors have studied the perturbed algorithms for variational in-

equalities involving monotone mappings in Hilbert spaces. Using the concept of graph
convergence for maximal monotone mappings, Attouch [2] showed the equivalence be-
tween graph convergence and resolvent operator convergence, they constructed some
perturbed algorithm for variational inequality and proved the convergence of sequences
generated by perturbed algorithm under some suitable conditions. Further Li and
Huang [25] generalized the concept of graph convergence for H(·, ·)-accretive mapping
in Banach space.
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In recent past, Ding and Xia [13] introduced the concept of P -proximal mapping for
a nonconvex, proper, lower semi-continuous and subdifferentiable functional on Banach
space and prove the existence and Lipschitz continuity. Sun et al. [28], Kazmi and Bhat
[21] and Kazmi et al. [22, 23] generalized the concept of M -proximal mappings.
Motivated and inspired by the research works going on in this direction, in this pa-

per, we introduce a new concept of graph convergence for η-subdifferential mapping of
a nonconvex, proper, lower semi-continuous and subdifferential functional on Banach
space and shown its existence and Lipschitz continuity. Further, we prove equivalence
between graph convergence and resolvent operator convergence. We propose a new
iterative algorithm for solving the system of generalized implicit variational-like inclu-
sions. Furthermore, we prove the existence of the solution for the system of generalized
implicit variational-like inclusions and discuss the convergence of iterative sequences
generated by proposed algorithm.

2 Preliminaries

Let E be a real Banach space equipped with norm ‖ ·‖, E∗ be the topological dual of E
and 〈·, ·〉, be the duality pairing between E and E∗. Let 2E , (respectively, CB(E)) be
the family of all nonempty (respectively, closed and bounded) subsets of E, let D(·, ·)
be the Hausdorff metric on CB(E) defined by

D(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(A, y)

}
,

where

A,B ∈ CB(E), d(x,B) = inf
y∈B

d(x, y) and d(A, y) = inf
x∈A

d(x, y).

The normalized duality mapping J : E → 2E
∗
is defined by

J(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2, ‖f‖E∗ = ‖x‖

}
, ∀x ∈ E.

It is well known that if E is smooth, then J is single-valued and if E ≡ H, a Hilbert
space, then J is the identity mapping.

DEFINITION 2.1 ([7]). A Banach space E is called smooth, if for every x ∈ E
with ‖x‖ = 1, there exists a unique f ∈ E∗ such that ‖f‖ = f(x) = 1. The modulus of
smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ ≤ 1 and ‖y‖ ≤ t

}
.

A Banach space E is called uniformly smooth, if

lim
t→0

ρE(t)

t
= 0.

LEMMA 2.1 ([4]). Let E be a uniformly smooth Banach space and J : E → E∗ be
the normalized duality mapping. Then for all x, y ∈ E, we have



M. Akram and M. Dilshad 155

(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉;

(ii) 〈x− y, J(x)− J(y)〉 ≤ 2d2ρE
(
4‖x−y‖

d

)
, where d =

√
(‖x‖2 + ‖y‖2)/2.

LEMMA 2.2 ([26]). Let E be a complete metric space with metric d, and let
T : E → CB(E) be a multi-valued mapping. Then for any ε > 0 and for any x, y ∈ E,
u ∈ T (x), there exists v ∈ T (y) such that d(u, v) ≤ D(Tx, Ty).

LEMMA 2.3 ([27]). Let E be a real Banach space and J : E → 2E
∗
be the

normalized duality mapping. Then for any x, y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀j(x+ y) ∈ J(x+ y).

DEFINITION 2.3 ([31]). A functional f : E × E → R ∪ {+∞} is said to be 0-
diagonally quasi-concave (in short, 0-DQCV) in x, if for any finite set {x1, x2, · · · , xn} ⊂
E and for any y =

n∑
i=1

λixi with λi ≥ 0 and
n∑
i=1

λi = 1,min1≤i≤nf(xi, y) ≤ 0 holds.

DEFINITION 2.4 ([8]). Let η : E × E → E be a single-valued mapping. A proper
functional φ : E → R ∪ {+∞} is said to be η-subdifferentiable at point x ∈ E if there
exists a point f∗ ∈ E∗ such that

φ(y)− φ(x) ≥ 〈f∗, η(y, x)〉, ∀y ∈ E,

where f∗ is called η-subdgradient of φ at x. The set of all η-subgradients of φ at x is
denoted by ∂φ(x). The mapping ∂φ : E → 2E

∗
is defined by

∂φ(x) = {f∗ ∈ E∗ : φ(y)− φ(x) ≥ 〈f∗, η(y, x)〉, ∀y ∈ E}

is said to be η-subdifferential of φ at x.

