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Abstract

In this paper, we establish three new sequential weak, proper and strong
Pareto subdifferential sums rule formulas for m cone-convex vector valued map-
pings with m ≥ 2. As an application, we derive necessary and suffi cient sequential
weak, proper and strong effi ciency optimality conditions for general vector opti-
mization problem with geometric and cone constraints. We also give sequential
characterizations of weak and strong effi cient solutions of general multi-objective
fractional programming problem with geometric and cone constraints. The se-
quential results are stated without any qualification condition.

1 Introduction

The sequential subdifferential calculus and the sequential effi ciency are important and
active topics of Mathematical Optimization. Recently, Laghdir et al. [6] have shown
a sequential formula for the weak and proper Pareto subdifferential of the sum of two
proper convex lower semicontinuous (lsc) vector valued mappings. As a corollary, they
derived sequential effi ciency optimality conditions for vector optimization problems
with geometric constraint. The contribution [6] motivates the present work.
In this paper, by applying interesting results of Boţ and Wanka [1] and Jeyakumar

[5], we obtain three new sequential formulas without conditions of qualification for
the weak, proper and strong Pareto subdifferential of the sums of m ≥ 2 proper,
cone-convex and Penot-Théra lower semicontinuous vector valued mappings. The first
formula is expressed in terms of the epigraphs of the conjugate of the data vector valued
mappings. The second involves the approximate subdifferential. The third one is by
means of the scalar subdifferential and extends to m vector mappings the sum rule
formula of [6]. It is worth noting that in the latter situation the induction principle
is useless. As an application, we provide sequential without a constraint qualification
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necessary and suffi cient optimality conditions for weak, proper and strong effi cient
solution of general vector optimization problem with geometric and cone constraints
generalizing the corresponding result of [6]. We also give sequential weak and strong
effi ciency for general multi-objective fractional programming problem with geometric
and cone constraints. To the best of our knowledge it is the first time sequential Pareto
subdifferential calculus is used in the context of multi-objective fractional optimization
to derive sequential effi ciency optimality conditions.
The outline of this work is as follows. The next section presents preliminary facts.

In section 3, we establish the sequential Pareto subdifferentials sums rule formulas for
vector mappings. In sections 4 and 5 we derive the sequential effi ciency optimality
conditions for vector and multi-objective fractional optimization respectively.

2 Preliminaries

Throughout this paper, let X and Y be two real reflexive Banach spaces paired in
duality by 〈., .〉 with their topological duals X∗ and Y ∗. For simplicity, the norms
and the dual norms as well as the associated topologies are denoted by ‖.‖ and ‖.‖∗
respectively. We will use the symbol w∗ for the weak-star topology on the dual spaces
and τR for the Euclidean topology on the real line R. The product space X×Y will be
endowed with the norm ‖(x, y)‖ :=

√
‖x‖2 + ‖y‖2 and similarly the norm on X∗ × Y ∗

will be choosen.
Let Y+ be a nontrivial convex cone of Y with nonempty topological interior int Y+.

The associated dual and strict polar cones are :

Y ∗+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ Y+},

(Y ∗+)◦ := {y∗ ∈ Y ∗ : 〈y∗, y〉 > 0, ∀y ∈ Y+ \ l(Y+)}.

When the lineality l(Y+) := Y+ ∩ −Y+ reduces to {0}, Y+ is said to be pointed. The
cone Y+ induces the following binary relations :

y1 ≤Y+ y2 :⇐⇒ y2 − y1 ∈ Y+,

y1 <Y+ y2 :⇐⇒ y2 − y1 ∈ int Y+,

y1 �Y+ y2 :⇐⇒ y2 − y1 ∈ Y+\l(Y+),

for y1, y2 ∈ Y . With respect to ” ≤Y+ ” the augmented set Y ∪ {+∞Y } is considered
where +∞Y is an abstract element verifying natural relations :

y ≤Y+ +∞Y ,

y + (+∞Y ) = (+∞Y ) + y = +∞Y ,

α · (+∞Y ) = +∞Y ,

for every y ∈ Y ∪ {+∞Y } and α ≥ 0.

DEFINITION 2.1. Let f : X −→ Y ∪ {+∞Y } be a vector valued mapping.
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• f is said to be proper if its effective domain

domf := {x ∈ X : f(x) ∈ Y } 6= ∅.

• f is said to be Y+-convex if for every λ ∈ [0, 1] and x1, x2 ∈ X

f(λx1 + (1− λ)x2) ≤Y+ λf(x1) + (1− λ)f(x2).

• f is said to be Y+-epi-closed if its epigraph

epif := {(x, y) ∈ X × Y : f(x) ≤Y+ y} is closed.

• f is said to be lower semicontinuous [7, 8] at x̄ ∈ domf if for every neighborhood
V of f(x̄) in Y , there exists a neighborhood U of x̄ such that

f(U) ⊆ (V + Y+) ∪ {+∞Y }.

