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Bifurcation Diagram Of The p-Laplacian Problem
With Generalized Allen-Cahn Type Nonlinearities∗†

Kuo-Chih Hung‡

Abstract

We study the exact multiplicity of (classical) positive solutions and the bi-
furcation diagram of the p-Laplacian problem with generalized Allen-Cahn type
nonlinearities. We give a complete classification of totally six qualitatively differ-
ent bifurcation diagrams.

1 Introduction

In this paper we study the exact multiplicity of (classical) positive solutions and the
bifurcation diagram of the p-Laplacian problem with generalized Allen-Cahn type non-
linearities { (

ϕp(u
′(x))

)′
+ λup−1(a+ u)q(1− u)r = 0, − 1 < x < 1,

u(−1) = u(1) = 0,
(1)

where p > 1, a, q, r > 0, ϕp(y) = |y|p−2
y, (ϕp(u

′))′ is the one-dimensional p-Laplacian
and bifurcation parameter λ > 0 is the reciprocal diffusion constant.
We first consider the p-Laplacian problem{ (

ϕp(u
′(x))

)′
+ λf(u) = 0, − 1 < x < 1, u(−1) = u(1) = 0,

f(u) = up−1g(u).
(2)

We mainly consider g(u) can take one of the following forms:

(a) Logistic type: 0 < g(0) < ∞, g′(u) < 0 on (0, D), g(D) = 0, and g(u) < 0 on
(D,∞) for some positive number D.

(b) Weak Allee effect type: g(0) ≥ 0, g′(u) > 0 on (0, A), g′(u) < 0 on (A,D),
g(D) = 0, and g(u) < 0 on (D,∞) for some positive numbers A < D.

(c) Strong Allee effect type: g(0) < 0, g′(u) > 0 on (0, A), g′(u) < 0 on (A,D),
g(D) = 0, and g(u) < 0 on (D,∞) for some positive numbers A < D.
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Note that D is called the carrying capacity of the population. Sometimes, without
loss of generality, we may assume D = 1.

The solutions of (2) are the steady state solutions of a p-Laplacian reaction-diffusion
population model in one-dimensional case. A typical form of p-Laplacian reaction-
diffusion population model equation is

∂u

∂t
= D∆pu+ up−1g(u), (3)

where p > 1, u(x, t) is the population density, D > 0 is the diffusion constant, ∆pu =

div(|∇u|p−2∇u) is the p-Laplacian of u with respect to the variable x, and f(u) =
up−1g(u) is the growth rate. Note that, when p = 2, g(u) = f(u)/u is the growth rate
per capita. When p = 2, the p-Laplacian becomes the usual Laplacian and problem (3)
has been studied intensively. We refer to the work of McCabe, Leach and Needham [13],
Shi and Shivaji [17], Wang and Kot [18], and Xin [20] and the references therein. In the
case when p 6= 2, ∆p appears in numerous situations. For example, in the context of
reaction-diffusions, Murray [14] suggested using diffusion of the form ∆p in the study
of diffusion-kinetic enzymes problems. See Díaz [5] for other reference. Problem (3)
and the steady-state problem of it, associated with the p-Laplacian, have commanded
growing interest, see, e.g., [1, 2, 3, 6, 7, 12, 15, 16].
If g is of logistic type, it is known that the bifurcation diagram of positive solutions

of (2) consists of exactly one curve which is monotone on the (λ, ‖u‖∞)-plane since f
satisfies

(p− 1)f(u)− uf ′(u) = −upg′(u) > 0 on (0, D).

See also [17, Theorem 2] for results of n-dimensional Dirichlet problem of (2) when
p = 2.
If g is of weak Allee effect type, Hung and Wang [8, Theorem 2.1] proved that, on

the (λ, ‖u‖∞)-plane, the bifurcation diagram of positive solutions consists of exactly
one curve with exactly one turning point where the curve turns to the right under some
conditions. The next theorem is one of the results of [8, Theorem 2.1].

