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Abstract

In this paper, by using sub-super solutions method, we study the existence
of weak positive solution for a class of Kirrchoff parabolic systems in bounded
domains with multiple parameters. Our results are natural extensions from the
previous ones in [2] and [8].

1 Introduction

In this paper, we consider the following system of parabolic differential equations

∂u

∂t
−A

(∫
Ω

|∇u|2 dx
)
4u = λ1α (x) f (v) + µ1β (x)h (u) in QT ,

∂u

∂t
−B

(∫
Ω

|∇v|2 dx
)
4v = λ2γ (x) g (u) + µ2η (x) τ (v) in QT ,

u = v = 0 on ∂QT ,

u(x, 0) = ϕ(x),

(1)

where QT = Ω × [0, T ], Ω ⊂ RN (N ≥ 3) is a bounded smooth domain with C2

boundary ∂Ω, and A, B : R+ → R+ are continuous functions, α, β, γ, η ∈ C
(
Ω
)
,

λ1, λ2, µ1, and µ2 are nonnegative parameters.
Since the first equation in (1) contains an integral over Ω, it is no longer a pointwise

identity, therefore, it is often called nonlocal problem. This problem models several
physical and biological systems, where u describes a process which depends on the
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296 Kirchhoff Parabolic Systems with Multiple Parameters

average of itself, such as the population density, see [15]. Moreover, problem (1) is
related to the stationary version of the Kirchhoff equation

ρ
∂2u

∂t2
−

P0

h
+

E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

 ∂2u

∂x2
= 0 (2)

presented by Kirchhoff in 1883 (see [11]). This equation is an extension of the classical
d’Alembert’s wave equation by considering the effect of the changes in the length of
the string during the vibrations. The parameters in (2) have the following meanings:
L is the length of the string, h is the area of the cross-section, E is the Young modulus
of the material, ρ is the mass density, and P0 is the initial tension.
By using Euler time scheme on (1), we obtain the following problems

uk − τ ′A
(∫

Ω

|∇uk|2 dx
)
4u = τ ′ [λ1α (x) f (v) + µ1β (x)h (uk)] + uk−1 in Ω,

uk − τ ′B
(∫

Ω

|∇v|2 dx
)
4v = τ ′ [λ2γ (x) g (uk) + µ2η (x) τ (v)] + uk−1 in Ω,

uk = v = 0 on ∂Ω,

u0 = ρ,
(3)

where Nτ ′ = T, 0 < τ ′ < 1, and for 1 ≤ k ≤ N. In recent years, problems involving
Kirchhoff type operators have been studied in many papers such as ([4], [12], [13],
[16]—[18], [22]—[25]). In these articles, the authors have used different methods to get
the existence of solutions for (1) in the single equation case. Z. Zhang in ([12] and
[15]) studied the existence of nontrivial sign-changing solutions for system (1) where
A (t) = B (t) = 1 via sub-supersolution method. Our paper is motivated by the
recent results in [1], [2], [3], [8], [9] and [10]. Azzouz and Bensedik (Theorem 2 in [2])
investigated the existence of a positive solution for the nonlocal problem of the form

−M
(∫

Ω

|∇u|2 dx
)
4u = |u|p−2

u+ λf (x) in Ω,

u = 0 on ∂Ω,

(4)

where Ω is a bounded smooth domain in RN , N ≥ 3 and p > 1, i.e. the nonlinear
term at infinity and f is a sign-changing function. Using the sub and supersolution
method combining a comparison principle introduced in [1], the authors established
the existence of a positive solution for (4), where the parameter λ > 0 is small enough.
In the present paper, we consider system (1) in the case when the nonlinearities are
“sublinear” at infinity, see the condition (H3). We are inspired by the ideas in the
interesting paper [8], in which the authors considered system (1) in the case A (t) =
B (t) = 1. More precisely, under suitable conditions on f, g, we shall show that system
(1) has a positive solution for λ > λ∗. To our best knowledge, this is a new research
topic for nonlocal problems (see [12, 13]). In the current paper, motivated by previous
works in [2, 8] and by using sub-super solutions method, we study the existence of weak
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positive solution for a class of Kirchhoff parabolic systems in bounded domains with
multiple parameters.