When f(x̄) = +∞Y , f is said to be lower semicontinuous at x̄ if for any y ∈ Y ,
any neighborhood V of y, there exists a neighborhood U of x̄ such that the above
inclusion is satisfied.

f is said to be lower semicontinuous if it is lower semicontinuous at every point
of X.

• The weak subdifferential of f at x̄ ∈ domf is

∂wf(x̄) := {A ∈ L(X,Y ) : @x ∈ X, f(x)− f(x̄) <Y+ A(x− x̄)}.

• The proper subdifferential of f at x̄ ∈ domf is

∂pf(x̄) :={A ∈ L(X,Y ) : ∃Ŷ+ ( Y convex cone such that

Y+ \ l(Y+) ⊆ intŶ+, @x ∈ X, f(x)− f(x̄) �Ŷ+ A(x− x̄)}.

• The strong subdifferential of f at x̄ ∈ domf is

∂sf(x̄) := {A ∈ L(X,Y ) : ∀x ∈ X, A(x− x̄) ≤Y+ f(x)− f(x̄)}.

Here L(X,Y ) is the space of linear continuous operators from X to Y .

REMARK 2.2. By applying Proposition 1.1 in [7], we obtain that if f : X −→
Y ∪{+∞Y } is lower semicontinuous in the sense of Penot-Théra then the scalar function
y∗ ◦ f for any y∗ ∈ Y ∗+ \ {0} is lower semicontinuous. This fact is needed.

DEFINITION 2.3. Let S be a nonempty subset of X.

• The vector indicator mapping of S is

δvS : X −→ Y ∪ {+∞Y }

x −→
{

0 if x ∈ S,
+∞Y otherwise.
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• The vector normal cone Nv
S(x̄) of S at x̄ ∈ S is the strong subdifferential of δvS

at x̄.

REMARK 2.4. If Y = R, Y+ = [0,+∞[, δvS reduces to the scalar indicator function
denoted by δS and Nv

S(x̄) becomes, for S convex, the classical normal cone defined by

NS(x̄) := {x∗ ∈ X∗ : ∀x ∈ S, 〈x∗, x− x̄〉 ≤ 0}.

Let f : X −→ Y ∪ {+∞Y } be a vector valued mapping and S a nonempty subset
of X. The vector minimization problem

(P ) inf
x∈S

f(x)

is considered in the following senses

DEFINITION 2.5. x̄ ∈ domf ∩ S is called :

• a weak effi cient solution of (P ) if @x ∈ S, f(x) <Y+ f(x̄).

• a proper effi cient solution of (P ) if

∃Ŷ+ ( Y convex cone such that Y+ \ l(Y+) ⊆ intŶ+, @x ∈ S, f(x) �Ŷ+ f(x̄).

• a strong effi cient solution of (P ) if ∀x ∈ S, f(x̄) ≤Y+ f(x).

The set of weak, proper and strong effi cient solutions of (P ) are respectively denoted
by Ew(f, S), Ep(f, S) and Es(f, S).

We deduce two useful relations (σ ∈ {w, p, s}) (see also [4]).

x̄ ∈ Eσ(f,X)⇐⇒ 0 ∈ ∂σf(x̄). (1)

x̄ ∈ Eσ(f, S)⇐⇒ x̄ ∈ Eσ(f + δvS , X). (2)

REMARK 2.6. In the particular case where Y = Rq is the q dimensional Euclidian
space, Y+ = Rq+ is the nonnegative orthant and (P ) is of the form

inf
x∈S
{r1(x), · · · , rq(x)},

with r1, ..., rq : X −→ R, the definition of weak effi cient solution becomes : x̄ ∈ S is a
weak effi cient solution of (P ) if there does not exist x ∈ S such that

ri(x) < ri(x̄)

for all i ∈ {1, ..., q}.
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The next convention is adopted. Let g : Y −→ R ∪ {+∞} be a scalar function
and h : X −→ Y ∪ {+∞Y } a vector valued mapping then the composed function
g ◦ h : X −→ R ∪ {+∞} is given by

(g ◦ h)(x) :=

{
g(h(x)) if x ∈ domh,

+∞ otherwise.

Analogously the composed mapping is defined when g is vector valued.
For convenience we also recall well known concepts from scalar convex analysis.

DEFINITION 2.7. Let f : X → R ∪ {+∞} be a convex scalar function.

• The ε-approximate subdifferential of f at x̄ ∈ domf with ε ≥ 0 is

∂ε f(x̄) := {x∗ ∈ X∗ : ∀x ∈ X, f(x) ≥ f(x̄) + 〈x∗, x− x̄〉 − ε}.

• The subdifferential of f at x̄ ∈ domf is :

∂ f(x̄) := {x∗ ∈ X∗ : ∀x ∈ X, f(x) ≥ f(x̄) + 〈x∗, x− x̄〉}.

• The conjugate of f is the function given by :

f∗ : X∗ −→ R ∪ {−∞,+∞}
x∗ 7−→ supx∈X{〈x∗, x〉 − f(x)} .

We point out the relation between the subdifferential and the conjugate :

∂ f(x̄) := {x∗ ∈ X∗ : f(x̄) + f∗(x∗) = 〈x∗, x̄〉}.