THEOREM 1. Let p > 1. Consider (2) where g ∈ C[0, D] ∩ C2(0, D) and g is of
weak Allee effect type for some positive numbers A < D. Assume that g is log-concave
((log g(u))′′ ≤ 0) on (A,D), then the bifurcation diagram of positive solutions of (2)
consists of exactly one curve with exactly one turning point where the curve turns to
the right on the (λ, ‖u‖∞)-plane.

Let F (u) ≡
∫ u

0
f(t)dt, then the time map formula which we apply to study the

p-Laplacian problem (2) takes the form as follows:

λ1/p =

(
p− 1

p

)1/p ∫ α

0

[F (α)− F (u)]
−1/p

du ≡ T (α) for 0 < α < D, (4)

see, e.g., [4, Lemmas 2.1 and 2.2] and [10, Lemma 2.4] for the derivation of the time
map formula T (α) for (2). The next proposition contains some basic results on the
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time map formula T (α), in which we determine the limits of T (α) at 0 and D. Let, for
p > 1,

Cp ≡ (p− 1)

(
π

p
csc

π

p

)p
= (p− 1)

(∫ 1

0

(1− v)−1/pdv

)p
=

p− 1

p

(∫ 1

0

[∫ 1

v

sp−1ds

]−1/p

dv

)p
> 0. (5)

PROPOSITION 2. Let p > 1. Consider (2), where f(u) = up−1g(u) ∈ C[0, D] ∩
C2(0, D) for some finite positive number D, and g(D) = 0, g(u) > 0 on (0, D). Then
the following assertions (i)—(iv) hold:

(i)

lim
α→0+

T (α) =


0 if limu→0+ g(u) =∞,
(Cp/g(0))

1/p if 0 < g(0) <∞,
∞ if g(0) = 0.

(ii) If 0 ≤ limu→D− g(u)/(D − u)p−1 <∞, then limα→D− T (α) =∞.

(iii) If

0 < lim
u→D−

g(u)

(D − u)p−1
(

log 1
D−u

)η ≤ ∞ for some η > p, (6)

then 0 < limα→D− T (α) <∞.

(iv) If g is decreasing on (D0, D) for some finite positive number D0 < D and 0 <
limα→D− T (α) <∞, then

lim
α→D−

T (α) =

(
p− 1

p

)1/p ∫ 1

0

[∫ 1

v

sp−1g(Ds)ds

]−1/p

dv

=

(
p− 1

p

)1/p ∫ D

0

[F (D)− F (u)]
−1/p

du ≡ T (D). (7)

Proposition 2(i)—(ii) are slight generalization of [9, Theorems 2.6, 2.9 and 2.10] from
p = 2 to p > 1, and consequently, we omit the proofs. Proposition 2(iii) follows from
[11, Theorem 5.2] after slight modification. The proof of Proposition 2(iv) is easy but
tedious; we omit it. Note that condition (6) implies that f does not satisfy a Lipschitz
condition of order p− 1 at D−.

In the time map formulas (4) and (7), any (classical) positive solutions u of (2)
correspond to

‖u‖∞ = α

{
∈ (0, D) if limα→D− T (α) =∞,
∈ (0, D] if 0 < limα→D− T (α) <∞ (8)
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and T (α) = λ1/p. Thus studying the exact number of positive solutions u of (2) is
equivalent to studying the shape of the time map T (α) on (0, D) if limα→D− T (α) =∞
and that on (0, D] if limα→D− T (α) <∞.

We define

λ̂ =

{
(limα→0+ T (α))

p
= Cp/g(0) if 0 < g(0) <∞,

∞ if g(0) = 0
(9)

and

λ̄ =

{
(limα→D− T (α))

p if 0 < limα→D− T (α) <∞,
∞ if limα→D− T (α) =∞. (10)

2 Main Result

In next Theorem 3, we apply Theorem 1 to p-Laplacian problem (1) with generalized
Allen-Cahn type nonlinearities, we give a complete classification of bifurcation diagrams
of positive solutions u ≤ 1 of (1) for constants a > 0, p > 1 and parameters q, r > 0
(see Fig. 1.)