DEFINITION 2.5. Let η : E×E → E and A,B : E → E be single-valued mappings
and let M : E × E → E∗ be a nonlinear mapping. Then

(i) M(A, ·) is said to be α-strongly η-monotone with respect to A if there exists a
constant α > 0 such that

〈M(Ax, u)−M(Ay, u), η(x, y)〉 ≥ α‖x− y‖2, ∀x, y, u ∈ E;

(ii) M(·, B) is said to be β-relaxed η-monotone with respect to B if there exists a
constant β > 0 such that

〈M(u,Bx)−M(u,By), η(x, y)〉 ≥ (−β)‖x− y‖2, ∀x, y, u ∈ E;

(iii) M(A,B) is said to be αβ-symmetric η-monotone with respect to A and B if
M(A, ·) is α-strongly η-monotone with respect to A and M(·, B) is β-relaxed
η-monotone with respect to B;
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(iv) M(·, ·) is said to be (ξ1, ξ2)-mixed Lipschitz continuous if there exist constants
ξ1, ξ2 > 0 satisfying

‖M(x, u)−M(y, v)‖ ≤ ξ1‖x− y‖+ ξ2‖u− v‖, ∀x, y, u, v ∈ E.

DEFINITION 2.6. Let η : E×E → E and A,B : E → E be single-valued mappings.
Let φ : E → R∪{+∞} be a proper, lower semicontinuous and η-subdifferentiable (may
not be convex) functional and M : E × E → E∗ be a nonlinear mapping. If for any
given point x∗ ∈ E∗ and ρ > 0, there exists a unique point x ∈ E satisfying

〈M(Ax,Bx)− x∗, η(y, x)〉+ ρφ(y)− ρφ(x) ≥ 0, ∀y ∈ E,

then the mapping x∗ → x, denoted by R∂φρ,η(x
∗) is called resolvent operator of φ. Then,

we have
x∗ −M(Ax,Bx) ∈ ρ∂φ(x) and it follows that R∂φρ,η(x∗) = [M(A,B) + ρ∂φ]−1(x∗).

LEMMA 2.4 ([23]). Let E be a reflexive Banach space. Let η : E × E → E be a
continuous mapping such that η(y, y′)+η(y′, y) = 0 for all y, y′ ∈ E;M : E×E → E∗ be
αβ-symmetric η-monotone continuous with respect to A and B; let for any x∗ ∈ E∗, the
function h(y, x) = 〈x∗−M(Ax,Bx), η(y, x)〉 be 0-DQCV in y and φ : E → R∪{+∞} be
a proper, lower semicontinuous and η-subdifferentiable (may not be convex) functional.
Then for any given constant ρ > 0 and x∗ ∈ E∗, there exists a unique x ∈ E such that

〈M(Ax,Bx)− x∗, η(y, x)〉 ≥ ρφ(x)− ρφ(y), ∀y ∈ E, (1)

that is, x = R∂φρ,η(x
∗).

LEMMA 2.5 ([23]). Let η : E × E → E be τ -Lipschitz continuous such that
η(y, y′) + η(y′, y) = 0 for all y, y′ ∈ E; M : E ×E → E∗ be αβ-symmetric η-monotone
continuous with respect to A and B; let for any x∗ ∈ E∗, the function h(y, x) =
〈x∗ −M(Ax,Bx), η(y, x)〉 be 0-DQCV in y and φ : E → R∪ {+∞} be a proper, lower
semicontinuous and η-subdifferentiable functional and let ρ > 0 be any given constant.
Then the resolvent operator R∂φρ,M(·,·) of φ is

τ
α−β -Lipschitz continuous, that is, for any

x∗1, x
∗
2 ∈ E∗,

‖R∂φρ,M(·,·)(x
∗
1)−R

∂φ
ρ,M(·,·)(x

∗
2)‖ ≤

τ

α− β ‖x
∗
1 − x∗2‖.