The following results will be useful.

LEMMA 2.8 (Boţ and Wanka [1]). Let f1, f2 : X −→ R ∪ {+∞} be two proper,
convex and lower semicontinuous scalar functions verifying domf1∩domf2 6= ∅. Then,

epi(f1 + f2)∗ = clw∗×τR(epif∗1 + epif∗2 ),

where cl denotes the topological closure.

Using induction, the fact that the conjugate is convex lower semicontinuous and
the relation cl(clA + clB) = cl(A + B) for subsets in a topological vector space, the
precedent lemma is easily reformulated for m scalar functions with m ≥ 2 and for the
dual norm.

LEMMA 2.9. Let f1, ..., fm : X −→ R ∪ {+∞} be m proper, convex and lower
semicontinuous scalar functions satisfying ∩mi=1 domfi 6= ∅. Then,

epi(

m∑
i=1

fi)
∗ = cl‖.‖∗×τR(

m∑
i=1

epi f∗i ).
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LEMMA 2.10 (Jeyakumar [5]). Let f : X −→ R ∪ {+∞} be a proper, convex and
lower semicontinuous scalar function. Let a ∈ domf . Then

epi f∗ =
⋃
ε≥0

{(s, ε+ 〈s, a〉 − f(a)) : s ∈ ∂ε f(a)}.

LEMMA 2.11 (Thibault [9], [2]). Let f : X −→ R∪{+∞} be a proper, convex and
lower semicontinuous scalar function. Let x̄ ∈ dom f , then for any real number ε > 0
and any x∗ ∈ ∂ε f(x̄), there exists (xε, x

∗
ε ) ∈ X ×X∗ such that

x∗ε ∈ ∂ f(xε),

‖xε − x̄‖ ≤
√
ε,

‖x∗ε − x∗‖∗ ≤
√
ε,

|f(xε)− 〈x∗ε , xε − x̄〉 − f(x̄)| ≤ 2ε.

LEMMA 2.12 (El Maghri and Laghdir [4]). Let f : X −→ Y ∪{+∞Y } be Y+-convex
vector valued mapping and x̄ ∈ X and

Y σ+ :=

{
Y ∗+ \ {0} if σ ∈ {w, s},
(Y ∗+)◦ if σ = p.

Case σ ∈ {w, p} with Y+ pointed as σ = p :

∂σf(x̄) =
⋃

y∗∈Y σ+

{A ∈ L(X,Y ) : y∗ ◦A ∈ ∂(y∗ ◦ f)(x̄)}.

Case σ = s and Y+ is closed :

∂sf(x̄) =
⋂

y∗∈Y s+

{A ∈ L(X,Y ) : y∗ ◦A ∈ ∂(y∗ ◦ f)(x̄)}.

REMARK 2.13. In the sequel Z is a normed space. All the above notations,
concepts and results stated with Y remain true for Z. Sometimes the departure space
will be taken equal to X × Y .

3 Sequential Weak, Proper and Strong Pareto Sub-
differential Sums Rules

Using Lemma 2.9 and Lemma 2.10, that describe the epigraph of the conjugate of the
sums of functions and the relationship of the epigraph of the conjugate with the approx-
imate subdifferential respectively, and a refined version of the well known Brøndsted-
Rockafellar theorem (Lemma 2.11), we show three new sequential without constraint
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qualification weak, proper and strong Pareto subgradient characterization formulas for
the sums of m proper, cone-convex and lower semicontinuous vector valued mappings
with m ≥ 2.
The first sequential formula is by means of the epigraphs of the conjugate of data

vector valued mappings.

THEOREM 3.1. Let f1, ..., fm : X −→ Z ∪ {+∞Z} be m proper, Z+-convex and
lower semicontinuous vector valued mappings. Let x̄ ∈ ∩mi=1 domfi and suppose that
Z+ is pointed as σ = p (resp. closed as σ = s). Then, A ∈ ∂σ(

∑m
i=1 fi)(x̄) if and only

if there exists z∗ ∈ Zσ+ (resp. for every z∗ ∈ Zs+ as σ = s) and there exist sequences
{(u∗i,n, ri,n)}n ⊆ epi (z∗ ◦ fi)∗ with i ∈ {1, · · · ,m} and {tn}n ⊆ R+ satisfying

m∑
i=1

u∗i,n
‖.‖∗−→ z∗ ◦A,

tn +
m∑
i=1

ri,n −−−−→
n→∞

〈z∗ ◦A, x̄〉 −
m∑
i=1

(z∗ ◦ fi)(x̄).

PROOF. Let σ ∈ {w, p} and A ∈ ∂σ(
∑m
i=1 fi)(x̄). By applying Lemma 2.12, there

exists some z∗ ∈ Zσ+ such that z∗ ◦ A ∈ ∂(
∑m
i=1(z∗ ◦ fi))(x̄). For each x∗ ∈ X∗, we

introduce the function ϕx∗ by

ϕx∗ : X −→ R ∪ {+∞}
x 7−→ [

∑m
i=1(z∗ ◦ fi)(x)]− 〈x∗, x− x̄〉 .