Fig. 1. Classified six bifurcation diagrams of (1), drawn on the first quadrant
of the (q, r)-parameter plane. p > 1 and D = 1.
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THEOREM 3 (See Fig. 1). Let p > 1. Consider (1). Then, for any fixed q > 0,
λ̂ = Cp/a

q and there exists a positive r̃(q) < min{q/a, p − 1} such that the following
assertions (i)—(vii) hold:

(i) If r ≥ max{q/a, p − 1}, then (1) has exactly one positive solution uλ for λ > λ̂,
and no positive solution for 0 < λ ≤ λ̂. Moreover, lim

λ→λ̂+ ‖uλ‖∞ = 0 and
limλ→∞ ‖uλ‖∞ = 1.

(ii) If q/a ≤ r < p−1, then 0 < λ̂ < λ̄ <∞, and (1) has exactly one positive solution
uλ for λ̂ < λ ≤ λ̄, and no positive solution for 0 < λ ≤ λ̂ and λ > λ̄. Moreover,
lim

λ→λ̂+ ‖uλ‖∞ = 0 and ‖uλ̄‖∞ = 1.

(iii) If p − 1 ≤ r < q/a, then there exists λ∗ ∈ (0, λ̂) such that (1) has exactly two
positive solutions uλ, vλ with uλ < vλ for λ

∗ < λ < λ̂, exactly one positive
solution vλ for λ = λ∗ and λ ≥ λ̂, and no positive solution for 0 < λ < λ∗.
Moreover, lim

λ→λ̂− ‖uλ‖∞ = 0 and limλ→∞ ‖vλ‖∞ = 1.

(iv) If r̃(q) < r < min{q/a, p− 1}, then 1 < λ̄/λ̂ < c(r) where

c(r) =


∫ 1

0

[∫ 1

v
sp−1(1 + s/a)ar(1− s)rds

]−1/p

dv∫ 1

0

[∫ 1

v
sp−1ds

]−1/p

dv


p

∈ (1,∞), (11)

and there exists λ∗ ∈ (0, λ̂) such that (1) has exactly two positive solutions uλ,
vλ with uλ < vλ for λ

∗ < λ < λ̂, exactly one positive solution vλ for λ = λ∗

and λ̂ ≤ λ ≤ λ̄, and no positive solution for 0 < λ < λ∗ and λ > λ̄. Moreover,
lim

λ→λ̂− ‖uλ‖∞ = 0 and ‖vλ̄‖∞ = 1.

(v) If r = r̃(q), then λ̄/λ̂ = 1 and there exists λ∗ ∈ (0, λ̂) such that (1) has exactly
two positive solutions uλ, vλ with uλ < vλ for λ

∗ < λ < λ̂, exactly one positive
solution vλ for λ = λ∗ and λ = λ̂, and no positive solution for 0 < λ < λ∗ and
λ > λ̂. Moreover, lim

λ→λ̂− ‖uλ‖∞ = 0 and ‖vλ̄‖∞ = 1.

(vi) If 0 < r < r̃(q), then

(
a

a+ 1
)q <

λ̄

λ̂
< 1

and there exists λ∗ ∈ (0, λ̄) such that (1) has exactly two positive solutions uλ,
vλ with uλ < vλ for λ

∗ < λ ≤ λ̄, exactly one positive solution uλ for λ = λ∗

and λ̄ < λ < λ̂, and no positive solution for 0 < λ < λ∗ and λ ≥ λ̂. Moreover,
lim

λ→λ̂− ‖uλ‖∞ = 0 and ‖vλ̄‖∞ = 1.