2 Existence Results

LEMMA 1 ([1]). Assume that M : R+ → R+ is a continuous and increasing function
satisfying

lim
t→0+

M (t) = m0, (5)

where m0 is a positive constant and assume that u, v are two non-negative functions
such that 

−M
(∫

Ω

|∇u|2 dx
)
4u ≥ −M

(∫
Ω

|∇v|2 dx
)
4v in Ω,

u = v = 0 on ∂Ω.

(6)

Then u ≥ v in Ω.

In this section, we shall state and prove the main result of this paper. Let us make
the following assumptions:

(H1) A,B : R+ → R+ are two continuous and increasing functions and there exist
ai, bi > 0, i = 1, 2, such that

a1 ≤ A (t) ≤ a2, b1 ≤ B (t) ≤ b2 for all t ∈ R+.

(H2) α, β, γ, η ∈ C
(
Ω
)
and

α (x) ≥ α0 > 0, β (x) ≥ β0 > 0, γ (x) ≥ γ0 > 0, η (x) ≥ η0 > 0,

for all x ∈ Ω.

(H3) f, g, h, and τ are continuous on [0,+∞[ , C1 on (0,+∞) , and increasing functions
such that

lim
t→+∞

f (t) = +∞, lim
t→+∞

g (t) = +∞, lim
t→+∞

h (t) = +∞ = lim
t→+∞

τ (t) = +∞.

(H4) It holds that

lim
t→+∞

f (K (g (t)))

t
= 0, for all K > 0.

(H5)

lim
t→+∞

h (t)

t
= lim
t→+∞

τ (t)

t
= 0.



298 Kirchhoff Parabolic Systems with Multiple Parameters

THEOREM 1. Assume that the conditions (H1)—(H5) hold, andM is a nonincreas-
ing function satisfying (5). Then for large λ1α0 + µ1β0 and λ2γ0 + µ2η0, problem (1)
has a large positive weak solution.

We give the following two definitions before we prove our result.

DEFINITION 1. (uk, v) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
is said a weak solution of (3) if it

satisfies

A

∫
Ω

|∇uk|2 dx

∫
Ω

∇uk∇φdx =

∫
Ω

[
λ1α (x) f (v) + µ1β (x)h (uk)− uk − uk−1

τ ′

]
φdx

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx =

∫
Ω

[
λ2γ (x) g (uk)ψ + µ2η (x) τ (v)− uk − uk−1

τ ′

]
ψdx

for all (φ, ψ) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
.

DEFINITION 2. A pair of nonnegative functions
(
uk, v

)
(respectively (uk, v)) in(

H1
0 (Ω)×H1

0 (Ω)
)
is called a weak subsolution (resp. supersolution pair) of (1) if they

satisfy
(
uk, v

)
, (uk, v) = (0, 0) on ∂Ω,

A

∫
Ω

∣∣∇uk∣∣2 dx
∫

Ω

∇uk∇φdx ≤
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φdx,

and

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx ≤
∫
Ω

[
λ2γ (x) g

(
uk
)

+ µ2η (x) τ (v)− uk − uk−1

τ ′

]
ψdx,

(respectively,

A

∫
Ω

|∇uk|2 dx

∫
Ω

∇uk∇φdx ≥
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h (uk)− uk − uk−1

τ ′

]
φdx

and

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx ≥
∫
Ω

[
λ2γ (x) g (uk) + µ2η (x) τ (v)− uk − uk−1

τ ′

]
ψdx)

for all (φ, ψ) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
.

PROOF OF THEOREM 1. Let σ be the first eigenvalue of −4 with Dirichlet
boundary conditions and φ1 the corresponding positive eigenfunction with ‖φ1‖ = 1.
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Let k0,m0, δ > 0 such that f (t) , g (t) , h (t) , τ (t) ≥ −k0 for all t ∈ R+ and |∇φ1|
2 −

σφ2
1 ≥ m0 on Ωδ = {x ∈ Ω : d (x, ∂Ω) ≤ δ}. For each λ1α0 + µ1β0 and λ2γ0 + µ2 η0

large, let us define

uk =

(
(λ1α0 + µ1β0) k0

2m0a1

)
φ2

1 and v =

(
(λ2γ0 + µ2η0) k0

2m0b1

)
φ2

1,

where a1 and b1 are given by the condition (H1). We shall verify that
(
uk, v

)
is a

subsolution of problem (1) for λ1α0 +µ1β0 and λ2γ0 +µ2 η0 large enough. Indeed, let
φ ∈ H1

