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Abstract

We study parabolic ODE systems modeling tumour invasion proposed by An-
derson and Chaplain [3]. According to Yagi’s arguments [12], we reduce them to
corresponding evolution equations and show the existence of time global solutions.

1 Introduction

In this paper, we shall deal with the following parabolic system modeling haptotaxis

∂tu = D4u− ρO.(uOw ),

∂tv = δ4v − µv + αu, t > 0, x ∈ Ω,

∂tw = −γwv,{
∂nu = 0, ∂nv = 0, ∂nw0 = 0 in ∂Ω,
u (0, .) = u0 , v (0, .) = v0, w (0, .) = w0 on Ω.

(1)

Here Ω ⊂ Rd (d = 2, 3) is a bounded domain with C3 boundary ∂Ω and the initial data
u0, v0, w0 are assumed to be nonnegative and ∂n denotes the derivative with respect to
the outer normal of ∂Ω. This system is a mathematical model describing the motion
of some species due to haptotaxis, the function u(t, x) corresponds to the cell density
of the species at place x ∈ Ω and time t ∈ [0,+∞[, and v(t, x) to the concentration
of the chemical substance that is produced by the individuals while w = w(t, x) is the
concentration of the extracellular matrix (ECM). The coeffi cients D, ρ, γ, δ, α, µ are
given positive constants.
We first devote ourselves to the Cauchy problem for a semilinear evolution equation

of the form (4) in a Banach space X. We present existence and uniqueness results in
a way so that [12, Theorem 4.1] may be applied. Next, we use [12, Corollary 4.1] to
show that the a priori estimate for local solutions of (4) with respect to the A

β
2 U (t)
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norm ensures extension of local solutions without limit in order to construct the global
solutions.

2 Local Existence of a Solution

Let Ω be a bounded domain in Rd. For 1 ≤ p ≤ ∞, Lp(Ω) is the usual Lebesgue space
endowed with the norm ‖.‖Lp(Ω). Next for s > 0, Hs(Ω) is the usual fractional Sobolev
space. We assume Ω has a C3 class boundary ∂Ω, and for 3

2 < s ≤ 3

Hs
N (Ω) = {u ∈ Hs (Ω) : ∂nu = 0 on ∂Ω } ,

and for s < 3
2 , we set H

s
N (Ω) = Hs (Ω), with the norm ‖.‖Hs(Ω). We denote for

d
2 < β < 2 (d = 2, 3),

K =
{
U0 = (u0, v0, w0)

t
: 0 ≤ u0 ∈ Hβ

N (Ω) , 0 ≤ v0 ∈ H1+β
N (Ω) , 0 ≤ w0 ∈ H2

N (Ω)
}
.

The aim of this section is to prove the following Theorem:

THEOREM 2.1. Let β be a fixed exponent satisfying d/2 < β < 2 (d = 2, 3). For
any U0 = (u0, v0, w0) ∈ K, (1) possesses a unique local solution in the function space

u ∈ C(]0, TU0 ] ;H2
N (Ω)) ∩ C([0, TU0 ] ;Hβ

N (Ω)) ∩ C1(]0, TU0 ] ;L2 (Ω)),

v ∈ C(]0, TU0 ] ;H3
N (Ω)) ∩ C([0, TU0 ] ;H1+β

N (Ω)) ∩ C1(]0, TU0 ] ;H1 (Ω)),

w ∈ C([0, TU0
] ;H2

N (Ω)) ∩ C1(]0, TU0
] ;H2

N (Ω)), (2)

where TU0
> 0 depends only on the norm ‖u0‖Hβ(Ω) + ‖v0‖Hβ+1(Ω) + ‖w0‖H2(Ω). In

addition, for all t ∈ [0, TU0
] , the solution satisfies the estimates

‖u(t)‖Hβ(Ω) + ‖v(t)‖Hβ+1(Ω) + ‖w(t)‖H2(Ω) ≤ CU0
, (3)

with some constant CU0
> 0 depending on the norm ‖u0‖Hβ(Ω) + ‖v0‖Hβ+1(Ω) +

‖w0‖H2(Ω).