3 Graph Convergence for η-Subdifferential Mapping

Let η : E × E → E be a single-valued mapping. Let φ : E → R ∪ {+∞} be a proper,
lower semicontinuous and η-subdifferentiable (may not be convex) functional and let
∂φ : E → 2E

∗
be a η-subdifferential mapping of φ. The graph of the η-subdifferential

mapping ∂φ is defined by

graph(∂φ) = {(x, y∗) ∈ E × E∗ : y∗ ∈ ∂φ(x)}.
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In this section, we introduce the notion of graph convergence for η-subdifferential
mapping.

DEFINITION 3.1. Let η : E × E → E;A,B : E → E be single-valued mappings.
Let φ : E → R ∪ {+∞} be a proper, lower semicontinuous and η-subdifferentiable
(may not be convex) functional; let M : E × E → E∗ be a nonlinear mapping. Let
∂φn, ∂φ : E → 2E

∗
be the η-subdifferential mappings of φ for n = 0, 1, 2, . . .. The

sequence {∂φn} is said to be graph convergence to ∂φ, denoted by ∂φnG−→∂φ, if for
every (x, y∗) ∈ graph(∂φ) there exists a sequence (xn, y∗n) ∈ graph(∂φn) such that

xn → x, y∗n → y∗ as n→∞.

THEOREM 3.1. Let η : E ×E → E be τ -Lipschitz continuous such that η(y, y′) +
η(y′, y) = 0 for all y, y′ ∈ E; let M : E × E → E∗ be αβ-symmetric η-monotone
continuous with respect to A and B such that M is γ1-Lipschitz continuous with
respect to A and γ2-Lipschitz continuous with respect to B. Let for any x

∗ ∈ E∗, the
function h(y, x) = 〈x∗−M(Ax,Bx), η(y, x)〉 be 0-DQCV in y and let φ : E → R∪{+∞}
be a proper, lower semicontinuous and η-subdifferentiable functional and let ρ > 0 be
any given constant. Then ∂φnG−→∂φ if and only if

R
∂φn
ρ,M(·,·)(x

∗)→ R∂φρ,M(·,·)(x
∗), ∀x∗ ∈ E∗.

PROOF. Suppose that ∂φnG−→∂φ. For any x
∗ ∈ E∗, let

zn = R
∂φn
ρ,M(·,·)(x

∗), z = R∂φρ,M(·,·)(x
∗).

It follows that z = [M(A,B) + ρ∂φ]−1(x∗),

then,
1

ρ
[x∗ −M(Az,Bz] ∈ ∂φ(z),

that is, (z, 1ρ [x
∗−M(Az,Bz)]) ∈ graph(∂φ). It follows from the definition of the graph

convergence that there exists a sequence (z
′

n, y
∗′
n ) ∈ graph(∂φn) such that

z′n → z and y∗
′

n →
1

ρ
[x∗ −M(Az,Bz)] as n→∞. (2)

Since y∗
′

n ∈ ∂φn(z
′

n), we have

M(Az
′

n, Bz
′

n) + ρy
∗′
n ∈ [M(A,B) + ρ∂φn](z

′

n)

that is, z
′

n = R
∂φn
ρ,M(·,·)[M(Az

′

n, Bz
′

n) + ρy
∗′
n ]. Now,

‖zn − z‖ ≤ ‖zn − z
′

n‖+ ‖z
′

n − z‖
= ‖R∂φnρ,M(·,·)(x

∗)−R∂φnρ,M(·,·)[M(Az
′

n, Bz
′

n) + ρy
∗′
n ]‖

+‖z
′

n − z‖.
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By using the Lipschitz continuity of the resolvent operator R∂φnρ,M(·,·), we have

‖zn − z‖ ≤
τ

α− β ‖x
∗ − [M(Az

′

n, Bz
′

n) + ρy
∗′
n ]‖+ ‖z

′

n − z‖

≤ τ

α− β ‖x
∗ − [M(Az,Bz) + ρy∗

′

n ]‖

+
τ

α− β ‖M(Az,Bz)−M(Az
′

n, Bz
′

n‖+ ‖z
′

n − z‖.

Since M is γ1-Lipschitz continuous with respect to A and γ2-Lipchitz continuous with
respect to B, we have

‖zn − z‖ ≤
τ

α− β

∥∥∥x∗ − [M(Az,Bz) + ρy∗′n ]∥∥∥+ τ(γ1 + γ2)

α− β ‖z − z
′

n‖+ ‖z
′

n − z‖

=
τ

α− β ‖x
∗ − [M(Az,Bz) + ρy∗

′

n ]‖+ [1 +
τ(γ1 + γ2)

α− β ]‖z
′

n − z‖.

