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Abstract

We study parabolic ODE systems modeling tumour invasion proposed by An-
derson and Chaplain [3]. According to Yagi’s arguments [12], we reduce them to
corresponding evolution equations and show the existence of time global solutions.

1 Introduction
In this paper, we shall deal with the following parabolic system modeling haptotaxis

0w = DAu— pvV.(uVw ),
O = 6A\v — v + au, t>0, ze Q,

dw = —yww,

Opu = 0, 9,v = 0, Fpwg = 0 in 09,
u(0,.) = wo,v(0,.) = vy, w(0,.) = wo on Q.

Here Q C R? (d = 2, 3) is a bounded domain with C® boundary 9§ and the initial data
ug, Vg, Wo are assumed to be nonnegative and 0,, denotes the derivative with respect to
the outer normal of 9€2. This system is a mathematical model describing the motion
of some species due to haptotaxis, the function u(t, z) corresponds to the cell density
of the species at place z € Q and time ¢ € [0, 400, and v(t,z) to the concentration
of the chemical substance that is produced by the individuals while w = w(t, z) is the
concentration of the extracellular matrix (ECM). The coefficients D, p,~,d, a, o are
given positive constants.

We first devote ourselves to the Cauchy problem for a semilinear evolution equation
of the form (4) in a Banach space X. We present existence and uniqueness results in
a way so that [12, Theorem 4.1] may be applied. Next, we use [12, Corollary 4.1] to

show that the a priori estimate for local solutions of (4) with respect to the A3U (t)
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norm ensures extension of local solutions without limit in order to construct the global
solutions.

2 Local Existence of a Solution

Let Q be a bounded domain in R?. For 1 < p < oo, LP(f2) is the usual Lebesgue space
endowed with the norm ||.|[z» (o). Next for s > 0, H*(Q) is the usual fractional Sobolev
space. We assume §) has a C? class boundary 0f, and for % <s<3

H{(Q)={ue H*(Q): d,u=00n00Q },

and for s < 2, we set HY (Q) = H®(Q), with the norm |.||g:(q). We denote for

d<p<2(d=23),
K:{Mfzmmmﬂmf:0§u0€HﬁGD,OgvoeﬂﬁﬂﬁD,ngoeH%GD}
The aim of this section is to prove the following Theorem:

THEOREM 2.1. Let 8 be a fixed exponent satisfying d/2 < 8 < 2 (d = 2, 3). For
any Uy = (ug, vg, wp) € K, (1) possesses a unique local solution in the function space

(
u € (0, Tvy) s H (92)) N C((0, Tir s Hy () 0 CH(0, T ] L (),
v € C(10, Ty, ] HY () N C(0, Ty, ] s Hy™ (2)) N C*(10, T s H (),
w € C([0, Ty, | Hy (2)) N CH(10, T | s HY, (), (2)

where Ty, > 0 depends only on the norm |[uol g5 ) + [|[vollgs+1(q) + llwollm2(q). In
addition, for all ¢ € [0,Ty,], the solution satisfies the estimates

()l o) + lv@ o+ 0) + lw®)l2@) < Cug, (3)
with some constant Cy, > 0 depending on the norm |lugllgs(q) + ||[vollgs+iq) +

||w0HH2(Q)~

2.1 Proof of THEOREM 2.1

We formulate problem (1) as the Cauchy problem for an abstract semilinear equation

U L AU = F(U),
{ 0) = U, @

in the Banach space

X:{U:wmmmzueL%m,veHWm,weHgmg,

endowed with the norm || (u,v,w)"| = lullz2(0) + vl a1 @) + lwllg2) and A is a
linear operator acting in X given by

A =diag{A1, As, As} = diag{—DA + 1, -0 + p,v}.
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A is a sectorial linear operator of X, the spectrum of which is contained in a sectorial
domain o (A) C > = {A € C,|arg \| < w4} with some angle 0 < w4 < 5. We refer to
[12, Theorem 2.4] which ensures that the resolvent satisfies for A ¢ o (A) the estimate

1

”(A B A)_lH = H(A a Al)_luz(LQ(Q)) * H(A a AZ)_1H£(H1(Q)) i m
§ 1+maX{D,%7%v%}
= Al '