Then, one can check that

z∗ ◦A ∈ ∂(

m∑
i=1

(z∗ ◦ fi))(x̄)⇐⇒ (0,−ϕz∗◦A(x̄)) ∈ epi(ϕz∗◦A)∗ (3)

and also
epi(−〈z∗ ◦A, .− x̄〉)∗ = {−z∗ ◦A} × [−〈z∗ ◦A, x̄〉,+∞[. (4)

Using successively (3), Lemma 2.9 and (4), we obtain that

A ∈ ∂σ(

m∑
i=1

fi)(x̄)

if and only if

(0,−ϕz∗◦A(x̄)) ∈ cl‖.‖∗×τR((

m∑
i=1

epi (z∗ ◦ fi)∗) + {−z∗ ◦A} × [−〈z∗ ◦A, x̄〉,+∞[)

or equivalently there exist {(u∗i,n, ri,n)}n ⊆ epi (z∗◦fi)∗ and {sn}n ⊆ [−〈z∗◦A, x̄〉,+∞[
(i ∈ {1 · · ·m}) such that

(

m∑
i=1

u∗i,n)− z∗ ◦A ‖.‖∗−−−→ 0,
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(

m∑
i=1

ri,n) + sn −−−−→
n→∞

−ϕz∗◦A(x̄).

By putting tn := sn + 〈z∗ ◦ A, x̄〉 for n ∈ N , the announced result follows. The case
σ = s is analogous.

The second formula is in terms of the approximate subdifferentials.

THEOREM 3.2. Let f1, ..., fm : X −→ Z ∪ {+∞Z} be m proper, Z+-convex and
lower semicontinuous vector valued mappings. Let x̄ ∈ ∩mi=1 domfi and suppose that
Z+ is pointed as σ = p (resp. closed as σ = s). Then, A ∈ ∂σ(

∑m
i=1 fi)(x̄) if and

only if there exists z∗ ∈ Zσ+ (resp. for every z∗ ∈ Zs+ as σ = s), there exist sequences
{εn}n ⊆ R+ and {u∗i,n}n ⊆ X∗ with i ∈ {1, · · · ,m} satisfying

εn −−−−→
n→∞

0,

m∑
i=1

u∗i,n
‖.‖∗−→ z∗ ◦A,

u∗i,n ∈ ∂εn (z∗ ◦ fi)(x̄),

with i ∈ {1, · · · ,m} and n ∈ N .

PROOF. The focus is on the case σ ∈ {w, p}.
(=⇒) Let A ∈ ∂σ(

∑m
i=1 fi)(x̄). By applying Theorem 3.1, there exist z∗ ∈ Zσ+ and

sequences {(u∗i,n, ri,n)}n ⊆ epi (z∗ ◦fi)∗ with i ∈ {1, · · · ,m} and {tn}n ⊆ R+ satisfying

m∑
i=1

u∗i,n
‖.‖∗−→ z∗ ◦A (5)

tn +

m∑
i=1

ri,n −−−−→
n→∞

〈z∗ ◦A, x̄〉 −
m∑
i=1

(z∗ ◦ fi)(x̄) (6)

and according to Lemma 2.10, there exist another sequences {εi,n}n ⊆ R+ that satisfy

u∗i,n ∈ ∂εi,n (z∗ ◦ fi)(x̄) (7)

ri,n = εi,n + 〈u∗i,n, x̄〉 − (z∗ ◦ fi)(x̄) (8)

with i ∈ {1, · · · ,m} and n ∈ N . From (7) and by setting εn := maxi∈{1,··· ,m}(εi,n) for
each n ∈ N , we have

u∗i,n ∈ ∂εn (z∗ ◦ fi)(x̄)

with i ∈ {1, · · · ,m} and n ∈ N . Now in view of (8), it is easy to see that

0 ≤ εn ≤ tn +
∑m
i=1 ri,n + [

∑m
i=1(z∗ ◦ fi)(x̄)]− 〈

∑m
i=1 u

∗
i,n, x̄〉.

Then, by (5) and (6), we obtain that εn −−−−→
n→∞

0.
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To prove the converse (⇐=), it suffi ces to sum over i and let n→ +∞ in accordance
to the variational inequalities associated to u∗i,n ∈ ∂εn (z∗ ◦fi)(x̄), that is, (z∗ ◦fi)(x)−
(z∗ ◦ fi)(x̄) ≥ 〈u∗i,n, x − x̄〉 − εn for all x ∈ X, with i ∈ {1, · · · ,m} and n ∈ N . Then
z∗ ◦A ∈ ∂(

∑m
i=1(z∗ ◦ fi))(x̄). We conclude by Lemma 2.12.

The third formula involves the scalar subdifferentials.

