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Abstract

Let G be a graph with vertex set V (G) and edge set E(G). A (p, q)-graph
G = (V,E) is said to be AL(k)-traversal if there exists a sequence of vertices
(v1, v2, . . . , vp) such that for each i = 1, 2, . . . , p− 1, the distance between vi and
vi+1 is k. We call a graph G a k-step Hamiltonian graph (or say it admits a k-step
Hamiltonian cycle) if it has an AL(k)-traversal in G and d(vp, v1) = k. In this
paper, we give several construction of some families of graphs and its line graphs
which admit a 3-step Hamiltonian cycle.

1 Introduction

Throughout this paper, we will consider only simple undirected graph G = (V (G), E(G)).
The distance between two vertices u and v in G denoted by d(u, v) is the length of a
shortest u, v-path in G. The line graph L(G) of a graph G has E(G) as its vertex set
and two vertices are adjacent in L(G) if and only if they are adjacent as edges in G.
A matching in a graph G is a set M ∈ E(G) such that no edges in M have common
endpoints. For a vertex u ∈ V (G), we say u is saturated by a matching M if u is the
endpoint of an edge of M , otherwise u is unsaturated by M . A matching M is called a
perfect matching in a graph G if M saturates each vertex of G. For terminologies and
notations which are not explained here, please refer West [8].

A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle, i.e a spanning
cycle that traverses each vertex of G exactly once. Determining whether such cycle
exists in a given graph is one of the major classical problems in graph theory. There
is no exact characterization to check the existence and non-existence of Hamiltonian
cycle for a given graph. A good reference for recent development and open problems
related to Hamiltonicity of graphs, please see [2]. This concept of Hamiltonicity is then
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extended by Lau et al. in [3] to k-step Hamiltonicity. They introduced the concept
of AL(k)-traversal and k-step Hamiltonian graph as follows: For an integer k ≥ 1,
a (p, q)-graph G with p vertices and q edges is said to admit an AL(k)-traversal if
the p vertices of G can be arranged as v1, v2, . . . , vp such that d(vi, vi+1) = k for each
i = 1, 2, . . . , p−1. A graph G is k-step Hamiltonian(or just k-SH) if G admits an AL(k)-
traversal and d(v1, vp) = k. The sequence of vertices v1, v2, . . . , vp, v1 is then called a
k-SH cycle of G. Clearly, 1-SH graphs are Hamiltonian. The distance-k graph, Dk(G)
is a graph generated from a graph G such that V (Dk(G)) = V (G) and uv ∈ E(Dk(G))
if and only if d(u, v) = k in G. The following important results obtained by Lau et al.
in [3] will be needed in our results.

LEMMA 1. A graph G is k-SH or admits an AL(k)-traversal if and only if Dk(G)
is Hamiltonian or has a Hamiltonian path, respectively.

LEMMA 2. A bipartite graph does not admit a k-SH cycle for even k ≥ 2.

Lau et al. in [4] obtained the following necessary and sufficient condition for cycles
Cn to be k-SH.

THEOREM 1. The cycle graph Cn, n ≥ 3 admits a k-SH cycle for k ≥ 2 if and
only if n ≥ 2k + 1 and gcd(n, k) = 1.

Several classes of k-SH graphs including trees, tripartite graphs, cycles, grid graphs,
cubic graphs and subdivision of cycles, have been studied, see [3, 4, 5, 6, 7]. In [1], the
authors investigated some families of graphs and its line graphs which admit a 3-SH
cycle. In this paper, we extend the results in [1] and give new construction of some
families of graphs and its line graphs which admit a 3-SH cycle.

2 Main Results

In [3], we know that the complete bipartite graph Km,n is not k-SH for all m,n and
k ≥ 2. Note that the line graph of complete bipartite graph Km,n is a graph obtained
from a grid graph Pm × Pn such that vertices of the same horizontal (respectively
vertical) path are also adjacent to each other. We denote (a, b) as the vertex on row
a and column b of Pm × Pn for 1 ≤ a ≤ m, 1 ≤ b ≤ n. Two vertices (a, b) and (c, d)
in L(Km,n) are of distance 2 if a 6= c and b 6= d. Otherwise, they are of distance 1.
Therefore, we conclude that L(Km,n) is not k-SH for all k ≥ 3.