In Ly(£2), under the Neumann boundary conditions on 99, we have D(A;) =H% (Q)
and according to [12, Theorem 16.7], we further have

H*?(Q),0<60<?2
0y _ ’ = 4
P ={ i) 305t )
with norm equivalence
651 Hu||H29(Q) < ||A?UHL2(Q) < cq ||uHH29(Q) , u€ D(Ai))~ (6)

In H! (), under the Neumann boundary conditions on 9, it is known [12, The-
orem 2.9] that D(Az) = {v e HE (Q): Ave H'(Q)}. Note that the fact that  has
a C3 class boundary 9 ensures the shift property Av € H(Q) with g—z = 0, im-
plies that D(Az) = Hy (2); and according to [12, Theorem 16.1], we have D(AY) =
[H' (Q),H} (2)],, 0 <6 <1. According to [12, Theorem 1.35],

H¥*+1(Q), 0<0<
D A@ _ ) = 1
(9 ={ (o) 15051 ™
with norm equivalence
" Nl a0y < 11430 ] gy < € [l raosagey - € DAY, (8)

where cq > 0 is determined by €. In HIQV (Q), the operator A3 = v is a positive
definite self-adjoint operator. By [12, Theorem 16.1] and [12, Theorem135], we have
[HY (), HY, ()], = HX (), therefore

D(A§) = H{ (2) 0<0< 1. 9)
Consequently
D(A) = {(u,v;w)t cue HY(Q),ve HY (Q),we HS (Q)}. (10)

Moreover it is clear that A? = diag { AY, A, A§} . According to [12, Theorem 16.1],
we have D(A?) = [X,D(A)], . Then

1
D(A%) = {U:(u,v,w)t cue HY(Q), ve HY+(Q), werv(Q)}, 0<6< .
1
D(A%) = {Uz(u,v,w)75 cue H?(Q), ve HET (Q), wEHJQ\,(Q)}, 1 << %,
D(zﬁl‘g):{U:(u,v,w)75 s ue HY (Q), ve HET(Q), wEHJQ\,(Q)}, %<9§1
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The nonlinear operator F' from D(A") (6 < n < 2) into X is defined by
FU) = (=pv. (uVw) +u, au, —~(v—1)w)".
Let U,V € D(A") (8 <n < 2). Since U = (uy,v1,w1)", V = (ug,ve,ws)", we have
[FU)=FWV)| < pllV-(u1Vwr —ueVws)| 120y + allur — vzl g g,
+7 [[(v1 = Dwy = (v2 = Dws| (o) + luar — vzl p2q) - (12)

Since
1V [uVwll| 20y < VUl pagq) VWil o) + 1l pe @) 1AWl 20 -

in the sequel, we need the following embeddings H f, (Q) — L>=(Q) and H' () —
L*(Q), £ < B <2 (d=2,3), to see that

9. w9l ooy < callul, | 0laey, we HP (@), we HR (@).  (13)
Moreover
||V. (u1Vw1 — Uvag)‘le(Q)
< callwill, g o —wellgsg) +eallor —wll |, Clluzllgs@y- (14)

H?(Q) is a Banach algebra, therefore
[[(v1 = Dwy — (v2 — 1)w2||H2(Q)
< callwr = wall g q) (il g2y + 1) + ca v — vall oo llwell g2y - (15)

Let 1 be such that 8 < n < 2. Since Hy, (?) — H' (Q) — L?(Q), we have

lur —wallp2q) + allur —uallgiq) < ca(a+1) [lur — vl g - (16)
We substitute (14), (15), (16) in (12) for 8 < n < 2. Then
I1EU) = F(V)l

< ca (Iuallgagy + lorll ey +1) X [lun = wall ooy + o = w2ll g2
(el + 22l sgy) (11 = w2l oy + o1 = w2llgans )] -
Therefore, in view of (11), (6), (8) and (9), we deduce that
IFW) - FW)I < e ([a50]+ |av]+1) [[at@w-v)|

+(laro] +Jatv]) afw -w)

