# On Generalized Absolute Cesàro Summability Of Factored Infinite Series* 

Hüseyin Bor ${ }^{\dagger}$

Received 04 February 2018


#### Abstract

In this paper, we generalize a known result dealing with the absolute Cesàro summability factors of infinite series. Some new and known results are also obtained.


## 1 Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by $t_{n}^{\alpha, \beta}$ the $n$th Cesàro mean of order $(\alpha, \beta)$, with $\alpha+\beta>-1$, of the sequence $\left(n a_{n}\right)$, that is (see [5])

$$
\begin{equation*}
t_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{1}
\end{equation*}
$$

where

$$
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1, \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } \quad n>0 .
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta, \sigma ; \delta|_{k}, k \geq 1, \delta \geq 0, \alpha+\beta>-1$, and $\sigma \in \mathbb{R}$, if (see [2])

$$
\sum_{n=1}^{\infty} n^{\sigma(\delta k+k-1)} \frac{\left|t_{n}^{\alpha, \beta}\right|^{k}}{n^{k}}<\infty
$$

If we take $\sigma=1$, then $|C, \alpha, \beta, \sigma ; \delta|_{k}$ summability reduces to $|C, \alpha, \beta ; \delta|_{k}$ summability (see [3]). If we set $\sigma=1$ and $\delta=0$, then we obtain the $|C, \alpha, \beta|_{k}$ summability (see [6]). Also, if we take $\beta=0$, then we have $|C, \alpha, \sigma ; \delta|_{k}$ summability (see [10]). Furthermore, if we take $\sigma=1, \beta=0$, and $\delta=0$, then we get $|C, \alpha|_{k}$ summability (see [7]). Finally, if we set $\sigma=1$ and $\beta=0$, then we get $|C, \alpha ; \delta|_{k}$ (see [8]). For any sequence $\left(\lambda_{n}\right)$ we write that $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined by (see [1])

$$
\theta_{n}^{\alpha, \beta}= \begin{cases}\left|t_{n}^{\alpha, \beta}\right|, & \text { for } \alpha=1, \beta>-1  \tag{2}\\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, & \text { for } 0<\alpha<1, \beta>-1\end{cases}
$$

[^0]
## 2 Known Result

The following theorem is known dealing with the generalized absolute Cesàro summability factors of infinite series.

THEOREM 1 ([4]). Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined as in (2). If $\left(\lambda_{n}\right)$ is a nonnegative and non-increasing sequence such that the series $\sum \frac{\lambda_{n}}{n}$ is convergent,

$$
\begin{gather*}
n \Delta \lambda_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty  \tag{3}\\
\sum_{n=1}^{\infty}(n+1) \Delta^{2} \lambda_{n} \tag{4}
\end{gather*}
$$

is convergent and the condition

$$
\begin{equation*}
\sum_{n=1}^{m}\left(n^{\delta} \theta_{n}^{\alpha, \beta}\right)^{k}=O(m) \quad \text { as } \quad m \rightarrow \infty \tag{5}
\end{equation*}
$$

holds, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta ; \delta|_{k}, 0<\alpha \leq 1, \beta>-1, k \geq 1$, $\delta \geq 0$, and $(\alpha+\beta-\delta)>0$.

## 3 Main Result

The aim of this paper is to generalize Theorem 1 for the $|C, \alpha, \beta, \sigma ; \delta|_{k}$ summability method. Now, we shall prove the following theorem.

THEOREM 2. Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined as in (2). If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that the series $\sum \frac{\lambda_{n}}{n}$ is convergent, the conditions (3), (4), and

$$
\begin{equation*}
\sum_{n=1}^{m} n^{\sigma(\delta k+k-1)} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k-1}}=O(m) \quad \text { as } \quad m \rightarrow \infty \tag{6}
\end{equation*}
$$

hold, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta, \sigma ; \delta|_{k}, k \geq 1,0 \leq \delta<\alpha \leq 1, \sigma \in R$, and $(\alpha+\beta+1) k-\sigma(\delta k+k-1)>1$.

We need the following lemma for the proof of our theorem.