2.1 Proof of THEOREM 2.1

We formulate problem (1) as the Cauchy problem for an abstract semilinear equation{
dU
dt +AU = F (U),
U(0) = U0,

(4)

in the Banach space

X =
{
U = (u, v, w)

t
: u ∈ L2 (Ω) , v ∈ H1 (Ω) , w ∈ H2

N (Ω)
}
,

endowed with the norm ‖ (u, v, w)
t ‖ = ‖u‖L2(Ω) + ‖v‖H1(Ω) + ‖w‖H2(Ω) and A is a

linear operator acting in X given by

A = diag {A1, A2, A3} = diag {−D4+ 1,−δ4+ µ, γ} .



286 Global Existence, Uniqueness of the Solution

A is a sectorial linear operator ofX, the spectrum of which is contained in a sectorial
domain σ (A) ⊂

∑
ω = {λ ∈ C, |arg λ| < ωA} with some angle 0 < ωA <

π
2 .We refer to

[12, Theorem 2.4] which ensures that the resolvent satisfies for λ /∈ σ (A) the estimate∥∥∥(λ−A)
−1
∥∥∥ ≤ ∥∥∥(λ−A1)

−1
∥∥∥
L(L2(Ω))

+
∥∥∥(λ−A2)

−1
∥∥∥
L(H1(Ω))

+
1

|λ− γ|

≤
1 + max

{
D, 1

D ,
δ
µ ,

µ
δ

}
|λ| .

In L2(Ω), under the Neumann boundary conditions on ∂Ω, we have D(A1) =H2
N (Ω)

and according to [12, Theorem 16.7], we further have

D(Aθ1) =

{
H2θ (Ω) , 0 ≤ θ < 3

4 ,
H2θ
N (Ω) , 3

4 < θ ≤ 1,
(5)

with norm equivalence

c−1
Ω ‖u‖H2θ(Ω) ≤

∥∥Aθ1u∥∥L2(Ω)
≤ cΩ ‖u‖H2θ(Ω) , u ∈ D(Aθ1). (6)

In H1 (Ω) , under the Neumann boundary conditions on ∂Ω, it is known [12, The-
orem 2.9] that D(A2) =

{
v ∈ H2

N (Ω) : 4v ∈ H1 (Ω)
}
. Note that the fact that Ω has

a C3 class boundary ∂Ω ensures the shift property 4v ∈ H1(Ω) with ∂v
∂n = 0, im-

plies that D(A2) = H3
N (Ω); and according to [12, Theorem 16.1], we have D(Aθ2) =[

H1 (Ω) , H3
N (Ω)

]
θ
, 0 ≤ θ ≤ 1. According to [12, Theorem 1.35],

D(Aθ2) =

{
H2θ+1 (Ω) , 0 ≤ θ < 1

4 ,

H2θ+1
N (Ω) , 1

4 < θ ≤ 1,
(7)

with norm equivalence

c−1
Ω ‖u‖H2θ+1(Ω) ≤

∥∥Aθ2u∥∥H1(Ω)
≤ cΩ ‖u‖H2θ+1(Ω) , u ∈ D(Aθ2), (8)

where cΩ > 0 is determined by Ω. In H2
N (Ω) , the operator A3 = γ is a positive

definite self-adjoint operator. By [12, Theorem 16.1] and [12, Theorem135], we have[
H2
N (Ω) , H2

N (Ω)
]
θ

= H2
N (Ω) , therefore

D(Aθ3) = H2
N (Ω) 0 ≤ θ ≤ 1. (9)

Consequently

D(A) =
{

(u, v;w)
t

: u ∈ H2
N (Ω) , v ∈ H3

N (Ω) , w ∈ H2
N (Ω)

}
. (10)

Moreover it is clear that Aθ = diag
{
Aθ1, A

θ
2, A

θ
3

}
. According to [12, Theorem 16.1],

we have D(Aθ) = [X,D(A)]θ . Then

D(Aθ) =
{
U = (u, v, w)

t
; u ∈ H2θ (Ω) , v ∈ H2θ+1 (Ω) , w ∈ H2

N (Ω)
}
, 0 < θ <

1

4
,

D(Aθ) =
{
U = (u, v, w)

t
; u ∈ H2θ (Ω) , v ∈ H2θ+1

N (Ω) , w ∈ H2
N (Ω)

}
,

1

4
< θ <

3

4
,

D(Aθ) =
{
U = (u, v, w)

t
; u ∈ H2θ

N (Ω) , v ∈ H2θ+1
N (Ω) , w ∈ H2

N (Ω)
}
,

3

4
< θ ≤ 1.