It is interesting to know about the k-step Hamiltonicity of the complete bipartite
graph Km,n if some edges are deleted. But, from Lemma 2, we know that the graph,
say G obtained from Km,n by deleting some edges is not k-SH for even k ≥ 2 and the
k-step Hamiltonicity of G for odd k ≥ 3 is not studied yet.

We now check the 3-step Hamiltonicity of some graphs obtained from the complete
bipartite graph Km,n by deleting two disjoint perfect matchings S and T . But here, we
will consider only Kn,n, n ≥ 2 since Km,n for m 6= n does not have perfect matching.
Let V = {a1, a2, . . . , an} and W = {a∗1, a∗2, . . . , a∗n} be the partite sets of Kn,n such
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that E(Kn,n) = {aia∗j : 1 ≤ j ≤ n}. We then obtain the following results. Note that
all subscripts are to be read modulo n.

LEMMA 3. For S = {aia∗i : 1 ≤ i ≤ n} and T = {aia∗i+1 : 1 ≤ i ≤ n}, the graph
G = Kn,n − {S, T} is 3-SH if and only if n ≥ 4.

PROOF. It is obvious that G is disconnected when n = 2 and n = 3 so that G
does not admit a 3-SH cycle. For n ≥ 4, observe that d(a∗i , ai+1) = d(ai, a

∗
i+2) = 1

and d(ai, ai−1) = d(a∗i , a
∗
i−1) = 2 for 1 ≤ i ≤ n. Since a∗i is not adjacent to ai and ai

is not adjacent to a∗i+1, we have d(a∗i , ai) = d(ai, a
∗
i+1) = 3. Therefore, the sequence

a∗1, a1, a
∗
2, a2, . . . , a

∗
n−1, an−1, a

∗
n, an, a

∗
1 is a possible 3- SH cycle of G.

LEMMA 4. For S = {aia∗i+1 : 1 ≤ i ≤ n} and T = {aia∗i−1 : 1 ≤ i ≤ n}, the graph
G = Kn,n − {S, T} is 3-SH if and only if n ≥ 5 is odd.

PROOF. We need n ≥ 3 because when n = 2, we have S = T . For n = 3 and
n = 4, graph G is disconnected and thus is not 3-SH. For n ≥ 6 is even, D3(G) consists
of 2 components each of size n so that D3(G) is not Hamiltonian. By Lemma 1, G is
not 3-SH.

Now, consider odd n ≥ 5. Note that for 1 ≤ i ≤ n, d(ai, a
∗
i ) = 1 and d(a∗i , a

∗
i+1) =

d(ai, ai+1) = 2. Since ai is not adjacent to a∗i+1 and a∗i is not adjacent to ai+1, we have
d(ai, a

∗
i+1) = d(a∗i , ai+1) = 3. A 3-SH cycle is then given by a1, a

∗
2, a3, a

∗
4, . . . , a

∗
n−1,

an, a
∗
1, a2, a

∗
3, . . . , an−1, a

∗
n, a1.

LEMMA 5. For S = {aia∗i : 1 ≤ i ≤ n} and T = {aia∗i+3 : 1 ≤ i ≤ n}, the graph
G = Kn,n − {S, T} is 3-SH if and only if n ≥ 4, n 6≡ 0 (mod 3).

