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Abstract

The aim of this work is to establish the existence of solution to a non commuta-
tive stochastic integral inclusion. By using matrix elements of quantum stochastic
calculus of Hudson-Parthasarathy type, an Aumann quantum stochastic integral
was formulated. As an application, the existence of solution to quantum stochas-
tic control problem was established via a noisy Ricatti differential inclusion.

1 Introduction

Quantum stochastic differential equations (qsde) of Hudson-Parthasarathy quantum
stochastic calculus had undergone various reformulations [8], [6], [3]. These equations
have applications in quantum optics, open quantum systems, quantum measurements,
etc. Likewise quantum stochastic control and quantum filtering problems had attracted
the interest of authors [7]. But of greater interest to us is the formulation of operator-
valued stochastic control in Fock space with applications to orbit-tracking problems
as discussed in [4]. The optimal control problem for the non commutative stochas-
tic differential equations was established and the work had since been extended. In
another development, differential inclusions have applications to classical control the-
ory and gave a wider applications of set-valued analysis to optimal control problems
[9]. In classical differential inclusions, Aumann integral [2] played a vital role in the
formulation of integral inclusions for measurable set-valued maps, see [1], [5].
The aim of this work is to establish non commutative stochastic integral inclusions

via set-valued approach. The existence of solution to quantum stochastic differential in-
clusion established has application to quantum stochastic Ricatti inclusion of quantum
stochastic control theory in [4].

2 Preliminaries

In this section we shall state definitions and some preliminary results on quantum sto-
chastic calculus (QSC) and differential inclusions which will be employed in subsequent
sections.
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2.1 Notations and Definitions

Let R be complex separable Hilbert space called initial Hilbert space. This space
describes events and observables concerning a system. In the sequel, we let R =
(−∞,+∞) and R+ = [0,+∞). Let H = L2(R,C), the symmetric (boson) Fock space
describing events and observables concerning a noise process is Γ(H) (later denoted
by Γ). A natural dense subset of Γ consists of linear space generated by the set of
exponential vectors in Γ of the form

ψ(f) =

∞⊕
n=0

(n!)−
1
2

n⊗
f, f ∈ H

where
⊗0

f = 1 and
⊗n

f is the n-fold tensor product of f with itself for n ≥ 1. For
f, g ∈ H, the relation is defined with respect to the inner products

〈ψ(f), ψ(g)〉Γ = exp 〈f, g〉H ,

which is assumed to be antilinear in the first component and linear in the second
component.
Events and observables concerning a system plus noise was described by R ⊗ Γ.

Let D be a linear dense subspace of R and E a linear space generated by the set of
exponential vectors dense in Γ. The linear span of a linearly independent set {c⊗ψ(f) :
c ∈ D, f ∈ H} is dense in R⊗Γ, where ⊗ denotes algebraic tensor product. The inner
product and norm induced by R⊗ Γ are respectively represented by 〈., .〉 and ‖.‖ .

We shall introduce the notions of time and adaptedness as defined in the literatures.
Let ξ be a spectral measure on (R+, β) (where β is the σ-algebra of Borel measurable
subsets of [0,+∞) whose values are projection operators on H such that ξ(R+) = Id,
the identity operator on H. Time is defined as a R+-valued observable ξ with no jump
points i.e. ξ({t}) = 0 for every t ≥ 0.
Let I = [0,+∞), a stochastic process indexed by I is an R⊗Γ-valued map, X : I →

R⊗ Γ. Let D ⊂ R and Λ ⊂ H be linear manifolds such that for all 0 ≤ s < t < +∞,
ξ([s, t])f ∈ Λ whenever f ∈ Λ. Also, let D0 and E0 be the linear spans of D and
Γ(Λ) respectively, then the linear span of D ⊗ Γ(Λ) is D0⊗E0. For each t ≥ 0, let Ht]

denotes the range of ξ([0, t]); ft] and f[t respectively denote ξ([0, t])f and ξ([t,+∞))f ,
the notion of adaptedness is defined as follows:
A family X = {X(t) : t ∈ I} of operators from R⊗Γ to R⊗Γ is called an adapted

stochastic process with respect to the triple (ξ,D,Λ) if for all t ∈ I, c ∈ D and f ∈ Λ,

(i) dom(X(t)) ⊃ D0⊗E0,

(ii) X(t)c⊗ ψ(ft]) ∈ R⊗ Γ(Ht]),

(iii) X(t)c⊗ ψ(f) = (X(t)c⊗ ψ(ft]))⊗ ψ(f[t).

