Global Existence And Uniqueness Of A Parabolic Haptotaxis Model*

Hocine Tsamda ${ }^{\dagger}$, Naima Aissa ${ }^{\ddagger}$

Received 21 January 2018

Abstract

We study parabolic ODE systems modeling tumour invasion proposed by Anderson and Chaplain [3]. According to Yagi's arguments [12], we reduce them to corresponding evolution equations and show the existence of time global solutions.

1 Introduction

In this paper, we shall deal with the following parabolic system modeling haptotaxis

$$
\left\{\begin{array}{l}
\partial_{t} u=D \triangle u-\rho \nabla \cdot(u \nabla w), \tag{1}\\
\partial_{t} v=\delta \Delta v-\mu v+\alpha u, \quad t>0, x \in \Omega, \\
\partial_{t} w=-\gamma w v, \\
\left\{\begin{array}{l}
\partial_{n} u=0, \quad \partial_{n} v=0, \partial_{n} w_{0}=0 \quad \text { in } \partial \Omega, \\
u(0, .)=u_{0}, v(0, .)=v_{0}, w(0, .)=w_{0} \text { on } \Omega .
\end{array}\right.
\end{array}\right.
$$

Here $\Omega \subset \mathbb{R}^{d}(d=2,3)$ is a bounded domain with C^{3} boundary $\partial \Omega$ and the initial data u_{0}, v_{0}, w_{0} are assumed to be nonnegative and ∂_{n} denotes the derivative with respect to the outer normal of $\partial \Omega$. This system is a mathematical model describing the motion of some species due to haptotaxis, the function $u(t, x)$ corresponds to the cell density of the species at place $x \in \Omega$ and time $t \in[0,+\infty[$, and $v(t, x)$ to the concentration of the chemical substance that is produced by the individuals while $w=w(t, x)$ is the concentration of the extracellular matrix (ECM). The coefficients $D, \rho, \gamma, \delta, \alpha, \mu$ are given positive constants.

We first devote ourselves to the Cauchy problem for a semilinear evolution equation of the form (4) in a Banach space X. We present existence and uniqueness results in a way so that [12, Theorem 4.1] may be applied. Next, we use [12, Corollary 4.1] to show that the a priori estimate for local solutions of (4) with respect to the $A^{\frac{\beta}{2}} U(t)$

[^0]norm ensures extension of local solutions without limit in order to construct the global solutions.

2 Local Existence of a Solution

Let Ω be a bounded domain in \mathbb{R}^{d}. For $1 \leq p \leq \infty, L^{p}(\Omega)$ is the usual Lebesgue space endowed with the norm $\|\cdot\|_{L^{p}(\Omega)}$. Next for $s>0, H^{s}(\Omega)$ is the usual fractional Sobolev space. We assume Ω has a C^{3} class boundary $\partial \Omega$, and for $\frac{3}{2}<s \leq 3$

$$
H_{N}^{s}(\Omega)=\left\{u \in H^{s}(\Omega): \partial_{n} u=0 \text { on } \partial \Omega\right\}
$$

and for $s<\frac{3}{2}$, we set $H_{N}^{s}(\Omega)=H^{s}(\Omega)$, with the norm $\|\cdot\|_{H^{s}(\Omega)}$. We denote for $\frac{d}{2}<\beta<2(d=2,3)$,
$\mathcal{K}=\left\{U_{0}=\left(u_{0}, v_{0}, w_{0}\right)^{t}: 0 \leq u_{0} \in H_{N}^{\beta}(\Omega), 0 \leq v_{0} \in H_{N}^{1+\beta}(\Omega), 0 \leq w_{0} \in H_{N}^{2}(\Omega)\right\}$.
The aim of this section is to prove the following Theorem:
THEOREM 2.1. Let β be a fixed exponent satisfying $d / 2<\beta<2(d=2,3)$. For any $U_{0}=\left(u_{0}, v_{0}, w_{0}\right) \in \mathcal{K},(1)$ possesses a unique local solution in the function space
$\left.\left.\left.\left.u \in C(] 0, T_{U_{0}}\right] ; H_{N}^{2}(\Omega)\right) \cap C\left(\left[0, T_{U_{0}}\right] ; H_{N}^{\beta}(\Omega)\right) \cap C^{1}(] 0, T_{U_{0}}\right] ; L^{2}(\Omega)\right)$,
$\left.\left.\left.\left.v \in C(] 0, T_{U_{0}}\right] ; H_{N}^{3}(\Omega)\right) \cap C\left(\left[0, T_{U_{0}}\right] ; H_{N}^{1+\beta}(\Omega)\right) \cap C^{1}(] 0, T_{U_{0}}\right] ; H^{1}(\Omega)\right)$, $\left.\left.w \in C\left(\left[0, T_{U_{0}}\right] ; H_{N}^{2}(\Omega)\right) \cap C^{1}(] 0, T_{U_{0}}\right] ; H_{N}^{2}(\Omega)\right)$,
where $T_{U_{0}}>0$ depends only on the norm $\left\|u_{0}\right\|_{H^{\beta}(\Omega)}+\left\|v_{0}\right\|_{H^{\beta+1}(\Omega)}+\left\|w_{0}\right\|_{H^{2}(\Omega)}$. In addition, for all $t \in\left[0, T_{U_{0}}\right]$, the solution satisfies the estimates

$$
\begin{equation*}
\|u(t)\|_{H^{\beta}(\Omega)}+\|v(t)\|_{H^{\beta+1}(\Omega)}+\|w(t)\|_{H^{2}(\Omega)} \leq C_{U_{0}} \tag{3}
\end{equation*}
$$

with some constant $C_{U_{0}}>0$ depending on the norm $\left\|u_{0}\right\|_{H^{\beta}(\Omega)}+\left\|v_{0}\right\|_{H^{\beta+1}(\Omega)}+$ $\left\|w_{0}\right\|_{H^{2}(\Omega)}$.