PROOF. We consider only n = 2 and n ≥ 4 because when n = 3, we have S = T . It
is obvious that G is disconnected when n = 2 and thus G is not 3-SH. Suppose n ≥ 6,
n ≡ 0 (mod 3). We can observe that D3(G) consists of 3 components each of size 2n

3
and so D3(G) is not Hamiltonian. By Lemma 1, G is not 3-SH. Suppose now n ≥ 4,
n 6≡ 0 (mod 3). Note that d(a∗i , ai+1) = d(ai, a

∗
i+1) = 1 and d(ai, ai−1) = d(a∗i , a

∗
i+2) = 2

for 1 ≤ i ≤ n. Since a∗i is not adjacent to ai and ai is not adjacent to a∗i+3,
we have d(a∗i , ai) = d(ai, a

∗
i+3) = 3. Then, G is 3-SH by choosing the sequence

a∗1, a1, a
∗
4, a4, . . . , a

∗
n−3, an−3, a

∗
n, an, a

∗
3, a3, a

∗
6, a6, . . . , a

∗
n−1, an−1, a

∗
2, a2, a

∗
5, a5, . . . , a

∗
n−2,

an−2, a
∗
1 for n ≡ 1 (mod 3) and the sequence a∗1, a1, a

∗
4, a4, . . . , a

∗
n−1, an−1, a

∗
2, a2, a

∗
5, a5

, . . . , a∗n−3, an−3, a
∗
n, an, a

∗
3, a3, a

∗
6, a6, . . . , a

∗
n−2, an−2, a

∗
1 for n ≡ 2 (mod 3) as the 3-SH

cycle.

LEMMA 6. For S = {aia∗i : 1 ≤ i ≤ n} and T = {aia∗i+4 : 1 ≤ i ≤ n}, the graph
G = Kn,n − {S, T} is 3-SH if and only if n ≥ 5 is odd.

PROOF. We consider only n = 3 and n ≥ 5 because when n = 2 and n = 4, we
have S = T . It is also obvious that G is disconnected when n = 3 so that G is not
3-SH. Suppose n ≥ 6 is even. Observe that for n ≡ 0 (mod 4), D3(G) consists of 4
components each of size n

2 and for n ≡ 2 (mod 4), D3(G) consists of 2 components each
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Figure 1: A Hamiltonian cycle of D3(G) when n = 7.
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Figure 2: A Hamiltonian cycle of D3(G) when n = 9.

of size n. Therefore, for each case D3(G) is not Hamiltonian and thus by Lemma 1, G
is not 3-SH. Suppose now n ≥ 5 is odd. In Figure 1 and Figure 2, we give a labeling of
Hamiltonian cycle for graph D3(G) when n = 7 and n = 9, respectively. Note that for
all odd n ≥ 5 such that n ≡ 1 (mod 4), a Hamiltonian cycle of D3(G) can be obtained in
a similar way to the labeling in Figure 2 and for all odd n ≥ 7 such that n ≡ 3 (mod 4), a
labeling for Hamiltonian cycle follows those in Figure 1. By Lemma 1, we know that all
these graphs G are 3-SH such that the Hamiltonian cycle in D3(G) is a 3-SH cycle of G.

As we can see from these 4 lemmas, we can get a 3-SH graph from the complete
bipartite graph Kn,n by deleting a set of edges. It is difficult to solve the 3-step
Hamiltonicity of G = Kn,n-{S, T} in general because there are n! perfect matchings
of Kn,n. There are a lot more cases that should be considered. We then propose the
following problems.

PROBLEM 1. Solve the 3-step Hamiltonicity of G = Kn,n − {S, T} for all cases of
S and T .

PROBLEM 2. Study the 3-step Hamiltonicity of complete bipartite graph Km,n

with more edges deleted.

Next, consider a graph G with n vertices. The corona product of G and any graph
H, denoted by G � H, is a graph obtained by taking one copy of G and n copies
H1, H2, . . . ,Hn of H, and then joining the i-th vertex of G to every vertex in Hi.

Suppose G is a graph of order n that admits a Hamiltonian cycle given by the
sequence u1, u2, . . . , un, u1 and 3-SH cycle given by v1, v2, . . . , vn, v1 such that v1 = u1
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and vn = un−2.

THEOREM 2. The corona product of graph G described above and empty graph
Om of order m is 3-SH for all m ≥ 1.