(11)
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The nonlinear operator F from D(Aη) (β ≤ η < 2) into X is defined by

F (U) = (−ρO. (uOw) + u, αu, − γ(v − 1)w)
t
.

Let U, V ∈ D(Aη) (β ≤ η < 2). Since U = (u1, v1, w1)
t
, V = (u2, v2, w2)

t, we have

‖F (U)− F (V )‖ ≤ ρ ‖O. (u1Ow1 − u2Ow2)‖L2(Ω) + α ‖u1 − u2‖H1(Ω)

+γ ‖(v1 − 1)w1 − (v2 − 1)w2‖H2(Ω) + ‖u1 − u2‖L2(Ω) . (12)

Since
‖O. [uOw]‖L2(Ω) ≤ ‖Ou‖L4(Ω) ‖Ow‖L4(Ω) + ‖u‖L∞(Ω) ‖4w‖L2(Ω) ,

in the sequel, we need the following embeddings Hβ
N (Ω) → L∞ (Ω) and H1 (Ω) →

L4 (Ω) , d2 < β < 2 (d = 2, 3), to see that

‖O. [uOw]‖L2(Ω) ≤ cΩ ‖u‖
Hβ(Ω)

‖w‖H2(Ω) , u ∈ H
β (Ω) , w ∈ H2

N (Ω) . (13)

Moreover

‖O. (u1Ow1 − u2Ow2)‖L2(Ω)

≤ cΩ ‖w1‖
H2(Ω)

‖u1 − u2‖Hβ(Ω) + cΩ ‖w1 − w2‖
H2(Ω)

‖u2‖Hβ(Ω) . (14)

H2 (Ω) is a Banach algebra, therefore

‖(v1 − 1)w1 − (v2 − 1)w2‖H2(Ω)

≤ cΩ ‖w1 − w2‖H2(Ω) (‖v1‖H2(Ω) + 1) + cΩ ‖v1 − v2‖H2(Ω) ‖w2‖H2(Ω) . (15)

Let η be such that β < η ≤ 2. Since Hη
N (Ω) ↪→ H1 (Ω) ↪→ L2 (Ω) , we have

‖u1 − u2‖L2(Ω) + α ‖u1 − u2‖H1(Ω) ≤ cΩ (α+ 1) ‖u1 − u2‖Hη(Ω) . (16)

We substitute (14), (15), (16) in (12) for β ≤ η < 2. Then

‖F (U)− F (V )‖

≤ cΩ

(
‖u2‖Hβ(Ω) + ‖v1‖Hβ+1(Ω) + 1

)
×
[
‖u1 − u2‖Hη(Ω) + ‖w1 − w2‖H2(Ω)

+ (‖w1‖H2(Ω) + ‖w2‖H2(Ω))
(
‖u1 − u2‖Hβ(Ω) + ‖v1 − v2‖Hβ+1(Ω)

)]
.

Therefore, in view of (11), (6), (8) and (9), we deduce that

‖F (U)− F (V )‖ ≤ cΩ

(∥∥∥A β
2 U
∥∥∥+

∥∥∥A β
2 V
∥∥∥+ 1

) [∥∥∥A η
2 (U − V )

∥∥∥
+
(∥∥∥A η

2U
∥∥∥+

∥∥∥A η
2 V
∥∥∥)∥∥∥A β

2 (U − V )
∥∥∥] , U, V ∈ D(Aη).

Theorem 4.1 in [12] then provides the existence of local solutions. Indeed, for any
U0 ∈ K, (4) possesses a unique local solution U in the function space:

U ∈ C((0, TU0 ];D(A)) ∩ C([0, TU0 ];D(A
β
2 )) ∩ C1((0, TU0 ];X).

Furthermore, the solution satisfies the estimates ‖A β
2 U‖ ≤ CU0

. Here, CU0
, TU0

> 0
are determined by the norm ‖U0‖D(A

β
2 )
only. The proof of Theorem 2.1 is completed.
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3 Nonnegativity of Local Solutions

We shall show that the local solution constructed above is nonnegative for U0 ∈ K. In
the following we assume that Ω ⊂ Rd(d = 2, 3) is a bounded domain with C3 boundary.
We denote by G the C1 function defined by

G (s) =

{
1
2s

2, s < 0,
0, s ≥ 0.