An adapted stochastic process X is said to be continuous if for every c ∈ D and f ∈ Λ
the map t ∈ [0,∞) → X(t)c ⊗ ψ(f) is continuous. Let η = c ⊗ ψ(f) ∈ R ⊗ Γ, an
adapted stochastic process X is said to be bounded if

‖X(t)η‖ = 〈X(t)η,X(t)η〉 12 <∞ for every c ∈ D, f ∈ Λ and t ∈ I.
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Let B(R ⊗ Γ) be the space of bounded adapted stochastic processes on R ⊗ Γ. The
norm ‖ . ‖′ is defined on B(R⊗ Γ) as follows

‖X‖′ = sup{‖X(t)η‖ : η ∈ R⊗ Γ, t ∈ I}.

B(R⊗ Γ) with the norm ‖ . ‖′ is a Banach space which will be denoted in the sequel
by B. Let Cl(B)(resp. Comp(B)) denote the family of all nonempty closed bounded
(resp. compact) subsets of B. For X ∈ B ,M,N ∈ Cl(B), define

ρ(M,N ) ≡ max(δ(M,N ), δ(N ,M)),

where
δ (M,N ) ≡ sup

X∈M
d(X,N ) and d(X,N ) ≡ inf

Y ∈N
‖X − Y ‖ .

Moreover, ifM∈ Cl(B), then ‖M‖cl(B) is defined by

‖M‖cl(B) ≡ ρ(M, {0}).

The function ρ: Cl(B)× Cl(B)→ R+ is a metric on Cl(B) called the Hausdorff metric
in Cl(B). The Hausdorff topology induced by the metric is derived as follows:
Given ε > 0 and A ∈ Cl(B), we define an open neighbourhood U(A, ε) as

U(A, ε) = {X ∈ A : d(X,A) ≤ ε}.

For everyM,N ∈ Cl(B), the Hausdorff topology, τH is derived from Hausdorff metric
ρ as

ρ(M,N ) = inf{ε > 0 :M⊂ U(N , ε) and N ⊂ U(M, ε)}.

THEOREM 1. The metric space (Cl(B), ρ) is complete.

PROOF. We shall prove that for any Cauchy sequence (An) of Cl(B), An converges
to A where

A =

∞⋂
n=1

∞⋃
m=n

Am 6= ∅.

For any ε > 0 and each k ∈ N there exists Nk such that n,m ≥ Nk implies ρ(An,Am) <
2−kε. Let (nk) be a strictly increasing sequence of N such that nk ≥ Nk. Let x0, x1, x2, ..., xk
be chosen such that

xi ∈ Ani , ‖ xi+1 − xi ‖< 2−iε, for i = 1, 2, ..., k − 1.

Now, since d(xk,Ank+1) ≤ ρ(Ank ,Ank+1) < 2−(k+1)ε, we can choose xk+1 in Ank+1
which satisfies ‖ xk+1 − xk ‖< 2−(k+1)ε. Therefore (xk) is a Cauchy sequence of B,
since B is complete, there is x ∈ B such that ‖xk − x‖ → 0 as k →∞. We have x ∈ A
and ‖x− x0‖ ≤ 2ε. Then for every n0 ≥ N0 and x0 ∈ An0 there exists a point x ∈ A
such that ‖x− x0‖ ≤ 2ε. Hence δ(An0 ,A) ≤ 2ε for n0 ≥ N0. Let N ∈ N be such that
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m,n ≥ N implies that ρ(An,Am) ≤ ε. Let x ∈ A, then x ∈
⋃∞
m=nAm and there exists

n0 ≥ N , y ∈ An0 such that ‖ x− y ‖≤ ε. For each m ≥ N , we have

d(x,Am) ≤ d(x,An0) + δ(An0 ,A) ≤ 2ε.

Hence δ(A,Am) ≤ 2ε, which implies that δ(A,An)→ 0 as n→∞. This together with
δ(An,A) → 0 as n → ∞ from above imply that ρ(An,A) → 0 as n → ∞, hence the
proof.