2.1 Proof of THEOREM 2.1

We formulate problem (1) as the Cauchy problem for an abstract semilinear equation

$$
\left\{\begin{array}{l}
\frac{d U}{d t}+A U=F(U) \tag{4}\\
U(0)=U_{0}
\end{array}\right.
$$

in the Banach space

$$
X=\left\{U=(u, v, w)^{t}: u \in L^{2}(\Omega), v \in H^{1}(\Omega), w \in H_{N}^{2}(\Omega)\right\}
$$

endowed with the norm $\left\|(u, v, w)^{t}\right\|=\|u\|_{L^{2}(\Omega)}+\|v\|_{H^{1}(\Omega)}+\|w\|_{H^{2}(\Omega)}$ and A is a linear operator acting in X given by

$$
A=\operatorname{diag}\left\{A_{1}, A_{2}, A_{3}\right\}=\operatorname{diag}\{-D \triangle+1,-\delta \triangle+\mu, \gamma\}
$$

A is a sectorial linear operator of X, the spectrum of which is contained in a sectorial domain $\sigma(A) \subset \sum_{\omega}=\left\{\lambda \in \mathbb{C},|\arg \lambda|<\omega_{A}\right\}$ with some angle $0<\omega_{A}<\frac{\pi}{2}$. We refer to [12, Theorem 2.4] which ensures that the resolvent satisfies for $\lambda \notin \sigma(A)$ the estimate

$$
\begin{aligned}
\left\|(\lambda-A)^{-1}\right\| & \leq\left\|\left(\lambda-A_{1}\right)^{-1}\right\|_{\mathcal{L}\left(L^{2}(\Omega)\right)}+\left\|\left(\lambda-A_{2}\right)^{-1}\right\|_{\mathcal{L}\left(H^{1}(\Omega)\right)}+\frac{1}{|\lambda-\gamma|} \\
& \leq \frac{1+\max \left\{D, \frac{1}{D}, \frac{\delta}{\mu}, \frac{\mu}{\delta}\right\}}{|\lambda|} .
\end{aligned}
$$

In $L_{2}(\Omega)$, under the Neumann boundary conditions on $\partial \Omega$, we have $\mathcal{D}\left(A_{1}\right)=H_{N}^{2}(\Omega)$ and according to [12, Theorem 16.7], we further have

$$
\mathcal{D}\left(A_{1}^{\theta}\right)=\left\{\begin{array}{l}
H^{2 \theta}(\Omega), 0 \leq \theta<\frac{3}{4} \tag{5}\\
H_{N}^{2 \theta}(\Omega), \frac{3}{4}<\theta \leq 1
\end{array}\right.
$$

with norm equivalence

$$
\begin{equation*}
c_{\Omega}^{-1}\|u\|_{H^{2 \theta}(\Omega)} \leq\left\|A_{1}^{\theta} u\right\|_{L^{2}(\Omega)} \leq c_{\Omega}\|u\|_{H^{2 \theta}(\Omega)}, \quad u \in \mathcal{D}\left(A_{1}^{\theta}\right) \tag{6}
\end{equation*}
$$

In $H^{1}(\Omega)$, under the Neumann boundary conditions on $\partial \Omega$, it is known [12, Theorem 2.9] that $\mathcal{D}\left(A_{2}\right)=\left\{v \in H_{N}^{2}(\Omega): \Delta v \in H^{1}(\Omega)\right\}$. Note that the fact that Ω has a C^{3} class boundary $\partial \Omega$ ensures the shift property $\Delta v \in H^{1}(\Omega)$ with $\frac{\partial v}{\partial n}=0$, implies that $\mathcal{D}\left(A_{2}\right)=H_{N}^{3}(\Omega)$; and according to [12, Theorem 16.1], we have $\mathcal{D}\left(A_{2}^{\theta}\right)=$ $\left[H^{1}(\Omega), H_{N}^{3}(\Omega)\right]_{\theta}, 0 \leq \theta \leq 1$. According to [12, Theorem 1.35],

$$
\mathcal{D}\left(A_{2}^{\theta}\right)=\left\{\begin{array}{l}
H^{2 \theta+1}(\Omega), 0 \leq \theta<\frac{1}{4} \tag{7}\\
H_{N}^{2 \theta+1}(\Omega), \frac{1}{4}<\theta \leq 1
\end{array}\right.
$$

with norm equivalence

$$
\begin{equation*}
c_{\Omega}^{-1}\|u\|_{H^{2 \theta+1}(\Omega)} \leq\left\|A_{2}^{\theta} u\right\|_{H^{1}(\Omega)} \leq c_{\Omega}\|u\|_{H^{2 \theta+1}(\Omega)}, \quad u \in \mathcal{D}\left(A_{2}^{\theta}\right) \tag{8}
\end{equation*}
$$

where $c_{\Omega}>0$ is determined by Ω. In $H_{N}^{2}(\Omega)$, the operator $A_{3}=\gamma$ is a positive definite self-adjoint operator. By [12, Theorem 16.1] and [12, Theorem135], we have $\left[H_{N}^{2}(\Omega), H_{N}^{2}(\Omega)\right]_{\theta}=H_{N}^{2}(\Omega)$, therefore

$$
\begin{equation*}
\mathcal{D}\left(A_{3}^{\theta}\right)=H_{N}^{2}(\Omega) \quad 0 \leq \theta \leq 1 \tag{9}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\mathcal{D}(A)=\left\{(u, v ; w)^{t}: u \in H_{N}^{2}(\Omega), v \in H_{N}^{3}(\Omega), w \in H_{N}^{2}(\Omega)\right\} \tag{10}
\end{equation*}
$$

Moreover it is clear that $A^{\theta}=\operatorname{diag}\left\{A_{1}^{\theta}, A_{2}^{\theta}, A_{3}^{\theta}\right\}$. According to [12, Theorem 16.1], we have $\mathcal{D}\left(A^{\theta}\right)=[X, \mathcal{D}(A)]_{\theta}$. Then
$\mathcal{D}\left(A^{\theta}\right)=\left\{U=(u, v, w)^{t} ; u \in H^{2 \theta}(\Omega), v \in H^{2 \theta+1}(\Omega), w \in H_{N}^{2}(\Omega)\right\}, 0<\theta<\frac{1}{4}$,
$\mathcal{D}\left(A^{\theta}\right)=\left\{U=(u, v, w)^{t} ; u \in H^{2 \theta}(\Omega), v \in H_{N}^{2 \theta+1}(\Omega), w \in H_{N}^{2}(\Omega)\right\}, \frac{1}{4}<\theta<\frac{3}{4}$,
$\mathcal{D}\left(A^{\theta}\right)=\left\{U=(u, v, w)^{t} ; u \in H_{N}^{2 \theta}(\Omega), v \in H_{N}^{2 \theta+1}(\Omega), w \in H_{N}^{2}(\Omega)\right\}, \frac{3}{4}<\theta \leq 1$.