PROOF. We know that the graph G�Om is obtained from G by adding nm more
vertices and nm more edges. Without loss of generality, we let the nm pendant ver-
tices be ui,1, ui,2, . . . , ui,m such that the added edges are uiui,1, uiui,2, . . . , uiui,m for i =
1, . . . , n. We can see that the sequence v1 = u1, v2, . . . , vn = un−2, un,1, u1,1, u2,1, . . . ,
un−1,1, un,2, u1,2, u2,2, . . . , un−1,2, un,3, . . . , un,m, u1,m, u2,m, . . . , un−1,m, u1 is a 3-SH cy-
cle of G�Om.

The corona product Cn �K1, in particular, is the graph consisting of a cycle Cn,
n ≥ 3 (with edges u1u2, u2u3, . . . , un−1un, unu1), n more pendant vertices v1, v2, . . . , vn
and n more edges uivi for i = 1, 2, . . . , n. We call this graph the sun graph Sn.

THEOREM 3. The sun graph Sn is 3-SH if and only if n ≥ 5.

PROOF. Observe that all ui are isolated in D3(Sn) if n = 3 and of degree 1 if n = 4
so that D3(Sn) cannot be Hamiltonian and thus S3 and S4 are not 3-SH. Suppose
n ≥ 5. We consider 2 cases.

Case 1. n ≡ 0 (mod 3).
A 3-SH cycle is given by the sequence v1, u3, u6, . . . , un, v2, u4, u7, . . . , un−2, u1, v3, u5, u8,
. . . , un−1, u2, v4, v5, . . . , vn, v1. In Figure 3, we give a 3-SH cycle for S9.
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Figure 3: A 3-step Hamiltonian cycle for S9.

Case 2. n 6≡ 0 (mod 3).
If n = 5, the sequence of vertices v1, u3, v5, u2, v4, u1, v3, u5, v2, u4, v1 is a possible 3-SH
cycle in S5. For n ≥ 7, since cycle Cn is 3-SH by Theorem 1, a possible 3-SH cycle in
Sn is given in the proof of Theorem 2.
This completes the proof.



6 More Results On Hamiltonicity of Graphs and Its Line Graphs

THEOREM 4. The line graph of Sn is 3-SH if and only if n ≥ 6.

PROOF. We denote the vertices of G = L(Sn) by u1, u2, . . . , un, v1, v2, . . . , vn.
Then, the edge set is {uiui+1, unu1 : i = 1, . . . , n − 1} ∪ {uivi : i = 1, . . . , n} ∪
{viui+1, vnu1 : i = 1, . . . , n− 1}. See Figure 4 for graph L(S5).

u1

u5

u4 u3

u2

v1v5

v4

v3

v2

Figure 4: Graph L(S5).

Clearly, if n = 3, every vertex of G is a distance at most 2 from each other so that
G is not 3-SH. Note that for n = 4 and n = 5, there exist isolated or pendant vertices
in D3(G). Hence D3(G) is not Hamiltonian and thus G is not 3-SH. Next we assume
n ≥ 6. We consider 2 cases.

Case 1. n is odd. We consider 2 subcases.

(i) n ≡ 0 (mod 3).

A 3-SH cycle is given by v1, v3, . . . , vn−2, u1, u4, . . . , un−2, vn, u3, u6, . . . , un, v2, u5,
u8, . . . , un−1, u2, v4, v6, . . . , vn−1, v1.

(ii) n 6≡ 0 (mod 3).

A 3-SH cycle is given by v1, v3, v5, . . . , vn, v2, v4, . . . , vn−1 followed by u2, u5, . . . , un−1

such that {2, 5, 8, . . . , n − 1}(modn) is a set of distinct integers and it is clear
that un−1 is a distance 3 to v1.

Case 2. n is even. We consider 3 subcases.

(i) n ≡ 0 (mod 3).

A 3-SH cycle is given by v1, v3, . . . , vn−3, un, v2, v4, . . . , vn−2, u1, u4, . . . , un−2, vn, u3,
u6, . . . , un−3, vn−1, u2, u5, . . . , un−1, v1. Figure 5 shows the graph L(S6) with a
3-SH labeling in it.

(ii) n ≡ 1 (mod 3).

A 3-SH cycle is given by v1, v3, . . . , vn−1, u2, u5, . . . , un−2, u1, u4, . . . , un, v2, v4, . . . , vn,
u3, u6, . . . , un−1, v1.