In the sequel, we shall denote the topological space (Cl(B), τH ) by Cl(B) and the
set of all adapted stochastic processes on B shall be denoted by Ad(B).

2.2 Quantum Stochastic Integral

DEFINITION. A member X of Ad(B) is called

(i) absolutely continuous if the map t 7→ ‖X(t)‖, t ∈ I is absolutely continuous.

(ii) locally absolutely p-integrable if ‖X(.)‖p is Lebesgue -measurable and integrable
on [0, t) ⊆ I for each t ∈ I . We denote by Ad(B)ac (resp.L

p
loc(B)) the set of all

absolutely continuous(resp. locally absolutely p-integrable) members of Ad(B).

Stochastic integrators
Let L∞loc(R+,C) [resp.L∞B,loc(R+)] be the linear space of all measurable, locally

bounded functions from R+ to C [resp. to B ].
For f, g ∈ H and π ∈ L∞B,loc(R+), the annihilation, creation and gauge operators

are respectively linear operators a(f), a+(f), λ(π) : Γ→ Γ defined as:

a(f)ψ(g) = 〈f, g〉Hψ(g),

a+(f)ψ(g) =
d

dσ
ψ(g + σf) |σ=0,

λ(π)ψ(g) =
d

dσ
ψ(eσπf) |σ=0 .

They give rise to the operator-valued maps Af , A
+
f and Λπ defined by

Af (t) ≡ a(fχ[0,t)),

A+
f (t) ≡ a+(fχ[0,t)),

Λπ(t) ≡ λ(πχ[0,t)),

for t ∈ R+, where χI denotes the indicator function of the Borel set I ⊆ R+. The
maps Af , A

+
f and Λπ are stochastic processes , called annihilation, creation and gauge

processes , respectively, when their values are identified with their ampliations onR⊗Γ.
These are the stochastic integrators in Hudson and Parthasarathy[10] formulation of
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boson quantum stochastic integration. For processes p, q, u, v ∈ L2
loc(B), the quantum

stochastic integral:∫ t

t0

(
p(s)dΛπ(s) + q(s)dAf (s) + u(s)dA+

g (s) + v(s)ds
)
, t0, t ∈ R+,

is interpreted in the sense of Hudson-Parthasarathy[10].

DEFINTION.

(a) By a multivalued stochastic process indexed by I ⊆ R+ we mean a multifunction
on I with values in Cl(B); that is, Φ : I → 2B, such that Φ(t) ∈ Cl(B).

(b) If Φ is a multivalued stochastic process indexed by I ⊆ R+, then a selection of Φ
is a stochastic process X : I → B with the property that X(t) ∈ Φ(t) for almost
all t ∈ I.

(c) A multivalued stochastic process Φ will be called (i) measurable if t 7→ d(x,Φ(t))
is measurable for arbitrary x ∈ B. (ii) locally absolutely p-integrable if t 7→‖
Φ(t) ‖clB, t ∈ R+ lie in Lploc(I). For p ∈ (0,∞) and I ⊆ R+, the set of all
locally absolutely p-integrable multivalued stochastic processes will be denoted
by Lploc(B)mvs. Moreover, if Φ ∈ Lploc(B)mvs, then we denote by

Lp(Φ) ≡ {φ ∈ Lp(B) : φ is a selection of Φ}.

Let f, g ∈ H, π ∈ L∞B,loc(R+),and let the identity map on R⊗Γ be denoted by I, if
N is any of the stochastic processes Af , A+

g ,Λπ and s 7→ sI, s ∈ R+. We introduce the
Aumann quantum stochastic integral as follows: If Φ ∈ L2

loc(B)mvs, then∫ t

t0

Φ(s)dN(s) ≡
{∫ t

t0

φ(s)dN(s) : φ ∈ L2(Φ)

}
where

∫ t
t0
φ(s)dN(s) : H ⊗ Γ → H⊗ Γ is a linear operator defined on the linear span

{c⊗ ψ(f) : c ∈ D, f ∈ Λ} with matrix elements

〈c⊗ ψ(f),

∫ t

t0

φ(s)dN(s)d⊗ ψ(g)〉.