The nonlinear operator F from $D\left(A^{\eta}\right)(\beta \leq \eta<2)$ into X is defined by

$$
F(U)=(-\rho \nabla \cdot(u \nabla w)+u, \alpha u,-\gamma(v-1) w)^{t}
$$

Let $U, V \in D\left(A^{\eta}\right)(\beta \leq \eta<2)$. Since $U=\left(u_{1}, v_{1}, w_{1}\right)^{t}, V=\left(u_{2}, v_{2}, w_{2}\right)^{t}$, we have

$$
\begin{align*}
\|F(U)-F(V)\| \leq & \rho\left\|\nabla \cdot\left(u_{1} \nabla w_{1}-u_{2} \nabla w_{2}\right)\right\|_{L^{2}(\Omega)}+\alpha\left\|u_{1}-u_{2}\right\|_{H^{1}(\Omega)} \\
& +\gamma\left\|\left(v_{1}-1\right) w_{1}-\left(v_{2}-1\right) w_{2}\right\|_{H^{2}(\Omega)}+\left\|u_{1}-u_{2}\right\|_{L^{2}(\Omega)} \tag{12}
\end{align*}
$$

Since

$$
\|\nabla \cdot[u \nabla w]\|_{L^{2}(\Omega)} \leq\|\nabla u\|_{L^{4}(\Omega)}\|\nabla w\|_{L^{4}(\Omega)}+\|u\|_{L^{\infty}(\Omega)}\|\Delta w\|_{L^{2}(\Omega)}
$$

in the sequel, we need the following embeddings $H_{N}^{\beta}(\Omega) \rightarrow L^{\infty}(\Omega)$ and $H^{1}(\Omega) \rightarrow$ $L^{4}(\Omega), \frac{d}{2}<\beta<2(d=2,3)$, to see that

$$
\begin{equation*}
\|\nabla \cdot[u \nabla w]\|_{L^{2}(\Omega)} \leq c_{\Omega}\|u\|_{H^{\beta}(\Omega)}\|w\|_{H^{2}(\Omega)}, u \in H^{\beta}(\Omega), w \in H_{N}^{2}(\Omega) \tag{13}
\end{equation*}
$$

Moreover

$$
\begin{align*}
& \left\|\nabla \cdot\left(u_{1} \nabla w_{1}-u_{2} \nabla w_{2}\right)\right\|_{L^{2}(\Omega)} \\
\leq & c_{\Omega}\left\|w_{1}\right\|_{H^{2}(\Omega)}\left\|u_{1}-u_{2}\right\|_{H^{\beta}(\Omega)}+c_{\Omega}\left\|w_{1}-w_{2}\right\|_{H^{2}(\Omega)}\left\|u_{2}\right\|_{H^{\beta}(\Omega)} \tag{14}
\end{align*}
$$

$H^{2}(\Omega)$ is a Banach algebra, therefore

$$
\begin{align*}
& \left\|\left(v_{1}-1\right) w_{1}-\left(v_{2}-1\right) w_{2}\right\|_{H^{2}(\Omega)} \\
\leq & c_{\Omega}\left\|w_{1}-w_{2}\right\|_{H^{2}(\Omega)}\left(\left\|v_{1}\right\|_{H^{2}(\Omega)}+1\right)+c_{\Omega}\left\|v_{1}-v_{2}\right\|_{H^{2}(\Omega)}\left\|w_{2}\right\|_{H^{2}(\Omega)} \tag{15}
\end{align*}
$$

Let η be such that $\beta<\eta \leq 2$. Since $H_{N}^{\eta}(\Omega) \hookrightarrow H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$, we have

$$
\begin{equation*}
\left\|u_{1}-u_{2}\right\|_{L^{2}(\Omega)}+\alpha\left\|u_{1}-u_{2}\right\|_{H^{1}(\Omega)} \leq c_{\Omega}(\alpha+1)\left\|u_{1}-u_{2}\right\|_{H^{\eta}(\Omega)} \tag{16}
\end{equation*}
$$

We substitute (14), (15), (16) in (12) for $\beta \leq \eta<2$. Then

$$
\begin{aligned}
& \|F(U)-F(V)\| \\
\leq & c_{\Omega}\left(\left\|u_{2}\right\|_{H^{\beta}(\Omega)}+\left\|v_{1}\right\|_{H^{\beta+1}(\Omega)}+1\right) \times\left[\left\|u_{1}-u_{2}\right\|_{H^{\eta}(\Omega)}+\left\|w_{1}-w_{2}\right\|_{H^{2}(\Omega)}\right. \\
& \left.+\left(\left\|w_{1}\right\|_{H^{2}(\Omega)}+\left\|w_{2}\right\|_{H^{2}(\Omega)}\right)\left(\left\|u_{1}-u_{2}\right\|_{H^{\beta}(\Omega)}+\left\|v_{1}-v_{2}\right\|_{H^{\beta+1}(\Omega)}\right)\right] .
\end{aligned}
$$

Therefore, in view of $(11),(6),(8)$ and (9), we deduce that

$$
\begin{aligned}
\|F(U)-F(V)\| \leq & c_{\Omega}\left(\left\|A^{\frac{\beta}{2}} U\right\|+\left\|A^{\frac{\beta}{2}} V\right\|+1\right)\left[\left\|A^{\frac{\eta}{2}}(U-V)\right\|\right. \\
& \left.+\left(\left\|A^{\frac{\eta}{2}} U\right\|+\left\|A^{\frac{\eta}{2}} V\right\|\right)\left\|A^{\frac{\beta}{2}}(U-V)\right\|\right], U, V \in D\left(A^{\eta}\right)
\end{aligned}
$$