(iii) n ≡ 2 (mod 3).

A 3-SH cycle is given by v1, v3, . . . , vn−1, u2, u5, . . . , un, v2, v4, . . . , vn, u3, u6, . . . , un−2,
u1, u4, . . . , un−1, v1.
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Figure 5: A 3-step Hamiltonian cycle for L(S6).

This completes the proof.

THEOREM 5. The corona product Cn � P2 is 3-SH if and only if n ≥ 4.

PROOF. Let the vertex set and edge set of Cn � P2 be {ui, ui,1, ui,2 : 1 ≤ i ≤ n}
and {u1un, uiui+1 : 1 ≤ i ≤ n − 1} ∪ {ui,1ui,2, uiui,1, uiui,2 : 1 ≤ i ≤ n}, respectively.
If n = 3, it is obvious that all ui are a distance at most 2 from all other vertices of
Cn�P2 so that Cn�P2 is not 3-SH. We now assume that n ≥ 4. In Figure 6, we give
a 3-SH labeling for graphs C4 � P2 and C5 � P2. For n ≥ 6, we consider 2 cases:
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(a) C4 � P2
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(b) C5 � P2

Figure 6: 3-SH labeling for C4 � P2 and C5 � P2.

Case 1. n ≡ 0(mod 3).
A sequence of vertices u1,1, u2,1, . . . , un,1, u2, u5, . . . , un−1, u1,2, u3, u6, . . . , un, u2,2, u4,
u7, . . . , un−2, u1, u3,2, u4,2, . . . , un,2, u1,1 is a 3-SH cycle of graph Cn � P2.

Case 2. n 6≡ 0(mod 3).
A possible 3-SH cycle is given by u1,1, u2,1, . . . , un,1, u1,2, u2,2, . . . , un,2 followed by
u2, u5, u8, . . . , un−1 such that {2, 5, 8, . . . , n − 1}(modn) is a set of distinct integers
and we can see that d(u1,1, un−1) = 3.
This completes the proof.
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THEOREM 6. The line graph of the corona product Cn�P2 is 3-SH if and only if
n ≥ 5.

PROOF. Let G = L(Cn � P2) with V (G) = {ui, ui,j : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}
and E(G) = {u1un, uiui+1 : 1 ≤ i ≤ n − 1} ∪ {ui,jui,j+1, ui,1ui,3 : 1 ≤ i ≤ n, 1 ≤
j ≤ 2} ∪ {uiui,1, ui+1ui,1, uiui,3, ui+1ui,3 : 1 ≤ i ≤ n and i + 1 is taken modulo n}. See
Figure 7 for graph L(C3 � P2). We consider 2 cases:

u1

u1,1

u1,2

u1,3

u2

u2,1

u2,2

u2,3

u3

u3,1

u3,2

u3,3

Figure 7: Graph L(C3 � P2).

Case 1. n is odd.

For n = 3, note that all ui are of degree 1 in D3(G) so that D3(G) is not Hamil-
tonian and thus G is not 3-SH. For n = 5, a 3-SH cycle is given by the sequence
u1,2, u2,1, u5, u3,2, u4,1, u2, u5,2, u1,1, u4, u2,2, u3,1, u1, u4,2, u5,1, u3, u5,3, u3,3, u1,3, u4,3,
u2,3, u1,2. For n ≥ 7, we consider 2 subcases:

Subcase 1.1. n ≡ 0(mod 3).

A 3-SH cycle is given by the sequence u1,1, u4, u7, . . . , un−2, u1, u2,2, u3,1, u6, u9, . . . ,
un, u3, u4,2, u5,1, u8, u11, . . . , un−1, u2, u5, u6,2, u7,1, u8,2, u9,1, . . . , un−1,2, un,1, u1,2, u2,1,
u3,2, u4,1, . . . , un−1,1, un,2, u1,3, u3,3, u5,3, . . . , un−2,3, un,3, u2,3, u4,3, . . . , un−3,3, un−1,3,
u1,1.