},MVEDMW

Theorem 4.1 in [12] then provides the existence of local solutions. Indeed, for any
Uy € K, (4) possesses a unique local solution U in the function space:

8
2

U € C((0, Ty, }; D(A)) N C([0, Ttz J; D(AZ)) N CH((0, Ty, J; X).-

Furthermore, the solution satisfies the estimates ||Ag U| < Cy,. Here, Cy,,Ty, > 0
are determined by the norm ||U0||D(A g, only. The proof of Theorem 2.1 is completed.
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3 Nonnegativity of Local Solutions

We shall show that the local solution constructed above is nonnegative for Uy € K. In
the following we assume that 2 C R%(d = 2, 3) is a bounded domain with C*® boundary.
We denote by G the C! function defined by

12 s<o0,
G(S){g s> 0.

PROPOSITION 3.1. Under the assumptions of THEOREM 2.1, we have
u(t,z) >0, x€Q, t>0. (17)

PROOF. We set ¢(t) = [, G(u(t, z))dz. We have ¢’ (¢ fG’ Yugdz. Then
D/G’ YAudz — /G’ (uVw) dz

Observing that G'(u) = u if u < 0 and G'(u) = 0 if u > 0 and G'(u) € H(Q) for
u € HY(Q). Assuming 86“;0 = 0 on 02, we obtain % = 0 on 02 and hence by Holder’s
inequality, we have

p
V() < =DIV(G )iz + IG5 | AwllLz@)- (18)
We use the interpolation inequality for d = 2,3 to obtain

d i-d
16 @)y < callG @510 IG @ iy
Then (3) shows that ||Awl|z2(q) < Cy,, for 0 <t < Ty,. Therefore,

D
p”Aw”LZ(Q)||G/(u)||%4((2) < EHV(G/(U))”%%Q) + OUUHG/(U)H%?(Q)' (19)

Thus, in view of (19) and ( 8), z//(t) < erp,¥(t). By Gronwall’s inequality 9(t) <
¥(0) exp (ter,u, ) - Thus ¢(0) = [, G(ug(t,z))daz = 0 so that ¥(t) = 0. Hence u > 0.

PROPOSITION 3.2. Under the assumptions of Theorem 2.1, we have
v(t,z) >0, z€Q, t>0. (20)

PROOF. We set ¢(t) = [ G(v)dx. Using the third equation of system (1), we have
Q

/ VG ()| dx + a/uG’(v) - /J,/UG/(U)dCU
) o) )

since vG' (v ) >0, G'(v) <0,and u > 0 we have ¢¥'(t) < 0, then (t) < 9(0). Since
fQ (vo(t, x))dx = 0, we have ¥ (t) = 0. Consequently v > 0.
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4 Global Solutions

In the following we assume that Q C R%(d = 2,3) is a bounded domain with C®
boundary. As [12, Corollary 4.1] shows, the a priori estimates for local solutions of (4)

with respect to the AU (t) norm ensure extension of local solutions without limit. We
may thus construct the global solutions.
For later use we state the following auxiliary results:

LEMMA 4.1. Under the assumptions of Theorem 2.1, for 0 < ¢ < Ty,
[u®)|Lr(9) = lluollLr (- (21)
PROOF. Thanks to the homogeneous boundary conditions Vu.n =0 and Vwg.n
= 0 on 09, we may directly integrate (1) over §2; consequently fQ Oyudx =0, as u > 0,
from (17) we have %HUHLI(Q) = 0, and mass conservation (21) is satisfied.
Next, we may easily prove the following lemma.
LEMMA 4.2. Suppose that (ug,vg, wp) € K. Then for 0 < ¢t < Ty,
w(t,z) = wo(x)e” Joyo(ra)dr (22)

Moreover, we have
[w®)llLe (@) < llwollzee(g)- (23)

PROPOSITION 4.3. Let Q be a bounded smooth open domain of R¢ (d = 2,3).
Let u € H' (). Then there exists a constant ¢ > 0 (depending on 2, €) such that

2 2
lullZa0) < €lVullzeq) + coe lullii) - (24)