By (2), we have

‖z
′

n − z‖ → 0,
1

ρ
‖x∗ − [M(Az,Bz) + ρy∗

′

n ]‖ → 0, as n→∞,

hence ‖zn − z‖ → 0 as n→∞, that is,

R
∂φn
ρ,M(·,·)(x

∗)→ R∂φρ,M(·,·)(x
∗), ∀x∗ ∈ E∗.

Conversely, suppose that R∂φnρ,M(·,·)(x
∗) → R∂φρ,M(·,·)(x

∗), ∀x∗ ∈ E∗, ρ > 0. For any
(x, y∗) ∈ graph(∂φ), we have, y∗ ∈ ∂φ(x), that is,

M(Ax,Bx) + ρy∗ ∈ [M(A,B) + ρ∂φ](x),

and so x = R∂φρ,M(·,·)[M(Ax,Bx) + ρy
∗]. Let xn = R

∂φn
ρ,M(·,·)[M(Ax,Bx) + ρy

∗], then

1

ρ
[M(Ax,Bx)−M(Axn, Bxn) + ρy∗] ∈ ∂φn(xn).

Suppose that y∗n =
1
ρ [M(Ax,Bx)−M(Axn, Bxn) + ρy

∗]. Now,

‖y∗n − y∗‖ =

∥∥∥∥1ρ [M(Ax,Bx)−M(Axn, Bxn) + ρy∗]− y∗
∥∥∥∥

=
1

ρ
‖M(Ax,Bx)−M(Axn, Bxn)‖

≤ (γ1 + γ2)

ρ
‖xn − x‖. (3)

Since R∂φnρ,M(·,·)(x
∗)→ R∂φρ,M(·,·)(x

∗) for any x∗ ∈ E∗, we have ‖xn − x‖ → 0 as n→∞.
It follows from (3) that ‖y∗n − y∗‖ → 0 as n→∞. Hence ∂φnG−→∂φ.
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4 System of Generalized Implicit Variational-like In-
clusions

Let for each i ∈ {1, 2}, Ei be a real Banach space with norm ‖ · ‖i and E∗i be its
dual space with norm ‖ · ‖∗i. Let 〈·, ·〉i denotes the duality pairing between Ei and
E∗i ; let ηi : Ei × Ei → Ei, Ni : E

∗
1 × E∗2 → E∗i and Si : Ei → E∗i be single-valued

mappings; let g1 : E2 → CB(E∗2 ) and g2 : E1 → CB(E∗1 ) be multi-valued mappings.
Let φi : Ei → R ∪ {+∞} be a proper, lower semicontinuous and ηi-subdifferentiable
functional. We consider the following system of generalized implicit variational-like
inclusions (in short, SGIVLI).
Find (x, y, u, v) such that x ∈ E1, y ∈ E2, u ∈ g1(y), v ∈ g2(x) and{

〈N1(S1(x), u), η1(a, x)〉 ≥ ρ1[φ1(x)− φ1(a)], ∀a ∈ E1,

〈N2(v, S2(y)), η2(b, y)〉 ≥ ρ2[φ2(y)− φ2(b)], ∀b ∈ E2,
(4)

where ρ1, ρ2 > 0 are some constants.

REMARK 4.1. For suitable choices of mappings Ai, Bi, Ni, gi, Si,Mi, ηi, φi and
underlying spaces Ei, SGIVLI (4) reduces to various known classes of systems of vari-
ational inclusions and variational inequalities, see for examples, [6, 19, 20, 24, 29, 30].