THEOREM 3.3. Let f1, ..., fm : X −→ Z ∪ {+∞Z} be m proper, Z+-convex and
lower semicontinuous vector valued mappings. Let x̄ ∈ ∩mi=1 domfi and suppose that
Z+ is pointed as σ = p (resp. closed as σ = s). Then, A ∈ ∂σ(

∑m
i=1 fi)(x̄) if and

only if there exists z∗ ∈ Zσ+ (resp. for every z∗ ∈ Zs+ as σ = s), there exist sequences
{xi,n}n ⊆ domfi and {x∗i,n}n ⊆ X∗ with i ∈ {1, · · · ,m} satisfying

x∗i,n ∈ ∂ (z∗ ◦ fi)(xi,n),

xi,n
‖.‖−→ x̄,

m∑
i=1

x∗i,n
‖.‖∗−→ z∗ ◦A,

(z∗ ◦ fi)(xi,n)− 〈x∗i,n, xi,n − x̄〉 −−−−→
n→∞

(z∗ ◦ fi)(x̄),

with i ∈ {1, · · · ,m} and n ∈ N .

PROOF. We treat the situation with σ ∈ {w, p}, the case σ = s is similar.
(=⇒) By Theorem 3.2, A ∈ ∂σ(

∑m
i=1 fi)(x̄) if and only if there exist z∗ ∈ Zσ+, sequences

{εn}n ⊆ R+ and {u∗i,n}n ⊆ X∗ with i ∈ {1, · · · ,m} satisfying

εn −−−−→
n→∞

0, (9)

m∑
i=1

u∗i,n
‖.‖∗−→ z∗ ◦A, (10)

u∗i,n ∈ ∂εn (z∗ ◦ fi)(x̄),

with i ∈ {1, · · · ,m} and n ∈ N .
Therefore from Lemma 2.11 with u∗i,n ∈ ∂εn (z∗ ◦ fi)(x̄), we obtain sequences

{xi,n}n ⊆ domfi and {x∗i,n}n ⊆ X∗ with i ∈ {1, · · · ,m} such that

x∗i,n ∈ ∂ (z∗ ◦ fi)(xi,n),

‖xi,n − x̄‖ ≤
√
εn, (11)

‖x∗i,n − u∗i,n‖∗ ≤
√
εn, (12)

|(z∗ ◦ fi)(xi,n)− 〈x∗i,n, xi,n − x̄〉 − (z∗ ◦ fi)(x̄)| ≤ 2εn, (13)

with i ∈ {1, · · · ,m} and n ∈ N .
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Hence by letting n→ +∞ in (11) and (13), we get

xi,n
‖.‖−→ x̄,

(z∗ ◦ fi)(xi,n)− 〈x∗i,n, xi,n − x̄〉 −−−−→
n→∞

(z∗ ◦ fi)(x̄),

with i ∈ {1, · · · ,m}.
It remains to prove that

∑m
i=1 x

∗
i,n

‖.‖∗−→ z∗ ◦A and this easily follows by using (10),
(12) and (9).
(⇐=) The variational inequalities associated to x∗i,n ∈ ∂ (z∗ ◦ fi)(xi,n) lead us to

(z∗ ◦ fi)(x)− ((z∗ ◦ fi)(xi,n)− 〈x∗i,n, xi,n − x̄〉) ≥ 〈x∗i,n, x− x̄〉, ∀x ∈ X

with i ∈ {1, · · · ,m} and n ∈ N . Thus by summing over i and letting n → +∞, we
obtain z∗ ◦A ∈ ∂(

∑m
i=1(z∗ ◦ fi))(x̄).

REMARK 3.4. The above formulas are also valid when all data vector valued
mappings fi satisfy that for any z∗ ∈ Z∗+ \ {0}, the scalar function z∗ ◦ fi is lower
semicontinuous.

4 Application to Sequential Weak, Proper and Strong
Effi ciency of General Vector Optimization Prob-
lem

In this section we use the sequential Pareto subdifferential calculus to obtain sequential
without any constraint qualification necessary and suffi cient weak, proper and strong
effi cient optimality conditions of the following general vector optimization problem with
geometric and cone constraints

(V OP ) : inf
x∈C

h(x)∈−Y+

f(x)

where

• f : X −→ Z ∪ {+∞Z} is proper, Z+-convex and lower semicontinuous vector
valued mapping.

• h : X −→ Y ∪ {+∞Y } is proper, Y+-convex and Y+-epi-closed vector valued
mapping.

• C is a nonempty closed convex subset of X.

• Y+ is a nonempty closed convex cone of Y .
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For convenience effi cient solutions are shortened as σ-effi cient solution with σ ∈ {w, p, s}.