0 (Ω) with φ ≥ 0 in Ω. By (H1)—(H3), a simple calculation shows that

A

∫
Ωδ

∣∣∇uk∣∣2 dx
∫

Ωδ

∇uk.∇φdx

= A

∫
Ωδ

∣∣∇uk∣∣2 dx
 (λ1α0 + µ1β0) k0

m0a1

∫
Ωδ

φ1∇φ1.∇φdx

=
(λ1α0 + µ1β0) k0

m0a1
A

∫
Ωδ

∣∣∇uk∣∣2 dx


∫
Ωδ

∇φ1∇ (φ1.φ) dx−
∫
Ωδ

|∇φ1|
2
φdx


=

(λ1α0 + µ1β0) k0

m0a1
A

∫
Ωδ

∣∣∇uk∣∣2 dx
∫

Ωδ

(
σφ2

1 − |∇φ1|
2
)
φdx.

On Ωδ, we have |∇φ1|
2 − σφ2

1 ≥ m0. Then by using (H3),

f (v) , h
(
uk
)
, g
(
uk
)
, τ (v) ≥ k0

m0
,

thus

A

∫
Ωδ

∣∣∇uk∣∣2 dx
∫

Ωδ

∇uk∇φdx

≤ (λ1α0 + µ1β0) k0

m0

∫
Ωδ

(
σφ2

1 − |∇φ1|
2
)
φdx

≤
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φdx. (7)

Next, on Ω\Ωδ, we have φ1 ≥ r for some r > 0. Therefore, under the conditions
(H1)—(H3) and the definition of v, it follows that∫

Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φ dx
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≥ (λ1α0 + µ1β0)
k0a2

m0a1
σ

∫
Ω\Ωδ

φdx

≥ (λ1α0 + µ1β0)
k0

m0a1
A

 ∫
Ω\Ωδ

∣∣∇uk∣∣2 dx
σ

∫
Ω\Ωδ

φdx

≥ (λ1α0 + µ1β0)
k0

m0a1
A

 ∫
Ω\Ωδ

∣∣∇uk∣∣2 dx
 ∫

Ω\Ωδ

(
σφ2

1 − |∇φ1|
2
)
φdx

= A

 ∫
Ω\Ωδ

∣∣∇uk∣∣2 dx
 ∫

Ω\Ωδ

∇uk∇φdx, (8)

for λ1α0 + µ1β0 > 0 large enough. Relations (7) and (8) imply that

A

∫
Ω

∣∣∇uk∣∣2 dx
∫

Ω

∇uk∇φdx

≤
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φdx, (9)

for λ1α0 + µ1β0 > 0 large enough and any φ ∈ H1
0 (Ω) with φ ≥ 0 in Ω. Similarly,

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx

≤
∫
Ω

[
λ2γ (x) g (uk)ψ + µ2η (x) τ (v)− uk − uk−1

τ ′

]
ψdx (10)

for λ2γ0 + µ2η0 > 0 large enough and any ψ ∈ H1
0 (Ω) with ψ ≥ 0 in Ω. From (9) and

(10),
(
uk, v

)
is a subsolution of problem (3). Moreover, we have uk > 0, v > 0 in Ω,

u→ +∞ and v → +∞ also λ1α0 + µ1β0 → +∞ and λ2γ0 + µ2η0 → +∞.
Next, we shall construct a supersolution of problem (3). Let ω be the solution of

the following problem: {
−4e = 1 in Ω,

e = 0 on ∂Ω.
(11)

Let

uk = Ce, v =

(
λ2 ‖γ‖∞ + µ2 ‖η‖∞

b1

)
[g (C ‖e‖∞)] e,

where e is given by (11) and C > 0 is a large positive real number to be chosen later.
We shall verify that (uk, v) is a supersolution of problem (3). Let φ ∈ H1

0 (Ω) with
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φ ≥ 0 in Ω. Then, we obtain from (11) and the condition (H1) that

A

∫
Ω

|∇uk|2 dx

∫
Ω

∇uk.∇φdx = A

∫
Ω

|∇uk|2 dx

C

∫
Ω

∇ω.∇φdx

= A

∫
Ω

|∇uk|2 dx

C

∫
Ω

φdx

≥ a1C

∫
Ω

φdx.

By using (H4) and (H5), we can choose C large enough, thus

a1C ≥ λ1 ‖α‖∞ f

([
λ2 ‖γ‖∞ + µ2 ‖η‖∞

b1

]
g (C ‖e‖∞) ‖e‖∞

)
+ µ1 ‖β‖∞ h (C ‖e‖∞) .