LEMMA 4.1. For each i ∈ {1, 2}, let Ei be a reflexive Banach space; let ηi : Ei ×
Ei → Ei be a continuous mapping such that ηi(yi, y

′

i)+ηi(y
′

i, yi) = 0, for all yi, y
′

i ∈ Ei.
Let Ai, Bi : Ei → Ei be single-valued mappings; let the mappings Mi : Ei × Ei → E∗i
be αiβi-symmetric ηi-monotone continuous with respect to Ai and Bi; let for any
x∗i ∈ E∗i , the function hi(yi, xi) = 〈x∗i −Mi(Aixi, Bixi), ηi(yi, xi)〉 be 0-DQCV in yi
and let φi : Ei → R∪{+∞} be a proper, lower semicontinuous and ηi-subdifferentiable
functional. Then for (x, y, u, v), where x ∈ E1, y ∈ E2, u ∈ g1(y), v ∈ g2(x) is a solution
of SGIVLI (4), if and only if (x, y, u, v) satisfies the relation

x = R
∂φ1
ρ1,M1(·,·)[M1(A1x,B1x)−N1(S1x, u)],

y = R
∂φ2
ρ2,M2(·,·)[M2(A2y,B2y)−N2(v, S2y)],

where ρ1, ρ2 are some constants, R
∂φ1
ρ1,M1(·,·)(x

∗) = [M1(A1, B1) + ρ1∂φ1]
−1(x∗) and

R
∂φ2
ρ2,M2(·,·)(y

∗) = [M2(A2, B2) + ρ2∂φ2]
−1(y∗).

PROOF. The conclusion follows directly from the definition of resolvent operators
R
∂φ1
ρ1,M1(·,·) and R

∂φ2
ρ2,M2(·,·).

We note that (E1 × E2, ‖ · ‖∗) is a Banach space with norm ‖ · ‖∗ defined as

‖(x, y)‖∗ = ‖x‖1 + ‖y‖2, ∀(x, y) ∈ E1 × E2.

Next, we prove existence and uniqueness for SGIVLI (4).
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THEOREM 4.1. For each i ∈ {1, 2}, let Ei be a uniformly smooth Banach space
with ρEi(t) ≤ Cit

2 for some Ci > 0; let ηi : Ei × Ei → Ei be a continuous map-
ping such that ηi(yi, y

′

i) + ηi(y
′

i, yi) = 0, for all yi, y
′

i ∈ Ei; let Ai, Bi : Ei → Ei
be nonlinear mappings; let Mi : Ei × Ei → E∗i be αiβi-symmetric ηi-monotone con-
tinuous with respect to Ai, Bi; let for any given x∗i ∈ E∗i , the function hi(yi, xi) =
〈x∗i −Mi(Aixi, Bixi), ηi(yi, xi)〉 be 0-DQCV in yi. Let φi : Ei → R∪{+∞} be a proper,
lower semicontinuous and ηi-subdifferentiable functional. Let Ni : E

∗
1 × E∗2 → E∗i be

(δi, ri)-mixed Lipschitz continuous; let g1 : E2 → CB(E∗2 ) and g2 : E1 → CB(E∗1 )
be λDg1 and λDg2 -Lipschitz continuous with respect to second and first argument, re-
spectively; let N1(S1(·), u1) be ε1-strongly accretive with respect to M1(A1, B1) and
N2(v1, S2(·)) is ε2-strongly accretive with respect toM2(A2, B2); letMi(Ai, Bi) is λMi

-
Lipschitz continuous with respect to Ai and Bi. Suppose that there exist constants
ρ1, ρ2 > 0 such that {

G1 = u1 + L2δ2Dg2 < 1,
G2 = u2 + L1r1λDg1 < 1,

(5)

where
u1 = L1

√
λ2M1

− 2ε1 + 64C1δ21, u2 = L2

√
λ2M2

− 2ε2 + 64C2r22,

L1 =
τ1

α1 − β1
, L2 =

τ2
α2 − β2

.

Then SGIVLI (4) has a unique solution.

PROOF. It follows that for (x, y) ∈ E1×E2, the resolvent operators R∂φ1ρ1,M1(·,·) and

R
∂φ2
ρ2,M2(·,·) are L1 and L2-Lipschitz continuous, respectively.

Now, we define a mapping Q : E1 × E2 → E1 × E2 by
Q(x, y) = (T (x, y), P (x, y)), ∀(x, y) ∈ E1 × E2; (6)

where T : E1 × E2 → E1 and P : E1 × E2 → E2 are defined by

T (x, y) = R
∂φ1
ρ1,M1(·,·)[M1(A1x,B1x)−N1(S1x, u)], (7)

P (x, y) = R
∂φ2
ρ2,M2(·,·)[M2(A2y,B2y)−N2(v, S2y)]. (8)