THEOREM 4.1. Let x̄ ∈ domf ∩ C ∩ h−1(−Y+), σ ∈ {w, p, s} and assume Z+

pointed as σ = p (resp. closed as σ = s). Then, x̄ is a σ-effi cient solution of (VOP)
if and only if there exists z∗ ∈ Zσ+ (resp. for every z∗ ∈ Zs+ as σ = s), there ex-
ist sequences {xn}n ⊆ domf , {cn}n ⊆ C, {yn}n ⊆ −Y+, {(un, vn)}n ⊆ epih and
{x∗n}n, {c∗n}n, {u∗n}n ⊆ X∗, {y∗n}n, {v∗n}n ⊆ Y ∗ satisfying

x∗n ∈ ∂ (z∗ ◦ f)(xn), c∗n ∈ NC(cn),

y∗n ∈ Y ∗+, 〈y∗n, yn〉 = 0,

u∗n ∈ ∂ ((−v∗n) ◦ h)(un), v∗n ∈ −Y ∗+, 〈v∗n, vn − h(un)〉 = 0,

xn
‖.‖−→ x̄, cn

‖.‖−→ x̄, un
‖.‖−→ x̄, yn

‖.‖−→ h(x̄), vn
‖.‖−→ h(x̄),

x∗n + c∗n + u∗n
‖.‖∗−→ 0, y∗n + v∗n

‖.‖∗−→ 0,

(z∗ ◦ f)(xn)− 〈x∗n, xn − x̄〉 −−−−→
n→∞

(z∗ ◦ f)(x̄),

〈c∗n, cn − x̄〉 −−−−→
n→∞

0,

〈y∗n, yn − h(x̄)〉 −−−−→
n→∞

0,

〈u∗n, un − x̄〉+ 〈v∗n, vn − h(x̄)〉 −−−−→
n→∞

0,

with n ∈ N .

PROOF. By (2) and (1), x̄ is a σ-effi cient solution of (VOP) if and only if

0 ∈ ∂σ(f + δvC + δv−Y+ ◦ h)(x̄). (14)

Introduce the vector valued mappings with arrival set Z∪{+∞Z} defined by : f1(x, y)
:= f(x), f2(x, y) := δvC(x), f3(x, y) := δv−Y+(y), f4(x, y) := δvepih(x, y), where (x, y) ∈
X × Y . By using the definition of Pareto subdifferentials it is not diffi cult to see
that (14) is equivalent to (0, 0) ∈ ∂σ(f1 + f2 + f3 + f4)(x̄, h(x̄)). Taking into account
Remark 3.4 and by Theorem 3.3, there exists z∗ ∈ Zσ+ (resp. for every z∗ ∈ Zs+
as σ = s), there exist sequences {(xn, x̄n)}n ⊆ domf × Y , {(cn, c̄n)}n ⊆ C × Y ,
{(ȳn, yn)}n ⊆ X × −Y+, {(un, vn)}n ⊆ epih and {x∗n}n, {c∗n}n, {ȳ∗n}n, {u∗n}n ⊆ X∗,
{x̄∗n}n, {c̄∗n}n, {y∗n}n, {v∗n}n ⊆ Y ∗ satisfying for every n ∈ N :

(x∗n, x̄
∗
n) ∈ ∂ (z∗ ◦ f1)(xn, x̄n) = ∂ (z∗ ◦ f)(xn)× {0},

(c∗n, c̄
∗
n) ∈ ∂ (z∗ ◦ f2)(cn, c̄n) = NC(cn)× {0},

(ȳ∗n, y
∗
n) ∈ ∂ (z∗ ◦ f3)(ȳn, yn) = {0} ×N−Y+(yn),

(u∗n, v
∗
n) ∈ ∂ δepih(un, vn), (15)

xn
‖.‖−→ x̄, cn

‖.‖−→ x̄, ȳn
‖.‖−→ x̄, un

‖.‖−→ x̄,
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x̄n
‖.‖−→ h(x̄), c̄n

‖.‖−→ h(x̄), yn
‖.‖−→ h(x̄), vn

‖.‖−→ h(x̄),

x∗n + c∗n + ȳ∗n + u∗n
‖.‖∗−→ 0,

x̄∗n + c̄∗n + y∗n + v∗n
‖.‖∗−→ 0,

(z∗ ◦ f)(xn)− 〈x∗n, xn − x̄〉 − 〈x̄∗n, x̄n − h(x̄)〉 −−−−→
n→∞

(z∗ ◦ f)(x̄),

〈c∗n, cn − x̄〉+ 〈c̄∗n, c̄n − h(x̄)〉 −−−−→
n→∞

0,

〈ȳ∗n, ȳn − x̄〉+ 〈y∗n, yn − h(x̄)〉 −−−−→
n→∞

0,

〈u∗n, un − x̄〉+ 〈v∗n, vn − h(x̄)〉 −−−−→
n→∞

0.

Now, for (x∗, y∗) ∈ X∗ × Y ∗, simple computations show that

δ∗epih(x∗, y∗) = ((−y∗) ◦ h)∗(x∗) + δ∗Y+(y∗).

Then, for n ∈ N , (15) is equivalent to

((−v∗n) ◦ h)∗(u∗n) + δ∗Y+(v∗n)− 〈u∗n, un〉 − 〈v∗n, vn〉 = 0. (16)

Since (un, vn) ∈ epi h, we define zn := vn − h(un) ∈ Y+ for n ∈ N . Consequently (16)
is reformulated as follows

[((−v∗n) ◦ h)∗(u∗n) + ((−v∗n) ◦ h)(un)− 〈u∗n, un〉] + [δ∗Y+(v∗n) + δY+(zn)− 〈v∗n, zn〉] = 0.