Theorem 4.1 in [12] then provides the existence of local solutions. Indeed, for any $U_{0} \in \mathcal{K},(4)$ possesses a unique local solution U in the function space:

$$
U \in C\left(\left(0, T_{U_{0}}\right] ; \mathcal{D}(A)\right) \cap C\left(\left[0, T_{U_{0}}\right] ; \mathcal{D}\left(A^{\frac{\beta}{2}}\right)\right) \cap C^{1}\left(\left(0, T_{U_{0}}\right] ; X\right)
$$

Furthermore, the solution satisfies the estimates $\left\|A^{\frac{\beta}{2}} U\right\| \leq C_{U_{0}}$. Here, $C_{U_{0}}, T_{U_{0}}>0$ are determined by the norm $\left\|U_{0}\right\|_{\mathcal{D}\left(A^{\frac{\beta}{2}}\right)}$ only. The proof of Theorem 2.1 is completed.

3 Nonnegativity of Local Solutions

We shall show that the local solution constructed above is nonnegative for $U_{0} \in \mathcal{K}$. In the following we assume that $\Omega \subset \mathbb{R}^{d}(d=2,3)$ is a bounded domain with C^{3} boundary. We denote by G the C^{1} function defined by

$$
G(s)= \begin{cases}\frac{1}{2} s^{2}, & s<0 \\ 0, & s \geq 0\end{cases}
$$

PROPOSITION 3.1. Under the assumptions of THEOREM 2.1, we have

$$
\begin{equation*}
u(t, x) \geq 0, x \in \Omega, t \geq 0 \tag{17}
\end{equation*}
$$

PROOF. We set $\psi(t)=\int_{\Omega} G(u(t, x)) d x$. We have $\psi^{\prime}(t)=\int_{\Omega} G^{\prime}(u) u_{t} d x$. Then

$$
\psi^{\prime}(t)=D \int_{\Omega} G^{\prime}(u) \triangle u d x-\rho \int_{\Omega} G^{\prime}(u) \nabla \cdot(u \nabla w) d x
$$

Observing that $G^{\prime}(u)=u$ if $u<0$ and $G^{\prime}(u)=0$ if $u \geq 0$ and $G^{\prime}(u) \in H^{1}(\Omega)$ for $u \in H^{1}(\Omega)$. Assuming $\frac{\partial w_{0}}{\partial n}=0$ on $\partial \Omega$, we obtain $\frac{\partial w}{\partial n}=0$ on $\partial \Omega$ and hence by Hölder's inequality, we have

$$
\begin{equation*}
\psi^{\prime}(t) \leq-D\left\|\nabla\left(G^{\prime}(u)\right)\right\|_{L^{2}(\Omega)}^{2}+\frac{\rho}{2}\left\|G^{\prime}(u)\right\|_{L^{4}(\Omega)}^{2}\|\Delta w\|_{L^{2}(\Omega)} \tag{18}
\end{equation*}
$$

We use the interpolation inequality for $d=2,3$ to obtain

$$
\left\|G^{\prime}(u)\right\|_{L^{4}(\Omega)}^{2} \leq c_{\Omega}\left\|G^{\prime}(u)\right\|_{H^{1}(\Omega)}^{\frac{d}{2}}\left\|G^{\prime}(u)\right\|_{L^{2}(\Omega)}^{\frac{4-d}{2}}
$$

Then (3) shows that $\|\triangle w\|_{L^{2}(\Omega)} \leq C_{U_{0}}$, for $0 \leq t \leq T_{U_{0}}$. Therefore,

$$
\begin{equation*}
\rho\|\triangle w\|_{L^{2}(\Omega)}\left\|G^{\prime}(u)\right\|_{L^{4}(\Omega)}^{2} \leq \frac{D}{2}\left\|\nabla\left(G^{\prime}(u)\right)\right\|_{L^{2}(\Omega)}^{2}+C_{U_{0}}\left\|G^{\prime}(u)\right\|_{L^{2}(\Omega)}^{2} \tag{19}
\end{equation*}
$$

Thus, in view of (19) and (18), $\psi^{\prime}(t) \leq c_{T, U_{0}} \psi(t)$. By Gronwall's inequality $\psi(t) \leq$ $\psi(0) \exp \left(t c_{T, U_{0}}\right)$. Thus $\psi(0)=\int_{\Omega} G\left(u_{0}(t, x)\right) d x=0$ so that $\psi(t)=0$. Hence $u \geq 0$.

PROPOSITION 3.2. Under the assumptions of Theorem 2.1, we have

$$
\begin{equation*}
v(t, x) \geq 0, x \in \Omega, t \geq 0 \tag{20}
\end{equation*}
$$

PROOF. We set $\psi(t)=\int_{\Omega} G(v) d x$. Using the third equation of system (1), we have

$$
\psi^{\prime}(t)=-\delta \int_{\Omega}\left|\nabla G^{\prime}(v)\right|^{2} d x+\alpha \int_{\Omega} u G^{\prime}(v)-\mu \int_{\Omega} v G^{\prime}(v) d x
$$

since $v G^{\prime}(v) \geq 0, G^{\prime}(v) \leq 0$, and $u \geq 0$ we have $\psi^{\prime}(t) \leq 0$, then $\psi(t) \leq \psi(0)$. Since $\psi(0)=\int_{\Omega} G\left(v_{0}(t, x)\right) d x=0$, we have $\psi(t)=0$. Consequently $v \geq 0$.

4 Global Solutions

In the following we assume that $\Omega \subset \mathbb{R}^{d}(d=2,3)$ is a bounded domain with C^{3} boundary. As [12, Corollary 4.1] shows, the a priori estimates for local solutions of (4) with respect to the $A^{\frac{\beta}{2}} U(t)$ norm ensure extension of local solutions without limit. We may thus construct the global solutions.