Furthermore,

(vii) r̃(q) is a continuous, strictly increasing function of q on (0,∞). Moreover,
limq→0+ r̃(q) = 0 and limq→∞ r̃(q) = p− 1.
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3 Proof of Main Result

For a, q, r > 0, let f(u) = up−1(a + u)q(1 − u)r, then problem (1) is a p-Laplacian
problem (2) with generalized Allen-Cahn type nonlinearities.
First, for any q > 0 and r ≥ p−1, the time-map function T (α) defined in (4) satisfies

limα→1− T (α) =∞ easily by Proposition 2(ii). Secondly, for q > 0 and 0 < r < p− 1,
letting η = p+ 1 in (6), we have

lim
u→1−

(a+ u)q(1− u)r

(1− u)p−1
(

log 1
1−u

)p+1 = lim
u→1−

(a+ 1)
q

(1− u)p−1−r
(

log 1
1−u

)p+1 =∞.

So limα→1− T (α) ∈ (0,∞) by Proposition 2(iii).
Thirdly, for any q, r > 0 in (1), we adopt the results of Proposition 2 to obtain that

Tq,r(0) ≡ lim
α→0+

T (α) = (Cp/g(0))
1/p

= (Cp/a
q)

1/p ∈ (0,∞) (12)

and

Tq,r(1) ≡ lim
α→1−

T (α)


=
(
p−1
p

)1/p ∫ 1

0

[∫ 1

v
sp−1(a+ s)q(1− s)rds

]−1/p

dv

∈ (0,∞) if r ∈ (0, p− 1),

=∞ if r ≥ p− 1.

(13)

Finally, we have

LEMMA 4. Let p > 1. Consider (1). Then

(i) For any fixed q > 0, Tq,r(1)
Tq,r(0) is a continuous, strictly increasing function of r on

(0, p− 1). Moreover,

(
a

a+ 1
)q/p < lim

r→0+

Tq,r(1)

Tq,r(0)
< 1 and lim

r→(p−1)−

Tq,r(1)

Tq,r(0)
=∞.

(ii) For any fixed r ∈ (0, p− 1), Tq,r(1)
Tq,r(0) is a continuous, strictly decreasing function of

q on (ar,∞). Moreover,

1 < lim
q→(ar)+

Tq,r(1)

Tq,r(0)
< c(r)1/p and lim

q→∞

Tq,r(1)

Tq,r(0)
= 0,

where c(r) is defined in (11).

PROOF. For any q > 0, r ∈ (0, p− 1), (12) and (13) implies

Tq,r(1)

Tq,r(0)
=

(
aq

Cp

)1/p(
p− 1

p

)1/p ∫ 1

0

[∫ 1

v

sp−1(a+ s)q(1− s)rds
]−1/p

dv

=

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1(1 + s/a)q(1− s)rds
]−1/p

dv. (14)
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Now, for any fixed q > 0, (1− s)r is a strictly decreasing function of r on (0, p− 1]

for any s ∈ (0, 1), hence Tq,r(1)
Tq,r(0) is a strictly increasing function of r on (0, p−1) by (12)

and (13). For fixed r0 ∈ (0, p− 1), we have

lim
r→r0

Tq,r(1)

Tq,r(0)
= lim

r→r0

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1(1 + s/a)q(1− s)rds
]−1/p

dv

=

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1(1 + s/a)q(1− s)r0ds
]−1/p

dv =
Tq,r0(1)

Tq,r0(0)

by the Monotone convergence theorem [19, p. 75]. So Tq,r(1)
Tq,r(0) is a continuous function

of r on (0, p−1). Moreover, (5), (12)—(14) and the Monotone convergence theorem [19,
p. 75] imply

lim
r→(p−1)−

Tq,r(1)

Tq,r(0)
=
Tq,p−1(1)

Tq,p−1(0)
=∞,

lim
r→0+

Tq,r(1)

Tq,r(0)
= lim

r→0+

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1(1 + s/a)q(1− s)rds
]−1/p

dv

=

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1(1 + s/a)qds

]−1/p

dv

<

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1ds

]−1/p

dv = 1,

and

lim
r→0+

Tq,r(1)

Tq,r(0)
=

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1(1 + s/a)qds

]−1/p

dv

>

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1(1 + 1/a)qds

]−1/p

dv = (
a

a+ 1
)q/p.