This leads to the following definition of quantum stochastic integral inclusion in the
sense of Aumann: Let E,F,G,H ∈ L2

loc(B)mvs with selections p, q, u, v ∈ L2
loc(B)

respectively. For f, g ∈ L∞loc(R+) and π ∈ L∞B(γ),loc(R+), let the integral

M(t) =

∫ t

t0

(
E(s)dΛπ(s) + F (s)dAf (s)

+G(s)dA+
g (s) +H(s)ds

)
, a.e.t ∈ I,
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then

M(t) =

{∫ t

t0

(
p(s)dΛπ(s) + q(s)dAf (s) + u(s)dA+

g (s) + v(s)ds
)

: p(s) ∈ E(s), q(s) ∈ F (s), u(s) ∈ G(s), v(s) ∈ H(s)

}
.

Therefore for a fixed x(t0) = x0, we have the quantum stochastic integral inclusion

x(t) ∈ x0 +

∫ t

t0

(
E(s)dΛπ(s) + F (s)dAf (s)

+G(s)dA+
g (s) +H(s)ds

)
, a.e.t ∈ I.

Let N ⊂ B, a multivalued map Φ : I×N → 2B will be said to be upper semicontinuous
at a point (t0, x0) ∈ I ×N , if every ε > 0 , there exists δ = δ((t0, x0), ε) > 0 such that

Φ(t, x) ⊂ Φ(t0, x0) + εB,

where B is a unit ball centred at the origin. Φ is said to be upper semicontinuous on
I ×N if it is upper semicontinuous at every point (t, x) ∈ I ×N .

3 Existence Results

In this subsection we prove an existence theorem for upper semicontinuous quantum
stochastic differential inclusions.
The following proposition follows from Theorem 4.1 in [10].

PROPOSITION 1. Let E,F,G,H ∈ L2
loc(I×B)mvs with selections p, q, u, v ∈ L2(B)

respectively. For arbitrary η, ξ ∈ D⊗E with η = c⊗e(α), ξ = d⊗e(β), α, β ∈ L2
loc(R+),

f, g ∈ L∞loc(R+), π ∈ L∞B(γ),loc(R+), then

〈η,M(t)ξ〉 =

{
〈η,
∫ t

t0

(
p(s)dΛπ(s) + q(s)dAf (s) + u(s)dA+

g (s) + v(s)ds
)
ξ〉

: p(s) ∈ E(s, x(s)), q(s) ∈ F (s, x(s)), u(s) ∈ G(s, x(s)), v(s) ∈ H(s, x(s))

}
.

The proposition therefore gives the definition for the matrix form of the Aumann
integral for multifunction, that is, for each t ∈ I; M(t) : H⊗Γ→ 2H⊗Γ. We denote by
A(H ⊗ Γ), the set of matrix form Aumann integral maps on H ⊗ Γ. We can define a
metric d on A(H⊗ Γ) as follows: for each t ∈ I, η, ξ ∈ H ⊗ Γ, let Ψ1(t) ≡ 〈η,M1(t)ξ〉
and Ψ2(t) ≡ 〈η,M2(t)ξ〉 ∈ A(H⊗ Γ) such that

M1(t) =

∫ t

t0

(
E1(s, x(s))dΛπ(s) + F1(s, x(s))dAf (s)

+G1(s, x(s))dA+
g (s) +H1(s, x(s))ds

)
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and

M2(t) =

∫ t

t0

(
E2(s, x(s))dΛπ(s) + F2(s, x(s))dAf (s)

+G2(s, x(s))dA+
g (s) +H2(s, x(s))ds

)
for some Ei, Fi, Gi, Hi ∈ L2

loc(I × B)mvs with selections pi, qi, ui, vi ∈ L2
loc(B) respec-

tively, i = 1, 2,

d(Ψ1(t),Ψ2(t)) =

∫ t

t0

max{ρ(E1, E2), ρ(F1, F2)ρ(G1, G2)ρ(H1, H2)}ds.

We remark that (A(H⊗Γ), d) is a complete metric space. We shall prove the existence
of solutions to a quantum stochastic integral inclusions in form of matrix elements.

LEMMA1. Suppose A is a closed convex set in cl(B) then

〈η, (
∫ t2

t1

Ads)ξ〉 = 〈η, (t2 − t1)Aξ〉.