For later use we state the following auxiliary results:
LEMMA 4.1. Under the assumptions of Theorem 2.1, for $0 \leq t \leq T_{U}$,

$$
\begin{equation*}
\|u(t)\|_{L^{1}(\Omega)}=\left\|u_{0}\right\|_{L^{1}(\Omega)} \tag{21}
\end{equation*}
$$

PROOF. Thanks to the homogeneous boundary conditions $\nabla u \cdot \vec{n}=0$ and $\nabla w_{0} \cdot \vec{n}$ $=0$ on $\partial \Omega$, we may directly integrate (1) over Ω; consequently $\int_{\Omega} \partial_{t} u d x=0$, as $u \geq 0$, from (17) we have $\frac{d}{d t}\|u\|_{L^{1}(\Omega)}=0$, and mass conservation (21) is satisfied.

Next, we may easily prove the following lemma.
LEMMA 4.2. Suppose that $\left(u_{0}, v_{0}, w_{0}\right) \in \mathcal{K}$. Then for $0 \leq t \leq T_{U}$,

$$
\begin{equation*}
w(t, x)=w_{0}(x) e^{-\int_{0}^{t} \gamma v(\tau, x) d \tau} \tag{22}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\|w(t)\|_{L^{\infty}(\Omega)} \leq\left\|w_{0}\right\|_{L^{\infty}(\Omega)} \tag{23}
\end{equation*}
$$

PROPOSITION 4.3. Let Ω be a bounded smooth open domain of $\mathbb{R}^{d}(d=2,3)$. Let $u \in H^{1}(\Omega)$. Then there exists a constant $c_{\Omega, \epsilon}>0$ (depending on Ω, ϵ) such that

$$
\begin{equation*}
\|u\|_{L^{4}(\Omega)}^{2} \leq \epsilon\|\nabla u\|_{L^{2}(\Omega)}^{2}+c_{\Omega, \epsilon}\|u\|_{L^{1}(\Omega)}^{2} \tag{24}
\end{equation*}
$$

PROOF. With the help of the Cauchy inequality for the Gagliardo-Nirenberg inequality $\|u\|_{L^{2}(\Omega)}^{2} \leq c_{\Omega}\|u\|_{H^{1}(\Omega)}^{\frac{3 d}{2+d}}\|u\|_{L^{1}(\Omega)}^{\frac{4-d}{2+d},},(d=2,3)$, we get that

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)}^{2} \leq \frac{\epsilon}{4}\|\nabla u\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|u\|_{L^{2}(\Omega)}^{2}+\left(\frac{c_{\Omega}^{2}}{2}+\frac{c_{\Omega}^{2}}{\epsilon}\right)\|u\|_{L^{1}(\Omega)}^{2} \tag{25}
\end{equation*}
$$

We simplify (25) so as to find

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)}^{2} \leq \frac{\epsilon}{2}\|\nabla u\|_{L^{2}(\Omega)}^{2}+\left(\frac{2 c_{\Omega}^{2}}{\epsilon}+\frac{c_{\Omega}^{2}}{2}\right)\|u\|_{L^{1}(\Omega)}^{2} \tag{26}
\end{equation*}
$$

We take again the Gagliardo-Nirenberg's inequality $\|u\|_{L^{4}(\Omega)}^{2} \leq c_{\Omega}\|u\|_{H^{1}(\Omega)}^{\frac{d}{2}} \cdot\|u\|_{L^{2}(\Omega)}^{\frac{4-d}{2}}$, with the Cauchy's inequality, then $\|u\|_{L^{4}(\Omega)}^{2} \leq \frac{\epsilon}{2}\|\nabla u\|_{L^{2}(\Omega)}+\left(1+\frac{c_{\Omega}^{2}}{2 \varepsilon}\right)\|u\|_{L^{2}(\Omega)}^{2}$. By combining with (26), (24) is proved.

LEMMA 4.4. Suppose that $U_{0}=\left(u_{0}, v_{0}, w_{0}\right) \in \mathcal{K}$. Then there exists a constant $c_{\Omega}>0$ (depending on Ω) so that for $0 \leq t \leq T_{U}$,

$$
\begin{equation*}
\|v\|_{L^{2}(\Omega)} \leq c_{\Omega}\left(\left\|v_{0}\right\|_{L^{2}(\Omega)}+\left\|u_{0}\right\|_{L^{1}(\Omega)}\right) \tag{27}
\end{equation*}
$$

PROOF. The second equation of (1) is written as the abstract equation

$$
\begin{equation*}
v(t)=e^{-t A_{2}} v_{0}+\alpha \int_{0}^{t} e^{-(t-s) A_{2}} u d s, 0 \leq t \leq T_{U} \tag{28}
\end{equation*}
$$

in $L^{2}(\Omega)$. Therefore,

$$
\begin{aligned}
& \|v\|_{L^{2}(\Omega)} \leq\left\|e^{-t A_{2}}\right\|_{\mathcal{L}\left(L^{2}(\Omega)\right)}\left\|v_{0}\right\|_{L^{2}(\Omega)} \\
& +\alpha \int_{0}^{t}\left\|e^{-\frac{(t-s)}{2} A_{2}}\right\|_{\mathcal{L}\left(L^{2}(\Omega), L^{1}(\Omega)\right)}\left\|e^{-\frac{(t-s)}{2} A_{2}}\right\|_{\mathcal{L}\left(L^{1}(\Omega)\right)}\|u\|_{L^{1}(\Omega)} d s .
\end{aligned}
$$

From the estimate in [12, Eq. (2.128)] and [12, Theorem 2.28], and the formula $\mu^{-z} \Gamma(z)=\int_{0}^{+\infty} s^{z-1} e^{-\mu s} d s\left(\operatorname{Re}(z) \in \mathbb{R}_{+}^{*}\right)$, we have, for $0 \leq t \leq T_{U}$,

$$
\|v\|_{L^{2}(\Omega)} \leq c_{\Omega}\left\|v_{0}\right\|_{L^{2}(\Omega)}+\alpha c_{\Omega} \mu^{-\frac{4-d}{4}} \Gamma\left(\frac{4-d}{4}\right)\left\|u_{0}\right\|_{L^{1}(\Omega)}
$$

The proof is completed.
We shall prove the following result.