PROPOSITION 3.1. Under the assumptions of THEOREM 2.1, we have

u (t, x) ≥ 0, x ∈ Ω, t ≥ 0. (17)

PROOF. We set ψ(t) =
∫

Ω
G(u(t, x))dx. We have ψ′(t) =

∫
Ω

G′(u)utdx. Then

ψ′(t) = D

∫
Ω

G′(u)4udx− ρ
∫
Ω

G′(u)O. (uOw) dx.

Observing that G′(u) = u if u < 0 and G′(u) = 0 if u ≥ 0 and G′(u) ∈ H1(Ω) for
u ∈ H1(Ω). Assuming ∂w0

∂n = 0 on ∂Ω, we obtain ∂w
∂n = 0 on ∂Ω and hence by Hölder’s

inequality, we have

ψ′(t) ≤ −D‖O(G′(u))‖2L2(Ω) +
ρ

2
‖G′(u)‖2L4(Ω)‖4w‖L2(Ω). (18)

We use the interpolation inequality for d = 2, 3 to obtain

‖G′(u)‖2L4(Ω) ≤ cΩ‖G′(u)‖
d
2

H1(Ω)‖G
′(u)‖

4−d
2

L2(Ω).

Then (3) shows that ‖4w‖L2(Ω) ≤ CU0
, for 0 ≤ t ≤ TU0

. Therefore,

ρ‖4w‖L2(Ω)‖G′(u)‖2L4(Ω) ≤
D

2
‖O(G′(u))‖2L2(Ω) + CU0

‖G′(u)‖2L2(Ω). (19)

Thus, in view of (19) and (18), ψ′(t) ≤ cT,U0
ψ(t). By Gronwall’s inequality ψ(t) ≤

ψ(0) exp (tcT,U0) . Thus ψ(0) =
∫

Ω
G(u0(t, x))dx = 0 so that ψ(t) = 0. Hence u ≥ 0.

PROPOSITION 3.2. Under the assumptions of Theorem 2.1, we have

v (t, x) ≥ 0, x ∈ Ω, t ≥ 0. (20)

PROOF. We set ψ(t) =
∫
Ω

G(v)dx. Using the third equation of system (1), we have

ψ′(t) = −δ
∫
Ω

|OG′(v)|2 dx+ α

∫
Ω

uG′(v)− µ
∫
Ω

vG′(v)dx,

since vG′(v) ≥ 0, G′(v) ≤ 0, and u ≥ 0 we have ψ′(t) ≤ 0, then ψ(t) ≤ ψ(0). Since
ψ(0) =

∫
Ω
G(v0(t, x))dx = 0, we have ψ(t) = 0. Consequently v ≥ 0.
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4 Global Solutions

In the following we assume that Ω ⊂ Rd(d = 2, 3) is a bounded domain with C3

boundary. As [12, Corollary 4.1] shows, the a priori estimates for local solutions of (4)
with respect to the A

β
2 U (t) norm ensure extension of local solutions without limit. We

may thus construct the global solutions.
For later use we state the following auxiliary results:

LEMMA 4.1. Under the assumptions of Theorem 2.1, for 0 ≤ t ≤ TU ,

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω). (21)

PROOF. Thanks to the homogeneous boundary conditions Ou.→n = 0 and Ow0.
→
n

= 0 on ∂Ω, we may directly integrate (1) over Ω; consequently
∫

Ω
∂tudx = 0, as u ≥ 0,

from (17) we have d
dt‖u‖L1(Ω) = 0, and mass conservation (21) is satisfied.

Next, we may easily prove the following lemma.

LEMMA 4.2. Suppose that (u0, v0, w0) ∈ K. Then for 0 ≤ t ≤ TU ,

w(t, x) = w0(x)e−
∫ t
0
γv(τ,x)dτ . (22)

Moreover, we have
‖w(t)‖L∞(Ω) ≤ ‖w0‖L∞(Ω). (23)

PROPOSITION 4.3. Let Ω be a bounded smooth open domain of Rd (d = 2, 3).
Let u ∈ H1 (Ω) . Then there exists a constant cΩ,ε > 0 (depending on Ω, ε) such that

‖u‖2L4(Ω) ≤ ε ‖Ou‖
2
L2(Ω) + cΩ,ε ‖u‖2L1(Ω) . (24)