On the other hand, we assume r ∈ (0, p− 1) be fixed. Since (1 + s/a)q is a strictly
increasing function of q on (ar,∞) for any s ∈ (0, 1), Tq,r(1)

Tq,r(0) is a strictly decreasing

function of q on (ar,∞). It is easy to check Tq,r(1)
Tq,r(0) is a continuous function of q on

[ar,∞) by similar argument as the above analysis. Moreover, (5), (12)—(14) and the
Monotone convergence theorem [19, p. 75] imply

lim
q→∞

∫ 1

v

sp−1(1 + s/a)q(1− s)rds =∞ for any v ∈ (0, 1),

lim
q→∞

Tq,r(1)

Tq,r(0)
=

(
p− 1

pCp

)1/p ∫ 1

0

lim
q→∞

[∫ 1

v

sp−1(1 + s/a)q(1− s)rds
]−1/p

dv = 0,
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and

lim
q→(ar)+

Tq,r(1)

Tq,r(0)
=

(
p− 1

pCp

)1/p ∫ 1

0

[∫ 1

v

sp−1(1 + s/a)ar(1− s)rds
]−1/p

dv

=

∫ 1

0

[∫ 1

v
sp−1(1 + s/a)ar(1− s)rds

]−1/p

dv∫ 1

0

[∫ 1

v
sp−1ds

]−1/p

dv

= c(r)1/p.

It is easy to check (1 + s/a)ar(1− s)r < 1 for any 0 < s < 1, and hence

lim
q→(ar)+

Tq,r(1)

Tq,r(0)
= c(r)1/p ∈ (1,∞).

The proof of Lemma 4 is now complete.

We are now in a position to prove Theorem 3.

PROOF. For T (α) in (4), we compute that

T ′(α) =

(
p− 1

pp+1

)1/p
1

α

∫ α

0

θ(α)− θ(u)

[F (α)− F (u)]
(p+1)/p

du, (15)

where
θ(u) = pF (u)− uf(u). (16)

For a, q, r > 0, f(u) = up−1(a+u)q(1−u)r ∈ C[0, 1]∩C2(0, 1). By (16), we compute
that

θ′(u) = (p−1)f(u)−uf ′(u) = −upg′(u) = (q + r)up(a+u)q−1(1−u)r−1(u−A), (17)

where A ≡ q−ar
q+r .

Case (i) r ≥ max{q/a, p− 1}. It is easy to see that g(u) = f(u)
up−1 = (a+u)q(1−u)r

satisfies g(0) = aq, g(1) = 0 and g(u) > 0 on (0, 1). By (17), we have θ′(u) > 0 on
(0, 1), and hence T (α) is strictly increasing on (0, 1) by (15). In addition,

Tq,r(0) = (Cp/a
q)

1/p and Tq,r(1) =∞

by (12) and (13), and hence

λ̂ = (Tq,r(0))
p

= Cp/a
q

by (9). So by (4) and (8), we obtain the exact multiplicity result in this Case (i).
Case (ii) q/a ≤ r < p − 1. The proof of Case (ii) are almost the same as that of

Case (i), the only difference is that Tq,r(1) ∈ (0,∞). To show it, letting η = p + 1 in
(6), we have

lim
u→1−

(a+ u)q(1− u)r

(1− u)p−1
(

log 1
1−u

)p+1 = lim
u→1−

(a+ u)q

(1− u)p−1−r
(

log 1
1−u

)p+1 =∞



K.-C. Hung 315

for 0 < r < p− 1. So Tq,r(1) ∈ (0,∞) by Proposition 2, and

λ̄ = (Tq,r(1))
p ∈ (0,∞)

by (10). So by (4), (7) and (8), we obtain the exact multiplicity result in this Case (ii).
Case (iii) p− 1 ≤ r < q/a.
It is easy to see that g(u) = f(u)

up−1 = (a + u)q(1 − u)r ∈ C[0, 1] ∩ C2(0, 1) satisfies
g(0) = aq, g(1) = 0, and

θ′(u) = (p− 1)f(u)− uf ′(u) = −upg′(u)