PROOF. For arbitrary η, ξ ∈ H ⊗ Γ,

〈η, (t2 − t1)Aξ〉 =

{
〈η, (t2 − t1)pξ〉 : p ∈ A

}
⊂
{
〈η, (

∫ t2

t1

pξ)ds : p ∈ A
}

=

{∫ t2

t1

〈η, pξ〉ds : p ∈ A
}

=

{
〈η,
∫ t2

t1

pξ〉ds : p ∈ A
}

= 〈η, (
∫ t2

t1

Ads)ξ〉.

Now let z ∈ 〈η, (
∫ t2
t1
Ads)ξ〉, this implies that z = 〈η, (

∫ t2
t1
p(s)ds)ξ〉 where p(.) is mea-

surable with values in A. By Mean value Theorem, z = 〈η, (t2 − t1)pξ〉, p ∈ co{p(s) :
t1 ≤ s ≤ t2} which implies that z ∈ 〈η, (t2 − t1)Aξ〉. Hence this lemma holds.

THEOREM 2. Let E,F,G,H ∈ L2
loc(I × B)mvs be upper semicontinuous multi-

valued stochastic processes from I × B into the compact convex subsets of B. Then
x(.) ∈ Ad(B) is a solution on I to the differential inclusion

〈η, x′(t)ξ〉 ∈ 〈η,M ′(t)ξ〉 (1)

if and only if
〈η, (x(t2)− x(t1))ξ〉 ∈ 〈η,M(t)ξ〉. (2)
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PROOF. When x(.) ∈ Ad(B) is a solution to (1) on I, its derivative is a measurable
selection of(

E(s, x(s))dΛπ(s) + F (s, x(s))dAf (s) +G(s, x(s))dA+
g (s) +H(s, x(s))ds

)
.

Hence,
〈η, (x(t2)− x(t1))ξ〉 ∈ 〈η,M(t)ξ〉.

Conversely, assume that (2) holds and let ‖Φ‖ = 4Φm where Φm = max{‖E‖ , ‖F‖ , ‖G‖ , ‖H‖}.
Then

‖x(t2)− x(t1)‖γ ≤
∫ t2

t1

∥∥(E(s, x(s))dΛπ(s) + F (s, x(s))dAf (s)

+G(s, x(s))dA+
g (s) +H(s, x(s))ds

)∥∥
≤

(
‖E‖+ ‖F‖+ ‖G‖+ ‖H‖

)
|t2 − t1|

≤ ‖Φ‖ |t2 − t1| .

This implies that x(.) is Lipschitzian and hence differentiable a.e. t ∈ I. Let t′ be a
point where x′(t) exists. Since E,F,G,H are upper semicontinuous, fix ε > 0, let B
be a unit ball in B and let δ > 0 be such that |t− t′| ≤ δ implies[

E(t′, x(t′)) + F (t′, x(t′)) +G(t′, x(t′)) +H(t′, x(t′))

]
⊂

[
E(t, x(t)) + F (t, x(t)) +G(t, x(t)) +H(t, x(t)) + εB

]
.

Then

〈η, (x(t1)− x(t))ξ〉 ∈ 〈η,M(t)ξ〉
⊂ 〈η,M(t)ξ〉+ 〈η, εpξ〉 (p ∈ B)

= 〈η, (t1 − t)M ′(t)ξ〉+ 〈η, εpξ〉,

which implies that 〈η, x′(t)ξ〉 ∈ 〈η,M ′(t)ξ〉+ 〈η, εpξ〉. Since ε is arbitrarily chosen and
E,F,G,H closed, we see that

〈η, x′(t)ξ〉 ∈ 〈η,M ′(t)ξ〉.

3.1 Application to Quantum Stochastic Control

Consider the quantum stochastic Ricatti differential inclusion
dP (t) ∈ (P (t)Ω(t) + Ω∗(t)P (t) + Φ∗(t)P (t)Φ(t)− P 2(t) +Q(t))dt

+ (P (t)Ψ(t) + Φ∗(t)P (t))dAf (t) + (P (t)Φ(t) + Ψ∗(t)P (t))dA+
g (t),

P (0) = P0

(3)
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Where Ω(t),Φ(t),Ψ(t), Q(t) ∈ L2
loc(B)mvs, t ∈ [0, T ], and Ω∗,Φ∗,Ψ∗, Q∗ ∈ L2

loc(B)mvs
are their adjoints respectively. The matrix elements integral equivalent of (3.3) is