Subcase 1.2. n 6≡ 0(mod 3).

A possible 3-SH cycle is started with subsequence u1,2, u2,1, u3,2, u4,1, . . . , un−1,1, un,2,
u1,1, u2,2, u3,1, u4,2, . . . , un−1,2, un,1, u2,3, u4,3, u6,3, . . . , un−1,3, u1,3, u3,3, u5,3, . . . , un−2,3,
un,3. We then completed the 3-SH cycle by traversing the vertices of cycle Cn in the
sequence u3, u6, u9, . . . , un such that {3, 6, 9, . . . , n}(modn) is a set of distinct integers.
Clearly the last vertex un is a distance 3 from u1,2.

Case 2. n is even.

For n = 4, observe that all vertices in {ui, ui,2 : 1 ≤ i ≤ 4} are of degree 2 in D3(G),
which by themselves forming a non-spanning cycle C8, a contradiction. Hence, D3(G)
is not Hamiltonian and thus G is not 3-SH. For n ≥ 6, we consider 3 subcases:

Subcase 2.1. n ≡ 0(mod 3).

A 3-SH cycle is given by the sequence u1,2, u2,1, u3,2, u4,1, . . . , un−1,2, un,1, u3, u6, . . . ,
un, u2,3, u5, u8, . . . , un−1, u1,1, u2,2, u3,1, u4,2, . . . , un−1,1, un,2, u1,3, u4, u7, . . . , un−2, u1,



Aziz et al. 9

u1

19

u2

22

u3 7

u4

18

u5

10

u68

u6,1 6

u6,2 16
u6,3

24
u1,1

11

u1,2

1

u1,3

17

u2,1

2

u2,212

u2,39

u3,113

u3,23 u3,3

20 u4,1

4

u4,2

14

u4,3

23

u5,1

15

u5,2 5

u5,3 21

Figure 8: A 3-SH cycle for L(C6 � P2).

u3,3, u5,3, . . . , un−1,3, u2, u4,3, u6,3, . . . , un−2,3, un,3, u1,2. In Figure 8, we give a 3-SH
labeling for L(C6 � P2).

Subcase 2.2. n ≡ 1(mod 3).
A 3-SH cycle is given by the sequence u1,2, u2,1, u3,2, u4,1, . . . , un−1,2, un,1, u2,3, u4,3,

u6,3, . . . , un,3, u3, u6, . . . , un−1, un,2, u1,1, u2,2, u3,1, u4,2, . . . , un−2,2, un−1,1, u2, u5, . . . ,
un−2, u1, u3,3, u5,3, u7,3, . . . , un−1,3, u1,3, u4, u7, . . . , un, u1,2.

Subcase 2.3. n ≡ 2(mod 3).
A 3-SH cycle is given by the sequence u1,2, u2,1, u3,2, u4,1, . . . , un−1,2, un,1, u2,3, u4,3,

u6,3, . . . , un,3, u3, u6, . . . , un−2, u1, u2,2, u3,1, u4,2, u5,1, . . . , un−1,1, un,2, u1,1, u4, u7, . . . ,
un−1, u2, u5, . . . , un−3, un−1,3, u1,3, u3,3, u5,3, . . . , un−3,3, un, u1,2.
This completes the proof.

Let G be a graph and G1, G2, . . . , Gn, n ≥ 2 be n copies of graph G. Then, the
graph obtained by adding an edge from Gi to Gi+1, i = 1, 2, . . . , n − 1 is called path
union of G such that the added edges connecting the same pair of vertices from Gi to
Gi+1. We denote path union of n copies of G by P (G;n).

We now consider n copies of cycle Cm, m ≥ 3 with Ci,m = (ui,1, ui,2, . . . , ui,m)
be the i-th copy of Cm for 1 ≤ i ≤ n. The path union of n copies of Cm denoted by
P (Cm;n), n ≥ 2 is obtained by joining the first vertex of the i-th copy of Cm to the last
vertex of the (i+1)-th copy of Cm for i = 1, 2, . . . , n−1. See Figure 9 for graph P (C6; 2).
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u1,1

u1,2

u1,3u1,4

u1,5
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Figure 9: Graph P (C6; 2).