PROOF. With the help of the Cauchy inequality for the Gagliardo-Nirenberg

inequality [[ul o, < collull 5%, Jull 5k, (d = 2,3), we get that

€ 1 2 2
[ullF2q) < ZHVUHZL?(Q) + §||u||2L2(Q) + (3 + D) ullf g (25)
We simplify (25) so as to find

2CQ

2
lullE2 ) < ||vu”L2(Q) +(—+ )HUIIL1 (26)

—d
We take again the Gagliardo-Nirenberg’s inequality ||u||L4 @ < CQ||U||H1(Q) ||u||L2(Q)7

with the Cauchy’s inequality, then ||u||L4(Q) sIvullpeq) + (1 + CQ)||'LLHL2(Q) By
combining with (26), (24) is proved.
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LEMMA 4.4. Suppose that Uy = (ug,vo,wp) € K. Then there exists a constant
cq > 0 (depending on ) so that for 0 < ¢ < Ty,

[l z2 @) < calllvoll p2(q) + [luoll L1 ())- (27)

PROOF. The second equation of (1) is written as the abstract equation

t
v = b [ s 0< <y (28)

0

in L?(Q2). Therefore,

—tA
”vHL?(Q) < ||6 ! 2||L(L2(Q)) ”vOHL?(Q)
t
7(z_s>A2H H EOPR d
2 2
+0‘/ ‘ ez @) I ey 1Mo 4
0
From the estimate in [12, Eq. (2.128)] and [12, Theorem 2.28], and the formula
+oo
pT(z) = [ s*~te #*ds (Re(z) € R}), we have, for 0 <t < Ty,
0

Aoy
||UHL2(Q) < cq ||U0||L2(Q) +acou T (%) H“0||L1(Q)~

The proof is completed.
We shall prove the following result.
PROPOSITION 4.5. Suppose that Uy = (ug, vo, wp) € K. Then
|asu] <pe+ a7, 0 <t < v, (29)
with some continuous increasing function p (.).

PROOF. We first derive the desired X bound. We employ a change of variable of

the form u — 2 where ¢ (w) = e, This leads to the equation (1) in the form

uy _ u e
go<¢>t—Dv.(w<¢>) (), (30)

Moreover, ¢ satisfies ¢, = ¢'(w)w; = =% pwv. By multiplying the equation (30) by
%“ and integrating over {2, we obtain
d U, o U
— —)“d, D V(—
i [ o en [ola
Q Q

2
dr =% /(E)chwvdx. (31)
P
%)
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Applying Holder’s inequality to (31),
d U, o
— —)dx + D v(—
i [ oraen [ofo
Q Q

in view of (23), we may then conclude that [|pw||p-~@o) < ||w0||Loo(Q)e%||w°”L°°(ﬂ>.
Hence, this, together with (27) and (24), yield that

d
d D
dt/ T + /

o Y
(llvollz2 () + HU0||L2(Q))||’LU0HL°°(Q)€D”w"”L @ ”;”%4(9

U
z < %IIWHLO@(Q)||;|Ii4(m||v||m<a>,

IN

IN

D
||v(¢)||L2(Q) + ||7||L1(Q)CH'WOHH2(Q> HUOHLI(Q)7I|U0HL2(Q) (32)

2

Since (%)QQO = u2e~ 5% > y2e~ Blwolli=() by solving the differential inequality (32),

we obtain

O<Stup lullL2(o) () < tc(”wOHL‘X’(Q)a||7-"0||L2(Q)a“UOHLZ(Q))' (33)

It remains to prove the estimate in the space X for the two solution components
v,w of (1). Multiplying the third equation of (1) by Asv and integrating over §2, and
taking into account (8), we see that

t t
| Wl < callwolfn oy +cn [l
< callvollF oy + mtﬁgglIUIlia(Q)- (34)
Next, we know that for Q ¢ R? (d = 2,3), so
lwoe ™% 7|32 0y < callwol3z gy lle™ 0 71320

Using the same arguments as in [12, inequality (13.34)], we see that

. 2
ey < coltollmgey (14 [ Tl ) 1™ 7 oy
Recalling (23), (34) and (33), we see that
w20y < (14 ¢2) e(||voll ), llwoll m2 (0 l[woll 1), 2)- (35)