For any (x1, y1), (x2, y2) ∈ E1×E2, using (7), (8) and Lipschitz continuity of R∂φ1ρ1,M1(·,·)

and R∂φ2ρ2,M2(·,·), we have

‖T (x1, y1)− T (x2, y2)‖1 = ‖R∂φ1ρ1,M1(·,·)[M1(A1x1, B1x1)−N1(S1x1, u1)]

−R∂φ1ρ1,M1(·,·)[M1(A1x2, B1x2)−N1(S1x2, u2)]‖1
≤ L1‖[M1(A1x1, B1x1)−M1(A1x2, B1x2)

−(N1(S1x1, u1)−N1(S1x2, u2))‖∗1
≤ L1‖[M1(A1x1, B1x1)−M1(A1x2, B1x2)

−(N1(S1x1, u1)−N1(S1x2, u1))‖∗1
+L1‖N1(S1x2, u1))−N1(S1x2, u2))‖∗1, (9)
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‖M1(A1x1, B1x1)−M1(A1x2, B1x2)− (N1(S1x1, u1)−N1(S1x2, u1))‖2∗1
≤ ‖M1(A1x1, B1x1)−M1(A1x2, B1x2)‖2∗1
−2〈N1(S1x1, u1)−N1(S1x2, u1), J∗1 (M1(A1x1, B1x1)−M1(A1x2, B1x2))〉1
+2〈N1(S1x1, u1)−N1(S1x2, u1), J∗1 (M1(A1x1, B1x1)−M1(A1x2, B1x2))

−J∗1 (M1(A1x1, B1x1)−M1(A1x2, B1x2))− (N1(S1x1, u1)−N1(S1x2, u1))〉1.

Since M1 is λM1
-Lipschitz continuous with respect to A1 and B1, N1(S1(·), u1) is ε1-

strongly accretive with respect toM1(A1, B1), N1 is (δ1, r1)-mixed Lipschitz continuous
and g1 is λDg1 -Lipschitz continuous in the second argument, we have

‖M1(A1x1, B1x1)−M1(A1x2, B1x2)− (N1(S1x1, u1)−N1(S1x2, u1))‖2∗1
≤ λ2M1

‖x1 − x2‖21 − 2ε1‖x1 − x2‖21 + 64C1δ21‖x1 − x2‖21, (10)

where J∗1 : E
∗
1 → E1 is normalized duality mapping and

‖N1(S1x2, u1)−N1(S1x2, u2)‖∗1 ≤ r1‖u1 − u2‖∗2
≤ r1D(g1(y1), g1(y2))
≤ r1λDg1 ‖y1 − y2‖2. (11)

From (9)—(11), we have

‖T (x1, y1)− T (x2, y2)‖1

≤ L1

√
λ2M1

− 2ε1 + 64C1δ21‖x1 − x2‖1 + L1r1λDg1 ‖y1 − y2‖2. (12)

‖P (x1, y1)− P (x2, y2)‖2 ≤ ‖R∂φ2ρ2,M2(·,·)[M2(A2y1, B2y1)−N2(v1, S2y1)]

−R∂φ2ρ2,M2(·,·)[M2(A2y2, B2y2)−N2(v2, S2y2)]‖2
≤ L2‖[M2(A2y1, B2y1)−M2(A2y2, B2y2)

−(N2(v1, S2y1)−N2(v2, S2y2))‖∗2
≤ L2‖[M2(A2y1, B2y1)−M2(A2y2, B2y2)

−(N2(v1, S2y1)−N2(v1, S2y2))‖∗2 (13)

+L2‖N2(v1, S2y2))−N2(v2, S2y2))‖∗2,

‖M2(A2y1, B2y1)−M2(A2y2, B2y2)− (N2(v1, S2y1)−N2(v1, S2y2))‖2∗2
≤ ‖M2(A2y1, B2y1)−M2(A2y2, B2y2)‖2∗2
−2〈N2(v1, S2y1)−N2(v1, S2y2), J∗2 (M2(A2y1, B2y1)−M2(A2y2, B2y2))〉2
+2〈N2(v1, S2y1)−N2(v1, S2y2), J∗2 (M2(A2y1, B2y1)−M2(A2y2, B2y2))

−J∗2 (M2(A2y1, B2y1)−M2(A2y2, B2y2))− (N2(v1, S2y1)−N2(v1, S2y2))〉2.