THEOREM 7. For any m ≥ 3 and n ≥ 2, P (Cm;n) is not 3-SH.

PROOF. Obviously the vertex set of P (Cm;n) is
n⋃

i=1

V (Ci,m) and the edge set is

n⋃
i=1

E(Ci,m) ∪ {ui,1ui+1,m : 1 ≤ i ≤ n− 1}.

Suppose m = 3. Note that for all n ≥ 2, any possible 3-SH cycle in P (Cm;n) must
contain the sequence u1,2, u2,2, u1,3, u2,1, u1,2, a contradiction. Thus, P (Cm;n) is not
3-SH.

Suppose 4 ≤ m ≤ 6. Observe that, in D3(P (Cm;n)), there exist 2 or 4 pendant
vertices so that it does not have any Hamiltonian cycle and thus P (Cm;n) is not 3-SH.

Suppose m ≥ 7. We consider 2 cases:
Case 1. m ≡ 0 (mod 3).

Note that the vertices u1,4, u1,7, . . . , u1,n−2 and un,3, un,6, . . . , un,m−3 are of degree 2 in
D3(P (Cm;n)) so that any possible Hamiltonian cycle in D3(P (Cm;n)) necessarily con-
tains the edges u1,1u1,4, u1,4u1,7, . . . , u1,n−5u1,n−2, u1,n−2u1,1 and un,3un,6, un,6un,9, . . . ,
un,m−3un,m, un,mun,3, forming 2 different cycles which is a contradiction. So we con-
clude that D3(P (Cm;n)) is not Hamiltonian and thus P (Cm;n) is not 3-SH.

Case 2. m 6≡ 0 (mod 3).
For all n ≥ 2, the following observations hold:

(i) All the vertices in the sets {u1,4, u1,5, . . . , u1,m−2}, {un,3, un,4, . . . , un,m−3} and
{ui,4, ui,5, . . . , ui,m−3 : i 6= 1, n} (when n ≥ 3) are of degree 2 in D3(P (Cm;n)).

(ii) The vertices ui,3, 1 ≤ i ≤ n − 1 and u1,m−1 are of degree 3 in D3(P (Cm;n))
with u1,3 and u1,m−1 having a common neighbor u2,m.

(iii) In any possible Hamiltonian cycle of D3(P (Cm;n)), u1,1 and un,m have been
traversed and no more visits available. Moreover, in D3(P (Cm;n)), each ui,3, 1 ≤ i ≤
n− 1, is adjacent to both ui,m (which has one more visit available in any Hamiltonian
cycle of D3(P (Cm;n))) and ui+1,m.

From (i), (ii) and (iii), it is clear that un,m is not available for un−1,3 so that
the remaining 2 edges incident with un−1,3 are required to form Hamiltonian cycle
in D3(P (Cm;n)). The same result is then continuously applied to all other ui,3,
i = n−2, n−3, . . . , 1. Finally, as vertex u2,m is no more available for u1,m−1, any possi-
ble Hamiltonian cycle in D3(P (Cm;n)) must necessarily contain a non-spanning cycle
u1,2, u1,5, u1,8, . . . , u1,m−2, u1,1, u1,4, . . . , u1,m, u1,3, u1,6, . . . , u1,m−1, u1,2 for every m ≡
1 (mod 3), or a cycle u1,2, u1,5, u1,8, . . . , u1,m, u1,3, u1,6, . . . , u1,m−2, u1,1, u1,4, . . . , u1,m−1,
u1,2 for every m ≡ 2 (mod 3), a contradiction. Therefore, D3(P (Cm;n)) is not Hamil-
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tonian and thus P (Cm;n) is not 3-SH.

This completes the proof.