PROPOSITION 4.5. Suppose that $U_{0}=\left(u_{0}, v_{0}, w_{0}\right) \in \mathcal{K}$. Then

$$
\begin{equation*}
\left\|A^{\frac{\beta}{2}} U\right\| \leq p\left(t+\left\|A^{\frac{\beta}{2}} U_{0}\right\|\right), 0 \leq t \leq T_{U} \tag{29}
\end{equation*}
$$

with some continuous increasing function $p($.$) .$
PROOF. We first derive the desired X bound. We employ a change of variable of the form $u \rightarrow \frac{u}{\varphi}$ where $\varphi(w)=e^{\frac{\rho}{D} w}$. This leads to the equation (1) in the form

$$
\begin{equation*}
\varphi\left(\frac{u}{\varphi}\right)_{t}=D \nabla \cdot\left(\varphi \nabla\left(\frac{u}{\varphi}\right)\right)-u\left(\frac{\varphi_{t}}{\varphi}\right) \tag{30}
\end{equation*}
$$

Moreover, φ satisfies $\varphi_{t}=\varphi^{\prime}(w) w_{t}=-\frac{\gamma \rho}{D} \varphi w v$. By multiplying the equation (30) by $\frac{2 u}{\varphi}$ and integrating over Ω, we obtain

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \varphi\left(\frac{u}{\varphi}\right)^{2} d x+D \int_{\Omega} \varphi\left|\nabla\left(\frac{u}{\varphi}\right)\right|^{2} d x=\frac{\gamma \rho}{D} \int_{\Omega}\left(\frac{u}{\varphi}\right)^{2} \varphi w v d x \tag{31}
\end{equation*}
$$

Applying Hölder's inequality to (31),

$$
\frac{d}{d t} \int_{\Omega} \varphi\left(\frac{u}{\varphi}\right)^{2} d x+D \int_{\Omega} \varphi\left|\nabla\left(\frac{u}{\varphi}\right)\right|^{2} d x \leq \frac{\gamma \rho}{D}\|\varphi w\|_{L^{\infty}(\Omega)}\left\|\frac{u}{\varphi}\right\|_{L^{4}(\Omega)}^{2}\|v\|_{L^{2}(\Omega)}
$$

in view of (23), we may then conclude that $\|\varphi w\|_{L^{\infty}(\Omega)} \leq\left\|w_{0}\right\|_{L^{\infty}(\Omega)} e^{\frac{\rho}{D}\left\|w_{0}\right\|_{L^{\infty}(\Omega)}}$. Hence, this, together with (27) and (24), yield that

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega} \varphi\left(\frac{u}{\varphi}\right)^{2} d x+D \int_{\Omega} \varphi\left|\nabla\left(\frac{u}{\varphi}\right)\right|^{2} d x \\
& \leq \quad\left(\left\|v_{0}\right\|_{L^{2}(\Omega)}+\left\|u_{0}\right\|_{L^{2}(\Omega)}\right)\left\|w_{0}\right\|_{L^{\infty}(\Omega)} e^{\frac{\rho}{D}\left\|w_{0}\right\|_{L^{\infty}(\Omega)}\left\|\frac{u}{\varphi}\right\|_{L^{4}(\Omega)}^{2}} \\
& \leq \quad \frac{D}{2}\left\|\nabla\left(\frac{u}{\varphi}\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\frac{u}{\varphi}\right\|_{L^{1}(\Omega)}^{2} c_{\left\|w_{0}\right\|_{H^{2}(\Omega)},\left\|u_{0}\right\|_{L^{1}(\Omega)},\left\|v_{0}\right\|_{L^{2}(\Omega)}} . \tag{32}
\end{align*}
$$

Since $\left(\frac{u}{\varphi}\right)^{2} \varphi=u^{2} e^{-\frac{\rho}{D} w} \geq u^{2} e^{-\frac{\rho}{D}\left\|w_{0}\right\|_{L^{\infty}(\Omega)}}$, by solving the differential inequality (32), we obtain

$$
\begin{equation*}
\sup _{0 \leq t \leq T_{U}}\|u\|_{L^{2}(\Omega)}(t) \leq t c\left(\left\|w_{0}\right\|_{L^{\infty}(\Omega)},\left\|u_{0}\right\|_{L^{2}(\Omega)},\left\|v_{0}\right\|_{L^{2}(\Omega)}\right) \tag{33}
\end{equation*}
$$

It remains to prove the estimate in the space X for the two solution components v, w of (1). Multiplying the third equation of (1) by $A_{2} v$ and integrating over Ω, and taking into account (8), we see that

$$
\begin{align*}
\int_{0}^{t}\|v\|_{H^{2}(\Omega)}^{2} & \leq c_{\Omega}\left\|v_{0}\right\|_{H^{1}(\Omega)}^{2}+c_{\Omega} \int_{0}^{t}\|u\|_{L^{2}(\Omega)}^{2} d s \\
& \leq c_{\Omega}\left\|v_{0}\right\|_{H^{1}(\Omega)}^{2}+c_{\Omega} t \sup _{t \geq 0}\|u\|_{L^{2}(\Omega)}^{2} \tag{34}
\end{align*}
$$

Next, we know that for $\Omega \subset \mathbb{R}^{d}(d=2,3)$, so

$$
\left\|w_{0} e^{-\int_{0}^{t} \gamma v}\right\|_{H^{2}(\Omega)}^{2} \leq c_{\Omega}\left\|w_{0}\right\|_{H^{2}(\Omega)}^{2}\left\|e^{-\int_{0}^{t} \gamma v}\right\|_{H^{2}(\Omega)}^{2} .
$$

Using the same arguments as in [12, inequality (13.34)], we see that

$$
\|w\|_{H^{2}(\Omega)}^{2} \leq c_{\Omega}\left\|w_{0}\right\|_{H^{2}(\Omega)}^{2}\left(1+\int_{0}^{t}\|v\|_{H^{2}(\Omega)}\right)^{2}\left\|e^{-\int_{0}^{t} \gamma v}\right\|_{L^{\infty}(\Omega)}^{2}
$$