According to Fenchel-Young inequality, this is equivalent to

u∗n ∈ ∂ ((−v∗n) ◦ h)(un), v∗n ∈ NY+(vn − h(un))

and from the fact that Y+ is a convex cone, we obtain

v∗n ∈ NY+(vn − h(un))⇐⇒
{
v∗n ∈ −Y ∗+
〈v∗n, vn − h(un)〉 = 0

.

Therefore the result follows after observing that {x̄∗n}n, {c̄∗n}n, {ȳ∗n}n are null and
{x̄n}n, {c̄n}n, {ȳn}n are superfluous.

5 Application to Sequential Weak and Strong Effi -
ciency in Multi-objective Fractional Programming

Multi-objective fractional optimization problems appear in many practical areas such
as economics and management science. In this section we are interested in establishing
sequential without any constraint qualification necessary and suffi cient weak and strong
effi cient optimality conditions for the following multi-objective fractional optimization
problem.

(MFP ) : inf
x∈C

h(x)∈−Y+

{
f1(x)

g1(x)
, · · · , fq(x)

gq(x)

}
where :



330 Sequential Pareto Subdifferentials Sums Formulas and Applications

• f1, ..., fq : X −→ [0,+∞[ are convex and lower semicontinuous scalar functions.

• g1, ..., gq : X −→]0,+∞[ are concave and upper semicontinuous scalar functions.

• h : X −→ Y ∪ {+∞Y } is a proper, Y+-convex and Y+-epi-closed vector valued
mapping.

• C is a nonempty closed convex subset of X.

• Y+ is a nonempty closed convex cone of Y .

The approach is based on sequential Pareto subdifferential calculus.

THEOREM 5.1. Let x̄ ∈ C ∩ h−1(−Y+) σ ∈ {w, s} and

Ω := {k ∈ {1, · · · , q} : fk(x̄) > 0}.

Then x̄ is a σ-effi cient solution of (MFP ) if and only if there exist index set ∆ ⊆
{1, · · · , q} nonempty, {λi}i∈∆ ⊆ ]0,+∞[ (resp. for every ∆ and every {λi}i∈∆ as
σ = s) and there exist sequences {xi,n}n, {wj,n}n ⊆ X, {cn}n ⊆ C, {yn}n ⊆ −Y+,
{(un, vn)}n ⊆ epi h, {x∗i,n}n, {w∗j,n}n, {c∗n}n, {u∗n}n ⊆ X∗, {y∗n}n, {v∗n}n ⊆ Y ∗ with
i ∈ ∆, j ∈ ∆ ∩ Ω such that :

x∗i,n ∈ ∂ fi(xi,n), w∗j,n ∈ ∂ (−gj)(wj,n), c∗n ∈ NC(cn),

y∗n ∈ Y ∗+, 〈y∗n, yn〉 = 0,

u∗n ∈ ∂ ((−v∗n) ◦ h)(un), v∗n ∈ −Y ∗+, 〈v∗n, vn − h(un)〉 = 0,

xi,n
‖.‖−→ x̄, wj,n

‖.‖−→ x̄, cn
‖.‖−→ x̄, un

‖.‖−→ x̄, yn
‖.‖−→ h(x̄), vn

‖.‖−→ h(x̄),

[
∑
i∈∆

λix
∗
i,n] + [

∑
j∈∆∩Ω

(λj
fj(x̄)

gj(x̄)
)w∗j,n] + c∗n + u∗n

‖.‖∗−→ 0, y∗n + v∗n
‖.‖∗−→ 0,

fi(xi,n)− 〈x∗i,n, xi,n − x̄〉 −−−−→
n→∞

fi(x̄),

gj(wj,n) + 〈w∗j,n, wj,n − x̄〉 −−−−→
n→∞

gj(x̄),

〈c∗n, cn − x̄〉 −−−−→
n→∞

0,

〈y∗n, yn − h(x̄)〉 −−−−→
n→∞

0,

〈u∗n, un − x̄〉+ 〈v∗n, vn − h(x̄)〉 −−−−→
n→∞

0,

with i ∈ ∆, j ∈ ∆ ∩ Ω and n ∈ N .

PROOF. We study the situation σ = w.
First we proceed using the parametric approach [3] by considering

(MFPx̄) : inf
x∈C

h(x)∈−Y+

{
f1(x)− f1(x̄)

g1(x̄)
g1(x), · · · , fq(x)− fq(x̄)

gq(x̄)
gq(x)

}
.
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Directly from Remark 2.6, we deduce that x̄ is a weak effi cient solution of (MFP ) if
and only if x̄ is a weak effi cient solution of (MFPx̄). By (2) and (1), this is equivalent
to

0 ∈ ∂w((

q∑
i=1

F i) + (

q∑
i=1

Gix̄) + δvC + δv−Y+ ◦ h)(x̄). (17)

where

F i : X −→ Rq

x −→
(
0, ..., fi(x), ..., 0

) ,
Gix̄ : X −→ Rq

x −→
(
0, ...,− fi(x̄)

gi(x̄)gi(x), ..., 0
) .