LEMMA 1 ([1]). If $0<\alpha \leq 1, \beta>-1$, and $1 \leq v \leq n$, then

$$
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right|
$$

## 4 Proof of Theorem 2

Let $\left(T_{n}^{\alpha, \beta}\right)$ be the $n$th $(C, \alpha, \beta)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1), we have that

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

First applying Abel's transformation and then using Lemma 1, we have that

$$
\begin{aligned}
T_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \\
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha, \beta} \\
& =T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta} .
\end{aligned}
$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\sigma(\delta k+k-1)-k}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty, \quad \text { for } \quad r=1,2
$$

Whenever $k>1$, we can apply Hölder's inequality with indices $k$ and $k^{\prime}$ where

$$
\frac{1}{k}+\frac{1}{k^{\prime}}=1
$$

we get that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{\sigma(\delta k+k-1)-k}\left|T_{n, 1}^{\alpha, \beta}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} n^{\sigma(\delta k+k-1)-k}\left|\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta} \Delta \lambda_{v}\right|^{k} \\
= & O(1) \sum_{n=2}^{m+1} \frac{1}{n^{(\alpha+\beta+1) k-\sigma(\delta k+k-1)}}\left\{\sum_{v=1}^{n-1} v^{\alpha k} v^{\beta k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\right\}\left\{\sum_{v=1}^{n-1} \Delta \lambda_{v}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{(\alpha+\beta+1) k-\sigma(\delta k+k-1)}} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \int_{v}^{\infty} \frac{d x}{x^{(\alpha+\beta+1) k-\sigma(\delta k+k-1)}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} \Delta \lambda_{v} v^{\sigma(\delta k+k-1)} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(\Delta \lambda_{v}\right) \sum_{p=1}^{v} p^{\sigma(\delta k+k-1)} \frac{\left(\theta_{p}^{\alpha, \beta}\right)^{k}}{p^{k-1}}+O(1) \Delta \lambda_{m} \sum_{v=1}^{m} v^{\sigma(\delta k+k-1)} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v^{k-1}} \\
& =O(1) \sum_{v=1}^{m} v \Delta^{2} \lambda_{v}+O(1) m \Delta \lambda_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

in view of hypotheses of Theorem 2.
Similarly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\sigma(\delta k+k-1)-k}\left|\lambda_{n} \theta_{n}^{\alpha, \beta}\right|^{k}= & O(1) \sum_{n=1}^{m} \frac{\lambda_{n}}{n} n^{\sigma(\delta k+k-1)} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k-1}} \\
= & O(1) \sum_{n=1}^{m-1} \Delta\left(\frac{\lambda_{n}}{n}\right) \sum_{v=1}^{n} v^{\sigma(\delta k+k-1)} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v^{k-1}} \\
& +O(1) \frac{\lambda_{m}}{m} \sum_{n=1}^{m} n^{\sigma(\delta k+k-1)} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k-1}} \\
= & O(1) \sum_{n=1}^{m-1} \Delta \lambda_{n}+O(1) \sum_{n=1}^{m-1} \frac{\lambda_{n+1}}{n+1}+O(1) \lambda_{m} \\
= & O(1) \sum_{n=1}^{m-1} \Delta \lambda_{n}+O(1) \sum_{n=2}^{m-1} \frac{\lambda_{n}}{n}+O(1) \lambda_{m} \\
= & O(1)\left(\lambda_{1}-\lambda_{m}\right)+O(1) \sum_{n=1}^{m-1} \frac{\lambda_{n}}{n}+O(1) \lambda_{m} \\
= & O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of hypotheses of Theorem 2. This completes the proof of Theorem 2.

## 5 Conclusions

If we take $\beta=0$ and $\sigma=1$, then we get a new result for $|C, \alpha ; \delta|_{k}$ summability factors of infinite series. If we set $\sigma=1$, then we get Theorem 1. Because in this case condition (6) reduces to condition (5). Also, if we take $\beta=0$ and $\delta=0$, then we get a result concerning the $|C, \alpha|_{k}$ summability. Furthermore, if we take $\sigma=1, \beta=0, \alpha=1$, and $\delta=0$, then we obtain a new result for the $|C, 1|_{k}$ summability factors. Finally, if we take $\delta=0, \beta=0, \sigma=1$, and $k=1$, then we get the known result of Pati dealing with $|C, \alpha|$ summability factors of infinite series (see [9]).

## References

[1] H. Bor, On a new application of power increasing sequences, Proc. Est. Acad. Sci., 57(2008), 205-209.
[2] H. Bor, On the generalized absolute Cesàro summability, Pac. J. Appl. Math., 2(2010), 217-222.
[3] H. Bor, An application of almost increasing sequences, Appl. Math. Lett., 24(2011), 298-301.
[4] H. Bor, A new application of non-increasing sequences, Positivity, 20(2016), 131134.
[5] D. Borwein, Theorems on some methods of summability, Quart. J. Math., Oxford, Ser. (2), 9(1958), 310-316.
[6] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc., 67(1970), 321-326.
[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141.
[8] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc., 8(1958), 357-387.
[9] T. Pati, The summability factors of infinite series, Duke Math. J., 21(1954), 271284.
[10] A. N. Tuncer, On generalized absolute Cesàro summability factors, Ann. Polon. Math., 78(2002), 25-29.


[^0]:    *Mathematics Subject Classifications: 26D15, 40D15, 40F05, 40G05, 40G99.
    ${ }^{\dagger}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