Recalling (23), (34) and (33), we see that

$$
\begin{equation*}
\|w\|_{H^{2}(\Omega)} \leq\left(1+t^{2}\right) c\left(\left\|v_{0}\right\|_{H^{1}(\Omega)},\left\|w_{0}\right\|_{H^{2}(\Omega)},\left\|u_{0}\right\|_{L^{1}(\Omega)}, \Omega\right) \tag{35}
\end{equation*}
$$

The next step is devoted to showing the estimate in the space $\mathcal{D}\left(A^{\frac{\beta}{2}}\right)$. Using (13), [12, Eq. (2.128)] and [12, Theorem 2.28] with some exponent $\frac{d}{2}<\beta^{\prime}<\beta$ and a constant
$c_{\Omega}>0$,

$$
\begin{align*}
\left\|A_{1}^{\frac{\beta}{2}} u\right\|_{L^{2}(\Omega)} \leq & \left\|e^{-t A_{1}}\right\|_{\mathcal{L}\left(L^{2}(\Omega)\right)}\left\|A_{1}^{\frac{\beta}{2}} u_{0}\right\|_{L^{2}(\Omega)} \\
& +\int_{0}^{t}\left\|A_{1}^{\frac{\beta}{2}} e^{-\frac{1}{2}(t-s) A_{1}}\right\|_{\mathcal{L}\left(L^{2}(\Omega)\right)}\left\|e^{-\frac{1}{2}(t-s) A_{1}}\right\|_{\left.\mathcal{L}^{2}(\Omega)\right)}\|\nabla \cdot(u \nabla w)\|_{L^{2}(\Omega)} d s \\
\leq & c_{\Omega}\left\|u_{0}\right\|_{H^{\beta}(\Omega)}+\int_{0}^{t} c_{\Omega}(t-s)^{-\frac{\beta}{2}} e^{-\frac{1}{2}(t-s)}\|u\|_{H^{\beta^{\prime}(\Omega)}}\|w\|_{H^{2}(\Omega)} d s \tag{36}
\end{align*}
$$

By the same arguments as in [12, inequality (2.119)], (6), (33) and (35), we see that, for all $\varepsilon>0$,

$$
\begin{align*}
\|w\|_{H^{2}(\Omega)}\|u\|_{H^{\beta^{\prime}(\Omega)}} & \leq c_{\Omega}\left(1+t^{2}\right)\left\|A_{1}^{\frac{\beta^{\prime}}{\frac{2}{2}}} u\right\|_{L^{2}(\Omega)} \\
& \leq c_{\Omega}\left(1+t^{2}\right)\|u\|_{L^{2}(\Omega)}^{1-\frac{\beta^{\prime}}{\beta}} \cdot\left\|A_{1}^{\frac{\beta}{2}} u\right\|_{L^{2}(\Omega)}^{\frac{\beta^{\prime}}{\beta}} \\
& \leq c_{\Omega, \varepsilon}(1+t)^{\frac{3 \beta}{\beta-\beta^{\prime}}}+\varepsilon\left\|A_{1}^{\frac{\beta}{2}} u\right\|_{L^{2}(\Omega)} \tag{37}
\end{align*}
$$

Therefore, summing up (28), (37) and (36), we have for $0 \leq t \leq T_{U}$,

$$
\begin{aligned}
\sup _{0 \leq t^{\prime} \leq t}\left\|A_{1}^{\frac{\beta}{2}} u\right\|_{L^{2}(\Omega)} \leq & c_{\Omega}\left\|u_{0}\right\|_{H^{\beta}(\Omega)}+c_{\Omega, \varepsilon}(1+t)^{\frac{3 \beta}{\beta-\beta^{\prime}}} \int_{0}^{+\infty}(t-s)^{-\frac{\beta}{2}} e^{-\frac{1}{2}(t-s)} d s \\
& +\frac{\varepsilon c_{\Omega} \int_{0}^{+\infty}(t-s)^{-\frac{\beta}{2}} e^{-\frac{1}{2}(t-s)} d s}{2} \sup _{0 \leq t^{\prime} \leq t}\left\|A_{1}^{\frac{\beta}{2}} u\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

Let $\left(\frac{\beta}{2}\right)^{1-\frac{\beta}{2}} \Gamma\left(1-\frac{\beta}{2}\right)=\int_{0}^{+\infty} s^{-\frac{\beta}{2}} e^{-\frac{\beta s}{2}} d s$ and $\varepsilon^{-1}=c_{\Omega}\left(\frac{\beta}{2}\right)^{1-\frac{\beta}{2}} \Gamma\left(1-\frac{\beta}{2}\right)$. From (6) and (35), it follows that

$$
\begin{equation*}
\sup _{0 \leq t \leq T_{U}}\|u\|_{H^{\beta}(\Omega)} \leq(1+t)^{\frac{3 \beta}{\beta-\beta^{\prime}}} c\left(\left\|v_{0}\right\|_{H^{1+\beta}(\Omega)},\left\|w_{0}\right\|_{H^{2}(\Omega)},\left\|u_{0}\right\|_{H^{\beta}(\Omega)}, \Omega\right) \tag{38}
\end{equation*}
$$

In a similar manner, thanks to (28) and (38), we have for all $0 \leq t \leq T$,

$$
\begin{align*}
\|v\|_{H^{1+\beta}(\Omega)} \leq & \left\|v_{0}\right\|_{H^{1+\beta}(\Omega)} \\
& +\alpha c_{\Omega, \omega} \int_{0}^{t}\left\|A_{2}^{\frac{1}{2}} e^{-\frac{\rho}{2}(t-s) A_{2}}\right\|_{\mathcal{L}\left(L^{2}(\Omega)\right)}\left\|e^{-\frac{\rho}{2}(t-s) A_{1}}\right\|_{\mathcal{L}\left(L^{2}(\Omega)\right)}\|u\|_{H^{\beta}(\Omega)} d s \\
\leq & \left\|v_{0}\right\|_{H^{1+\beta}(\Omega)}+\sup _{t \geq 0}\|u\|_{H^{\beta}(\Omega)} \alpha c_{\Omega, \omega} \int_{0}^{t}(t-s)^{-\frac{1}{2}} e^{-\frac{\rho}{2}(t-s)} d s \\
\leq & (1+t)^{\frac{3 \beta}{\beta-\beta^{\prime}}} c\left(\left\|v_{0}\right\|_{H^{1+\beta}(\Omega)},\left\|v_{0}\right\|_{H^{2}(\Omega)},\left\|u_{0}\right\|_{L^{1}(\Omega)}, \Omega\right) \tag{39}
\end{align*}
$$