From Theorem 1, we know that the cycle Cm when m 6≡ 0 (mod 3) admits a 3-
SH cycle. Therefore, Case 2 in the above theorem shows that the path union of any
n (n ≥ 2) copies of 3-SH graph is not necessarily 3-SH. But, we can construct a
3-SH graph from two graphs as follows: Suppose H1(respectively H2) is a graph of
order n(respectively m) with an AL(3)-traversal given by u1, u2, . . . , un(respectively
v1, v2, . . . , vm) such that d(u1, un) = d(v1, vm) = 2. We join the vertex u1 to v1 to form
a 3-SH graph with the vertex sequence u1, u2, . . . , un, v1, v2, . . . , vm, u1 as the 3-SH
cycle.

THEOREM 8. Let G be a graph of order n with an AL(3)-traversal u1, u2, . . . , un

such that d(u1, un) = 2. Then, there exists a path union of two copies of G, P (G; 2)
which admits a 3-SH cycle.

Suppose G is a graph of order p with a 3-SH cycle given by u1, u2, . . . , up, u1 and
H is a graph of order q with an AL(3)-traversal v1, v2, . . . , vq such that d(v1, vq) = 1.
Since G is 3-SH, there exists a up − u1 path of length 3, say up, a, b, u1. Denote by
Gavq

the graph obtained from G and H by joining the vertex a to vq.

THEOREM 9. The graph Gavq of order p + q is 3-SH.

PROOF. Observe that d(up, v1) = d(vq, u1) = 3 and thus the vertex sequence u1,
u2, . . . , up, v1, v2, . . . , vq, u1 is a 3-SH cycle of Gavq

.

THEOREM 10. Let G be the line graph of P (Cm;n), then

(i) G is not 3-SH for 3 ≤ m ≤ 5 and all n ≥ 2;

(ii) G is not 3-SH for m ≥ 6, m ≡ 0(mod 3) and n = 2;

(iii) G is 3-SH for m ≥ 7, m 6≡ 0(mod 3) and n ≥ 3.

PROOF. Let V (G) = {ui, vj : 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1} ∪ {ui,j : 1 ≤ i ≤
n, 1 ≤ j ≤ m − 1} and E(G) = {uiui,1, ui,jui,j+1, uiui,m−1 : 1 ≤ i ≤ n, 1 ≤ j ≤
m− 2} ∪ {uivi, viui+1 : 1 ≤ i ≤ n− 1} ∪ {viui,1, viui+1,m−1 : 1 ≤ i ≤ n− 1}. Figure 10
shows the line graph L(P (C4; 3)).

(i) Suppose m = 3. Clearly for n = 2, vertex v1 is a distance at most 2 to all other
vertices of G so that G is not 3-SH. For all n ≥ 3, any possible 3-SH cycle in
G must consist of the subcycle u1,1, v2, u1, u2,1, u1,1, a contradiction. Thus, G
is not 3-SH. Suppose m = 4. For all n ≥ 2, observe that the set of vertices
{u1,3, u2, u1,2, u2,3} induce a cycle in any possible 3-SH cycle of G so that G is
not 3-SH. Suppose m = 5. For all n ≥ 2, there exist exactly 2 pendant vertices
in D3(G), from the first and last copy of Cm, respectively. Hence, D3(G) is not
Hamiltonian and thus G is not 3-SH.
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Figure 10: Graph L(P (C4; 3)).

(ii) Observe that v1 is a cut-vertex in D3(G) so that it is not Hamiltonian. Hence,
G is not 3-SH.

(iii) A 3-SH labeling for L(P (C8; 5)) and L(P (C7; 6)) are given in Figure 11 and in
Figure 12, respectively. For m ≥ 7 and odd n ≥ 3, a 3-SH cycle can be constructed
in a way similar to that in L(P (C8; 5)) whereas we can get a 3-SH labeling for
m ≥ 7 and even n ≥ 4 by referring to the labeling pattern in L(P (C7; 6)).

This completes the proof.
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Figure 11: A 3-SH cycle for L(P (C8; 5)).
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Figure 12: A 3-SH cycle for L(P (C7 : 6)).

From Theorem 10, we pose the following open problem.

PROBLEM 3. Solve the 3-step Hamiltonicity of line graph of P (Cm;n) for all
m ≥ 3 and n ≥ 2.
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