〈η, P (t)ξ〉

∈ 〈η, P0ξ〉+ 〈η, [
∫ T

t

(P (s)Ω(s) + Ω∗(s)P (s) + Φ∗(s)P (s)Φ(s)− P 2(s) +Q(s))ds

+(P (s)Ψ(s) + Φ∗(s)P (s))dAf (s) + (P (s)Φ(s) + Ψ∗(s)P (s))dA+
g (s)]ξ〉. (4)

Suppose Ω(t, P ),Φ(t, P ),Ψ(t, P ) and their adjoints are upper semicontinuous on I ×B
and Q(t) is upper semicontinuous on B. Let Ω(t, P ) ≡ P (t)Ω(t), Φ(t, P ) ≡ P (t)Φ(t)
and Ψ(t, P ) ≡ P (t)Ψ(t) where Ω(t), Φ(t), Ψ(t) and their adjoints are upper semicon-
tinuous on B, such that Ω(t, P )∗ ≡ Ω(t)∗P (t)∗, Φ(t, P )∗ ≡ Φ(t)∗P (t)∗ and Ψ(t, P )∗ ≡
Ψ(t)∗P (t)∗.
The following result is a corollary to Theorem 1 above and establishes the existence

of solution to (3) or (4).

COROLLARY 1. Assume that the maps Ω, Φ, Ψ ∈ L2
loc(I × B)mvs and P,Q ∈

L2
loc(B) with compact convex values such that

(a) t 7→ Ω(t, P (t)), t 7→ Φ(t, P (t)), t 7→ Ψ(t, P (t)) have measurable selections,

(b) P 7→ Ω(t, P (t)), P 7→ Φ(t, P (t)), P 7→ Ψ(t, P (t)) and their adjoints are upper
semicontinuous.

(c) For any t1, t2 ∈ [0, T ],

〈η, (P (t2)− P (t1))ξ〉

∈ 〈η, [
∫ t2

t1

(P (s)Ω(s) + Ω∗(s)P (s) + Φ∗(s)P (s)Φ(s)− P 2(s) +Q(s))ds

+(P (s)Ψ(s) + Φ∗(s)P (s))dAf (s) + (P (s)Φ(s) + Ψ∗(s)P (s))dA+
g (s)]ξ〉.

Then the quantum stochastic Ricatti differential inclusion (3) has a solution on
[0, T ].

PROOF. Suppose ω, φ, ψ are measurable selections of Ω, Φ, Ψ respectively, then
(c) implies that

〈η, (P (t2)− P (t1))ξ〉

= 〈η, [
∫ t2

t1

(P (s)ω(s) + ω∗(s)P (s) + φ∗(s)P (s)φ(s)− P 2(s) +Q(s))ds

+(P (s)ψ(s) + φ∗(s)P (s))dAf (s) + (P (s)Φ(s) + ψ∗(s)P (s))dA+
g (s)]ξ〉.

From Theorem 1, there exists K > 0 such that

|〈η, (P (t2)− P (t1))ξ〉| < K |t2 − t1| .
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That is, P is Lipschitzian. Also, ω, φ, ψ are bounded from the upper semicontinuity
of Ω, Φ, Ψ. Therefore the quantum stochastic integral equation arising from (4) by
using the measurable selection is a form of matrix element equivalence of noisy Ricatti
differential equation in [4]. The existence of solution then follows as established in
Lemma 2.1 in [4]. Since these measurable selections are not unique, then the solution
to (3) is a set.
Suppose the solution set is the set of stochastic processes P(t) = {P (t) : t ∈ [0, T ]}

and let

Jξ,T (u) =

∫ T

0

[
〈X(t)ξ,R∗RX(t)ξ〉+ 〈u(t)ξ, u(t)ξ〉

]
dt

+〈X(T )ξ, P (T )X(T )ξ〉 ξ ∈ H ⊗ Γ, (5)

be the quadratic performance functional corresponding to quantum stochastic control
problem

dX(t) = (Ω(t)X(t) + u(t))dt+ Ψ(t)X(t)dAf (t) + Φ(t)X(t)dA+
g (t) X(0) = I.

Where u(t) is a continuous selection from the space of admissible controls U(t) = {u(t) :
t ∈ [0, T ]} and R is a bounded operator on the system space H.

Then the quadratic performance functional (5) is minimized by the feedback control

u(t) = −P (t)X(t).
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