Finally we use (35), (38) and (39), for $0 \leq t \leq T_{U}$, there exists a continuous increasing function $p(\cdot)$ such that

$$
\|u\|_{H^{\beta}(\Omega)}+\|v\|_{H^{1+\beta}(\Omega)}+\|w\|_{H^{2}(\Omega)} \leq p\left(t+\left\|u_{0}\right\|_{H^{\beta}(\Omega)}+\left\|v_{0}\right\|_{H^{1+\beta}(\Omega)}+\left\|w_{0}\right\|_{H^{2}(\Omega)}\right)
$$

We will take the same steps and expressions of the proof of global existence in [12] to prove the following result.

THEOREM 4.6. For any $U_{0}=\left(u_{0}, v_{0}, w_{0}\right) \in \mathcal{K}$, there exists a unique global solution of (1) in the function space:

$$
\begin{aligned}
u & \in C(] 0,+\infty\left[; H_{N}^{2}(\Omega)\right) \cap C\left(\left[0,+\infty\left[; H_{N}^{\beta}(\Omega)\right) \cap C^{1}\right] 0,+\infty\left[; L^{2}(\Omega)\right)\right. \\
v & \in C(] 0,+\infty\left[; H_{N}^{3}(\Omega)\right) \cap C\left(\left[0,+\infty\left[; H_{N}^{1+\beta}(\Omega)\right) \cap C^{1}(] 0,+\infty\left[; H^{1}(\Omega)\right)\right.\right. \\
w & \in C\left(\left[0,+\infty\left[; H_{N}^{2}(\Omega)\right) \cap C^{1}(] 0,+\infty\left[; H_{N}^{2}(\Omega)\right)\right.\right.
\end{aligned}
$$

PROOF. Utilizing the a priori estimate (29), we shall construct a global solution to (1). For $U_{0} \in \mathcal{K}$, we know that there exists a local solution at least on an interval $\left[0, T_{U_{0}}\right]$. Let $0<t_{1}<T_{U_{0}}$. Then, $U_{1}=U\left(t_{1}\right) \in \mathcal{K}$. We next consider problem (1) with the initial value U_{1} on an interval $\left[t_{1}, T\right]$, where the end time $T>0$ is any finite time. The estimate (29) ensures for any local solution $V,\left\|A^{\frac{\beta}{2}} V(t)\right\| \leq p\left(\left\|A^{\frac{\beta}{2}} U_{1}\right\|+T\right)$, $t_{1} \leq t \leq T_{V}$. Then, the local solution V can always be extended over an interval $\left[t_{1}, T_{V}+\tau\right]$ as local solution, $\tau>0$ being dependent only on $p\left(\left\|A^{\frac{\beta}{2}} U_{1}\right\|_{X}+T\right)$ and hence being independent of the extreme time T_{V} (cf. [12. Corollary 4.1]). This means that our Cauchy problem possesses a global solution on the interval $\left[t_{1}, T\right]$.

This argument is meaningful for any finite time $T>0$. So, we conclude the global existence of solution. For any initial value $U_{0} \in \mathcal{K}$, there exists a unique global solution to (1) with $U(t) \in \mathcal{K}, 0 \leq t<\infty$, in the function space

$$
U \in C(] 0,+\infty[; \mathcal{D}(A)) \cap C\left(\left[0,+\infty\left[; \mathcal{D}\left(A^{\frac{\beta}{2}}\right)\right) \cap C^{1}((] 0,+\infty[; X)\right.\right.
$$

References

[1] N. Aissa and H. Tsamda, Global existence, uniqueness and asymptotic behavior for a nonlinear parabolic system, Applied Mathematics and Approximation Theory, Advances in Intelligent Systems and Computing 441, DOI 10.1007/978-3-319-30322-2.19.
[2] H. Amann, Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc., 293(1986), 191-227.
[3] A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele and A. M. Thompson, Mathematical modelling of tumour invasion and metastasis, J. Theor. Med., 2(1999), 129-154.
[4] M. Aubert, Modelisation de la migration de cellules tumorales, Physique [physics]. Université Paris-Diderot - Paris VII, 2008.
[5] H. Brezis, Analyse fonctionelle, Theorie et applications, Editions Masson 1983, Paris.
[6] X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Z. Angew. Math. Phys., 67(2016), Art. 11, 13 pp.
[7] A. Kubo and T. Suzuki, A mathematical model of tumour angiogenesis, Biol. Biomed., 204(2007), 48-55.
[8] Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29(2016), 1564-1595.
[9] O. A. Laydyzhenskaya and V. A. Solonnikov, Linear and Quasi-Linear Equations Of Parabolic Type, American Mathematical Society, 1968.
[10] G. Litcanu and C. Morales-Rodrigo, Global solutions and asymptotic behavior in some models related to tumor invasion, Ciudad Real., XI Congreso de Matematica Aplicada, Ciudad Real, 21-25 septiembre 2009, (pp. 1-8).
[11] Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21(2008), 2221-2238.
[12] A. Yagi, Abstract Parabolic Evolution Equations, Springer Monographs in Mathematics, 2009.

[^0]: *Mathematics Subject Classifications: 20F05, 20F10, 20F55, 68Q42.
 \dagger Faculty of Mathematics, AMNEDP Laboratory USTHB University, P.O. Box 32 El Alia Bab Ezzouar Algiers 16111
 \ddagger Faculty of Mathematics, AMNEDP Laboratory USTHB University, P.O. Box 32 El Alia Bab Ezzouar Algiers 16111