The next step is devoted to showing the estimate in the space D(A ). Using (13),
[12, Eq. (2.128)] and [12, Theorem 2.28] with some exponent 4 < 3’ < 3 and a constant
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CQ>0,
8 B
HAfu < HetAIHL(L%Q))HAqu
L2(Q) L2(Q)
A2€ L(t—s)A; Hef%(H)Al V. (uVw ds
/ H e, rini 17 @70 120
_8 _14_s
< ca fuollgacq) + / co(t=5)"2 € 2 Jull o ) [0l 2oy ds. - (36)
0

By the same arguments as in [12, inequality (2.119)], (6), (33) and (35), we see that,
for all € > 0,

B8’
lwll g2y lullger @) < cao (1+12%) ‘Alz u
L2 ()
2 1-5 H
< co (142) [ull gy - || AT v
L2(Q)
38 I
< coe(1+t)F7 +e||Afu (37)
L2 ()
Therefore, summing up (28), (37) and (36), we have for 0 < ¢t < Ty,
+o00
B i{ _B8 ,l(t,S)
sup | AFull < e uolley +eoe (1407 [ (1-9)7E e d s
0<t'<t L2(Q) )
ecq +fx(t—s)_%6_%(t_s)ds 8
+ g 5 sup |[A7u
0<t’'<t L2(Q)

“+oo
Let (g)l_gF (1 - g) = s 5e~Fdsand el = cQ(g)l_gl" (1 - g) . From (6) and
0

(35), it follows that

. lull ooy < (1+8)5- 7 efllvo oy lwoll 2oy lluoll o, 9). - (38)
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In a similar manner, thanks to (28) and (38), we have for all 0 <t <T,

AN

||UHH1+5(Q) AS ||U0||H1+ﬂ(g)

t
1
taca / |ades-na:
0

He—g(t—s)Al

HUHHB(Q) ds

L(L*(2)) L(L*(2))

t

_1 _ e —s
< lvoll s +i1>1%)||u||H5(Q) acQ,w/(t— s) 2 e 28 s
= 0
_38
< (X485 c(llvoll ar+s 9y, [vollm2(a), [[uol L (@), ©2)- (39)

Finally we use (35), (38) and (39), for 0 < ¢ < Ty, there exists a continuous increasing
function p(-) such that

ull o) + 1Vl s ) + 1wl 20y < (E+ l1woll s ) + voll gres o) + lwoll g2(q))-

We will take the same steps and expressions of the proof of global existence in [12]
to prove the following result.

THEOREM 4.6. For any Uy = (up,vo,wp) € K, there exists a unique global
solution of (1) in the function space:

u € C(J0,4o00[; HY () NC((0, +00[; HY () N C]0, +o0[; L7 (),
v € C(J0,+oo[; Hy (2)) N C([0, +oo[; Hy (2)) N C'(J0, +00[; H' (),
w € C([0,+o0[; HY (2)) N C(J0, +oo[; HR ().

PROOF. Utilizing the a priori estimate (29), we shall construct a global solution
to (1). For Uy € K, we know that there exists a local solution at least on an interval
[0,Ty,]. Let 0 < t; < Ty,. Then, Uy = U(t1) € K. We next consider problem (1)
with the initial value Uy on an interval [t1,T], where the end time T > 0 is any finite

time. The estimate (29) ensures for any local solution V/, HAQV(t)H < p(HAgUlﬂ +1),
ty <t < Ty. Then, the local solution V' can always be extended over an interval
[t1, Ty + 7] as local solution, 7 > 0 being dependent only on p(|[A%U:[|x + T) and
hence being independent of the extreme time Ty (cf. [12. Corollary 4.1]). This means
that our Cauchy problem possesses a global solution on the interval [t1,T].

This argument is meaningful for any finite time 7" > 0. So, we conclude the global
existence of solution. For any initial value Uy € I, there exists a unique global solution
to (1) with U(¢t) € K,0 <t < o0, in the function space

B8
2

U € C(]0,400[; D(A)) N C(]0, +00[; D(AZ)) N C((]0, +-00[; X).
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