Now consider the following auxiliary vector valued mappings with values in Rq :

φi(x, y) := F i(x),

ϕi(x, y) := Gix̄(x),

γ(x, y) := δvC(x),

ψ(x, y) := δv−Y+(y),

H(x, y) := δvepih(x, y),

where (x, y) ∈ X × Y and i ∈ {1, · · · , q}. Similar to the preceding section, we have
that (17) is equivalent to :

(0, 0) ∈ ∂w((

q∑
i=1

φi) + (

q∑
i=1

ϕi) + γ + ψ +H)(x̄, h(x̄)).

According to Theorem 3.3, there exist λ∗ := (λ1, · · · , λq) ∈ Rq+ \ {0} and sequences
{(xi,n, x̄i,n)}n, {(wi,n, w̄i,n)}n ⊆ X × Y, {(cn, c̄n)}n ⊆ C × Y, {(ȳn, yn)}n ⊆ X ×
−Y+, {(un, vn)}n ⊆ epi h, {(x̂∗i,n, x̄∗i,n)}n, {(ŵ∗i,n, w̄∗i,n)}n, {(c∗n, c̄∗n)}n, {(ȳ∗n, y∗n)}n,
{(u∗n, v∗n)}n ⊆ X∗ × Y ∗ with i ∈ {1, · · · , q} satisfying

(x̂∗i,n, x̄
∗
i,n) ∈ ∂ (λ∗ ◦ φi)(xi,n, x̄i,n) = ∂ (λifi)(xi,n)× {0},

(ŵ∗i,n, w̄
∗
i,n) ∈ ∂ (λ∗ ◦ ϕi)(wi,n, w̄i,n) = ∂ (λi

fi(x̄)

gi(x̄)
(−gi))(wi,n)× {0},

(c∗n, c̄
∗
n) ∈ ∂ (λ∗ ◦ γ)(cn, c̄n) = NC(cn)× {0},

(ȳ∗n, y
∗
n) ∈ ∂ (λ∗ ◦ ψ)(ȳn, yn) = {0} ×N−Y+(yn),

(u∗n, v
∗
n) ∈ ∂ (λ∗ ◦H)(un, vn) = ∂ δepih(un, vn), (18)

xi,n
‖.‖−→ x̄, wi,n

‖.‖−→ x̄, cn
‖.‖−→ x̄, ȳn

‖.‖−→ x̄, un
‖.‖−→ x̄,

x̄i,n
‖.‖−→ h(x̄), w̄i,n

‖.‖−→ h(x̄), c̄n
‖.‖−→ h(x̄), yn

‖.‖−→ h(x̄), vn
‖.‖−→ h(x̄),

(

q∑
i=1

x̂∗i,n)+(

q∑
i=1

ŵ∗i,n)+c∗n+ ȳ∗n+u∗n
‖.‖∗−→ 0, (

q∑
i=1

x̄∗i,n)+(

q∑
i=1

w̄∗i,n)+ c̄∗n+y∗n+v∗n
‖.‖∗−→ 0,
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λifi(xi,n)− 〈x̂∗i,n, xi,n − x̄〉 − 〈x̄∗i,n, x̄i,n − h(x̄)〉 −−−−→
n→∞

λifi(x̄),

λi
fi(x̄)

gi(x̄)
(−gi)(wi,n)− 〈ŵ∗i,n, wi,n − x̄〉 − 〈w̄∗i,n, w̄i,n − h(x̄)〉 −−−−→

n→∞
λi
fi(x̄)

gi(x̄)
(−gi)(x̄),

〈c∗n, cn − x̄〉+ 〈c̄∗n, c̄n − h(x̄)〉 −−−−→
n→∞

0,

〈ȳ∗n, ȳn − x̄〉+ 〈y∗n, yn − h(x̄)〉 −−−−→
n→∞

0,

〈u∗n, un − x̄〉+ 〈v∗n, vn − h(x̄)〉 −−−−→
n→∞

0,

with i ∈ {1, · · · , q} and n ∈ N .
As in the section before, (18) is equivalent to :

u∗n ∈ ∂ ((−v∗n) ◦ h)(un), v∗n ∈ −Y ∗+, 〈v∗n, vn − h(un)〉 = 0.

For i ∈ {1, · · · , q}, {x̄∗i,n}n, {w̄∗i,n}n, {c̄∗n}n, {ȳ∗n}n are null and {x̄i,n}n, {w̄i,n}n,
{c̄n}n, {ȳn}n are superfluous. Thus the announced result follows by setting ∆ :=
{k ∈ {1, · · · , q} : λk > 0}. Similarly we have the result of strong effi cient solutions.

REMARK 5.2. Using the approach of sequential Pareto subdifferential calculus, the
case of sequential proper effi ciency of (MFP ) is more delicate. Also, it is interessant
to provide the nonsmooth counterpart of Theorem 5.1 or even develop second order
approach. These may be the objects of future research.
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