Since M2 is λM2
-Lipschitz continuous with respect to A2 and B2, N2(v1, S2(·)) is ε2-

strongly accretive with respect toM2(A2, B2), N2 is (δ2, r2)-mixed Lipschitz continuous
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and g2 is λDg2 -Lipschitz continuous in the first argument, we have

‖M2(A2y1, B2y1)−M2(A2y2, B2y2)− (N2(v1, S2y1)−N2(v1, S2y2))‖2∗2
≤ λ2M2

‖y1 − y2‖22 − 2ε2‖y1 − y2‖22 + 64C2r22‖y1 − y2‖22, (14)

where J∗2 : E
∗
2 → E2 is normalized duality mapping and

‖N2(v1, S2x2)−N2(v2, S2x2)‖ ≤ δ2‖v1 − v2‖∗1
≤ δ2D(g2(x1), g2(x2))
≤ δ2λDg2‖x1 − x2‖1. (15)

From (13)—(15), we have

‖P (x1, y1)− P (x2, y2)‖2

≤ L2

√
λ2M2

− 2ε2 + 64C2r22‖y1 − y2‖2 + L2δ2λDg2 ‖x1 − x2‖1. (16)

From (12) and (16), we have

‖T (x1, y1)− T (x2, y2)‖1 + ‖S(x1, y1)− S(x2, y2)‖2
≤ G1‖x1 − x2‖1 +G2‖y1 − y2‖2
≤ max{G1, G2}(‖x1 − x2‖1 + ‖y1 − y2‖2), (17)

where {
G1 = u1+L2δ2λDg2 ,
G2 = u2 + L1r1λDg1 ,

(18)

and
u1 = L1

√
λ2M1

− 2ε1 + 64C1δ21, u2 = L2

√
λ2M2

− 2ε2 + 64C2r22.

Now, we define the norm ‖ · ‖∗ on E1 × E2 by

‖(x, y)‖∗ = ‖x‖1 + ‖y‖2, ∀(x, y) ∈ E1 × E2. (19)

Since (E1 × E2, ‖ · ‖∗) is a Banach space and hence from (6), (17) and (19), we have

‖Q(x1, y1)−Q(x2, y2)‖∗ = ‖T (x1, y1)− T (x2, y2)‖1 + ‖P (x1, y1)− P (x2, y2)‖2
≤ max{G1, G2}‖(x1, y1)− (x2, y2)‖∗. (20)

By condition (5), max{G1, G2} < 1, hence Q is a contraction mapping. It follows from
Banach contraction principle, there exists a point (x, y) ∈ E1 × E2 such that

Q(x, y) = (x, y),

which implies that

x = R
∂φ1
ρ1,M1(·,·)[M1(A1x,B1x)−N1(S1x, u)],

y = R
∂φ2
ρ2,M2(·,·)[M2(A2y,B2y)−N2(v, S2y)].
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Then by Lemma 4.1, (x, y, u, v) is a unique solution of SGIVLI (4).

ALGORITHM 4.1. For any (x0, y0) ∈ E1 × E2, compute the sequence (xn, yn) ∈
E1 × E2, u0 ∈ g1(y0), v0 ∈ g2(x0) by the following iterative scheme:

xn+1 = R
∂φ1
ρ1,M1n(·,·)[M1(A1xn, B1xn)−N1(S1xn, un)], (21)

yn+1 = R
∂φ2
ρ2,M2n(·,·)[M2(A2yn, B2yn)−N2(vn, S2yn)], (22)

un ∈ g1(yn) : ‖un+1 − un‖ ≤ D(g1(yn+1), g1(yn)),

vn ∈ g2(xn) : ‖vn+1 − vn‖ ≤ D(g2(xn+1), g2(xn)),

where n = 0, 1, 2, . . . ; ρ1 > 0, ρ2 > 0 are some constants.

THEOREM 4.2. For each i ∈ {1, 2}, let Ai, Bi, Si, gi, Ni, Mi, φi and ηi be
same as in Theorem 4.1. Suppose that ∂φinG−→∂φi and the condition (5) holds. Then
approximate solution (xn, yn) generated by Algorithm 4.1 converges strongly to unique
solution (x, y) of SGIVLI (4).