Therefore,

A

∫
Ω

|∇uk|2 dx

∫
Ω

∇uk.∇φdx

≥
[
λ1 ‖α‖∞ f

([
λ2 ‖γ‖∞ + µ2 ‖η‖∞

b1

]
g (C ‖e‖∞) ‖e‖∞

)
+µ1 ‖β‖∞ h (C ‖e‖∞)

]
−
∫
Ω

uk − uk−1

τ ′
φdx

≥ λ1 ‖α‖∞
∫
Ω

f

([
λ2 ‖γ‖∞ + µ2 ‖η‖∞

b1

]
g (C ‖e‖∞) ‖e‖∞

)
φdx

+µ1

∫
Ω

h (C ‖e‖∞)φdx−
∫
Ω

uk − uk−1

τ ′
φdx

≥
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φdx. (12)

Also, we have

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx

≥ (λ2 ‖γ‖∞ + µ2 ‖η‖∞)

∫
Ω

g (C ‖e‖∞)ψdx

= λ2

∫
Ω

γ (x) g (uk)ψdx+ µ2

∫
Ω

η (x) g (C ‖e‖∞)ψdx−
∫
Ω

uk − uk−1

τ ′
ψdx. (13)
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Again by using (H4) and (H5) for C large enough, we have

g (C ‖e‖∞) ≥ τ
[

(λ2 ‖γ‖∞ + µ2 ‖η‖∞)

b1
g (C ‖e‖∞) ‖e‖∞

]
≥ τ (v) . (14)

From (13) and (14), we have

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx

≥ λ2

∫
Ω

γ (x) g (uk)ψdx+ µ2

∫
Ω

η (x) τ (v)ψdx−
∫
Ω

uk − uk−1

τ ′
ψdx. (15)

From (12) and (15), we have (u, v) is a subsolution of problem (1) with u ≤ u and v
≤ v for C large enough.

In order to obtain a weak solution of problem (3), we shall use the arguments by
Azzouz and Bensedik [2] (observe that f, g, h, and τ does not depend on x). For this
purpose, we define a sequence {(un, vn)} ⊂

(
H1

0 (Ω)×H1
0 (Ω)

)
as follows: u0 = u,

v0 = v and (un, vn) is the unique solution of the system



−A
(∫

Ω

|∇un|2 dx
)
4un = λ1α (x) f (vn−1) + µ1β (x)h (Un−1)− uk−uk−1

τ ′ in Ω,

−B
(∫

Ω

|∇vn|2 dx
)
4vn = λ2γ (x) g (un−1) + µ2η (x) τ (vn−1)− uk−uk−1

τ ′ in Ω,

un = vn = 0 on ∂Ω.
(16)

We have (un−1, vn−1) ∈
(
H1

0 (Ω)×H1
0 (Ω)

)
, in the sense that, the right hand sides of

(16) is independent on un and vn. Setting

A (t) = tA
(
t2
)
, B (t) = tB

(
t2
)
.

Since A (R) = R, B (R) = R, f (vn−1) , h (un−1) , g (un−1) , and τ (vn−1) ∈ L2 (Ω),
we deduce from the results in [1], that system (16) has a unique solution (un, vn) ∈(
H1

0 (Ω)×H1
0 (Ω)

)
. By using (16) and the fact that (u0, v0) is a supersolution of (1),

we have

−A

∫
Ω

|∇u0|2 dx

4u0 ≥ λ1α (x) f (v0) + µ1β (x)h (u0)− uk − uk−1

τ ′

= −A

∫
Ω

|∇u1|2 dx

4u1,

−B

∫
Ω

|∇v0|2 dx

4v0 ≥ λ2γ (x) g (u0) + µ2η (x) τ (v0)− uk − uk−1

τ ′
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= −B

∫
Ω

|∇v1| dx

4v1

and by using Lemma 1, we also have u0 ≥ u1 and v0 ≥ v1. In addition, since u0 ≥ u,
v0 ≥ v and under the monotonicity condition of f, h, g, and τ , we can deduce