= (q + r)up(a+ u)q−1(1− u)r−1(u−A)

 < 0 on (0, A),
= 0 when u = A,
> 0 on (A, 1),

where A ≡ q−ar
q+r ∈ (0, 1). So g is of weak Allee effect type. In addition, we compute

that
(log g(u))′′ = − q

(a+ u)2
− r

(1− u)2
< 0 on (A, 1).

So g is log-concave on (A, 1). By Theorem 1, T (α) has exactly one critical point, a
minimum, on (0, 1). In addition,

Tq,r(0) = (Cp/a
q)

1/p and Tq,r(1) =∞

by (12) and (13), and hence

λ̂ = (Tq,r(0))
p

= Cp/a
q

by (9). So by (4) and (8), we obtain the exact multiplicity result in this Case (iii).
Note that, for λ∗ < λ < λ̂, the ordering of uλ, vλ can be proved easily; we omit it.
Cases (iv)—(vi) 0 < r < min{q/a, p−1}. By similar argument in the proof of Case

(ii) and Case (iii), we can prove that T (α) has exactly one critical point, a minimum,
on (0, 1). Moreover,

Tq,r(0) = (Cp/a
q)

1/p and Tq,r(1) ∈ (0,∞).

So
λ̂ = (Tq,r(0))

p
= Cp/a

q and λ̄ = (Tq,r(1))
p ∈ (0,∞)

by (9) and (10).
For any fixed q > 0, if q/a < p− 1,

lim
r→(q/a)−

Tq,r(1)

Tq,r(0)
= lim
q→(ar)+

Tq,r(1)

Tq,r(0)
= c(r)1/p ∈ (1,∞)

by Lemma 4(ii). So applying Lemma 4(i), there exists a positive r̃(q) < min{ar, p− 1}
such that

Tq,r(1)

Tq,r(0)

 < 1 if r ∈ (0, r̃(q)),
= 1 if r = r̃(q),
> 1 if r ∈ (r̃(q),min{q/a, p− 1}).

(18)
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If 0 < r < r̃(q),

λ̄

λ̂
=

(
Tq,r(1)

Tq,r(0)

)p
> lim
r→0+

(
Tq,r(1)

Tq,r(0)

)p
> (

a

a+ 1
)q (19)

by Lemma 4(i). If r̃(q) < r < min{q/a, p− 1},

λ̄

λ̂
=

(
Tq,r(1)

Tq,r(0)

)p
< lim
q→(ar)+

(
Tq,r(1)

Tq,r(0)

)p
= c(r) (20)

by Lemma 4(ii).
So by (4), (7), (8), (18)—(20), we obtain the exact multiplicity result and all prop-

erties of Cases (iv)—(vi). Note that the ordering of uλ, vλ can be proved easily; we omit
it.
Case (vii) For any fixed r ∈ (0, p − 1), limq→(ar)+

Tq,r(1)
Tq,r(0) = c(r)1/p ∈ (1,∞) by

Lemma 4(ii). So there exists q̃(r) ∈ (ar,∞) such that

Tq,r(1)

Tq,r(0)

 > 1 if q ∈ (ar, q̃(r)),
= 1 if q = q̃(r),
< 1 if q ∈ (q̃(r),∞).

(21)

By (18) and (21), we obtain that r̃(q) is a continuous, strictly increasing function
of q on (0,∞), limq→0+ r̃(q) = 0 and limq→∞ r̃(q) = p − 1. Indeed, q̃(r) is the inverse
function of r̃(q) on (0, p − 1). More precisely, q̃(r) is a continuous, strictly increasing
function of r on (0, p− 1), limr→0+ q̃(r) = 0 and limr→(p−1)− q̃(r) =∞.
The proof of Theorem 3 is now complete.
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