PROOF. It follows from Theorem 4.1 that there exists a unique solution (x, y, u, v)
of SGIVLI (4). By Algorithm 4.1 and Lipschitz continuity of the resolvent operators,
we have

‖xn+1 − x‖1 =
∥∥∥R∂φ1ρ1,M1n(·,·)[M1(A1xn, B1xn)−N1(S1xn, un)]

−R∂φ1ρ1,M1(·,·)[M1(A1x,B1x)−N1(S1x, u)]
∥∥∥
1

≤
∥∥∥R∂φ1ρ1,M1n(·,·)[M1(A1xn, B1xn)−N1(S1xn, un)]

−R∂φ1ρ1,M1n(·,·)[M1(A1x,B1x)−N1(S1x, u)]
∥∥∥
1

+
∥∥∥R∂φ1ρ1,M1n(·,·)[M1(A1x,B1x)−N1(S1x, u)]

−R∂φ1ρ1,M1(·,·)[M1(A1x,B1x)−N1(S1x, u)]
∥∥∥
1

(23)

and

‖yn+1 − y‖2 =
∥∥∥R∂φ2ρ2,M2n(·,·)[M2(A2yn, B2yn)−N2(vn, S2yn)]

−R∂φ2ρ2,M2(·,·)[M2(A2y,B2y)−N2(v, S2y)]
∥∥∥
2

≤
∥∥∥R∂φ2ρ1,M2n(·,·)[M2(A2yn, B2yn)−N2(vn, S2yn)]

−R∂φ2ρ2,M2n(·,·)[M2(A2y,B2y)−N2(v, S2y)]
∥∥∥
2

+
∥∥∥R∂φ2ρ2,M2n(·,·)[M2(A2y,B2y)−N2(v, S2y)]

−R∂φ2ρ2,M2(·,·)[M2(A2y,B2y)−N2(v, S2y)]
∥∥∥
2
. (24)
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Now, using the same arguments as from (9)—(12), we have∥∥∥R∂φ1ρ1,M1n(·,·)[M1(A1xn, B1xn)−N1(S1xn, un)]

−R∂φ1ρ1,M1(·,·)[M1(A1x,B1x)−N1(S1x, u)]
∥∥∥

≤ u1‖xn − x‖1 + L1r1λDg1 ‖yn − y‖2, (25)

and following the same arguments as from (13)—(16), we have∥∥∥R∂φ2ρ2,M2n(·,·)[M2(A2yn, B2yn)−N2(vn, S2yn)]

−R∂φ2ρ2,M2(·,·)[M2(A2y,B2y)−N2(v, S2y)]
∥∥∥
2

≤ u2‖yn − y‖2 + L2δ2λDg2‖xn − x‖1. (26)

By Theorem 3.1, we have

R
∂φ1
ρ1,M1n(·,·)[M1(A1x,B1x)−N1(S1x, u)]→ R

∂φ1
ρ1,M1(·,·)[M1(A1x,B1x)−N1(S1x, u)],

and

R
∂φ2
ρ2,M2n(·,·)[M2(A2y,B2y)−N2(v, S2y)]→ R

∂φ2
ρ2,M2(·,·)[M2(A2y,B2y)−N2(v, S2y)].

Let

an = R
∂φ1
ρ1,M1n(·,·)[M1(A1x,B1x)−N1(S1x, u)]

−R∂φ1ρ1,M1(·,·)[M1(A1x,B1x)−N1(S1x, u)] (27)

and

bn = R
∂φ2
ρ2,M2n(·,·)[M2(A2y,B2y)−N2(v, S2y)]

−R∂φ2ρ2,M2(·,·)[M2(A2y,B2y)−N2(v, S2y)]. (28)

Then
an, bn → 0 n→∞. (29)

From (23)—(26), (27) and (28), we have

‖xn+1 − x‖1 + ‖yn+1 − y‖2 ≤ G1‖xn − x‖1 +G2‖yn − y‖2 + an + bn
≤ max{G1, G2}(‖xn − x‖1 + ‖yn − y‖2) + an + bn.

It follows from (19) that (E1 × E2, ‖ · ‖∗) is a Banach space, we have

‖(xn+1, yn+1)− (x, y)‖∗ = ‖xn+1 − x‖1 + ‖yn+1 − y‖2
max{G1, G2}(‖(xn, yn)− (x− y)‖∗) + an + bn. (30)

From condition (5) and (29), (30), we have

‖(xn+1, yn+1)− (x, y)‖∗ → 0 as n→∞.
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Thus {(xn, yn)} converges strongly to the unique solution (x, y) of SGIVLI (4). This
completes the proof.
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