−A

∫
Ω

|∇u1|2 dx

4u1 = λ1α (x) f (v0) + µ1β (x)h (u0)− uk − uk−1

τ ′

≥ λ1α (x) f (v) + µ1β (x)h (u)− uk − uk−1

τ ′

≥ −A

∫
Ω

|∇u|2 dx

4u
and

−B

∫
Ω

|∇v1|2 dx

4v1 = λ2γ (x) g (u0) + µ2η (x) τ (v0)− uk − uk−1

τ ′

≥ λ2γ (x) g (u) + µ2η (x) τ (v)− uk − uk−1

τ ′

≥ −B

∫
Ω

|∇v|2 dx

4v.
According to Lemma 1, we have u1 ≥ u, v1 ≥ v for any u2, v2, thus we can write

−A

∫
Ω

|∇u1|2 dx

4u1 = λ1α (x) f (v0) + µ1β (x)h (u0)− uk − uk−1

τ ′

≥ λ1α (x) f (v1) + µ1β (x)h (u0)− uk − uk−1

τ ′

= −A

∫
Ω

|∇u2|2 dx

4u2,

−B

∫
Ω

|∇v1| dx

4v1 = λ2γ (x) g (u0) + µ2η (x) τ (v0)− uk − uk−1

τ ′

≥ λ1α (x) g (u1) + µ2β (x) τ (v1)− uk − uk−1

τ ′

= −B

∫
Ω

|∇v2|2 dx

4v2.
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Then, u1 ≥ u2, v1 ≥ v2.
Similarly, u2 ≥ u and v2 ≥ v because

−A

∫
Ω

|∇u2|2 dx

4u2 = λ1α (x) f (v1) + µ1β (x)h (u1)− uk − uk−1

τ ′

≥ λ1α (x) f (v) + µ1β (x)h (u)− uk − uk−1

τ ′

≥ −A

∫
Ω

|∇u|2 dx

4u,

−B

∫
Ω

|∇v2|2 dx

4v2 = λ2γ (x) g (u1) + µ2η (x) τ (v1)− uk − uk−1

τ ′

≥ λ2γ (x) g (u) + µ2η (x) τ (v)− uk − uk−1

τ ′

≥ −B

∫
Ω

|∇v|2 dx

4v.
Repeating this argument, we get a bounded monotone sequence

{(un, vn)} ⊂
(
H1

0 (Ω)×H1
0 (Ω)

)
satisfying

u = u0 ≥ u1 ≥ u2 ≥ ... ≥ un ≥ ... ≥ u > 0 (17)

and
v = v0 ≥ v1 ≥ v2 ≥ ... ≥ vn ≥ ... ≥ v > 0. (18)

Using the continuity of the functions f, h, g, τ and the definition of the sequences
{un} , {vn}, there exist constants Ci > 0, i = 1, ..., 4 independent of n such that

|f (vn−1)| ≤ C1, |h (un−1)| ≤ C2, |g (un−1)| ≤ C3 (19)

and
|τ (un−1)| ≤ C4 for all n.

Multiplying the first equation of (16) by un, integrating, using the Holder inequality
and Sobolev embedding, we can show that

a1

∫
Ω

|∇un|2 dx ≤ A

∫
Ω

|∇un|2 dx

∫
Ω

|∇un|2 dx

= λ1

∫
Ω

α (x) f (vn−1)undx+ µ1

∫
Ω

β (x)h (un−1)undx
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−
∫
Ω

uk − uk−1

τ ′
undx

≤ λ1 ‖α‖∞
∫
Ω

|f (vn−1)| |un| dx+ µ1 ‖β‖∞
∫
Ω

|h (un−1)| |un| dx

−
∫
Ω

uk − uk−1

τ ′
|un| dx

≤ C1λ1

∫
Ω

|un| dx+ C2µ1

∫
Ω

|un| dx−
∫
Ω

uk − uk−1

τ ′
|un| dx

≤ C5 ‖un‖H1
0 (Ω) ,

or
‖un‖H1

0 (Ω) ≤ C5, ∀n, (20)

where C5 > 0 is a constant independent of n. Similarly, there exists C6 > 0 independent
of n such that

‖vn‖H1
0 (Ω) ≤ C6, ∀n. (21)

From (20) and (21), we infer that {(un, vn)} has a subsequence which weakly converges
inH1

0 (Ω) to a limit (u, v) with the properties u ≥ u > 0 and v ≥ v > 0. Being monotone
and also by using a standard regularity argument, {(un, vn)} converges itself to (u, v) .
Now, passing the limit in (16), we deduce that (u, v) is a positive solution of system

(4). The proof of our theorem is completed.
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