PROOF. With the help of the Cauchy inequality for the Gagliardo-Nirenberg

inequality ‖u‖2L2(Ω) ≤ cΩ‖u‖
3d

2+d

H1(Ω)‖u‖
4−d
2+d ,

L1(Ω), (d = 2, 3), we get that

‖u‖2L2(Ω) ≤
ε

4
‖Ou‖2L2(Ω) +

1

2
‖u‖2L2(Ω) + (

c2Ω
2 +

c2Ω
ε )‖u‖2L1(Ω). (25)

We simplify (25) so as to find

‖u‖2L2(Ω) ≤
ε

2
‖Ou‖2L2(Ω) + (

2c2Ω
ε

+
c2Ω
2

)‖u‖2L1(Ω). (26)

We take again the Gagliardo-Nirenberg’s inequality ‖u‖2L4(Ω) ≤ cΩ‖u‖
d
2

H1(Ω).‖u‖
4−d

2

L2(Ω),

with the Cauchy’s inequality, then ‖u‖2L4(Ω) ≤
ε
2 ‖Ou‖L2(Ω) + (1 +

c2Ω
2ε )‖u‖2L2(Ω). By

combining with (26), (24) is proved.
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LEMMA 4.4. Suppose that U0 = (u0, v0, w0) ∈ K. Then there exists a constant
cΩ > 0 (depending on Ω) so that for 0 ≤ t ≤ TU ,

‖v‖L2(Ω) ≤ cΩ(‖v0‖L2(Ω) + ‖u0‖L1(Ω)). (27)

PROOF. The second equation of (1) is written as the abstract equation

v (t) = e−tA2v0 + α

t∫
0

e−(t−s)A2u ds, 0 ≤ t ≤ TU , (28)

in L2(Ω). Therefore,

‖v‖L2(Ω) ≤
∥∥e−tA2

∥∥
L(L2(Ω))

‖v0‖L2(Ω)

+ α

t∫
0

∥∥∥e− (t−s)
2 A2

∥∥∥
L(L2(Ω),L1(Ω))

∥∥∥e− (t−s)
2 A2

∥∥∥
L(L1(Ω))

‖u‖L1(Ω) ds.

From the estimate in [12, Eq. (2.128)] and [12, Theorem 2.28], and the formula

µ−zΓ (z) =
+∞∫
0

sz−1e−µsds
(
Re(z) ∈ R∗+

)
, we have, for 0 ≤ t ≤ TU ,

‖v‖L2(Ω) ≤ cΩ ‖v0‖L2(Ω) + αcΩµ
− 4−d

4 Γ
(

4−d
4

)
‖u0‖L1(Ω).

The proof is completed.

We shall prove the following result.

PROPOSITION 4.5. Suppose that U0 = (u0, v0, w0) ∈ K. Then∥∥∥A β
2 U
∥∥∥ ≤ p(t+ ‖A

β
2 U0‖), 0 ≤ t ≤ TU , (29)

with some continuous increasing function p (.) .

PROOF. We first derive the desired X bound. We employ a change of variable of
the form u→ u

ϕ where ϕ (w) = e
ρ
Dw. This leads to the equation (1) in the form

ϕ(
u

ϕ
)t = DO.

(
ϕO(

u

ϕ
)

)
− u(

ϕt
ϕ

). (30)

Moreover, ϕ satisfies ϕt = ϕ′(w)wt = −γρD ϕwv. By multiplying the equation (30) by
2u
ϕ and integrating over Ω, we obtain

d

dt

∫
Ω

ϕ(
u

ϕ
)2dx+D

∫
Ω

ϕ

∣∣∣∣O(
u

ϕ
)

∣∣∣∣2 dx = γρ
D

∫
Ω

(
u

ϕ
)2ϕwvdx. (31)
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Applying Hölder’s inequality to (31),

d

dt

∫
Ω

ϕ(
u

ϕ
)2dx+D

∫
Ω

ϕ

∣∣∣∣O(
u

ϕ
)

∣∣∣∣2 dx ≤ γρ
D ‖ϕw‖L∞(Ω)‖

u

ϕ
‖2L4(Ω)‖v‖L2(Ω),

in view of (23), we may then conclude that ‖ϕw‖L∞(Ω) ≤ ‖w0‖L∞(Ω)e
ρ
D ‖w0‖L∞(Ω) .

Hence, this, together with (27) and (24), yield that

d

dt

∫
Ω

ϕ(
u

ϕ
)2dx+D

∫
Ω

ϕ

∣∣∣∣O(
u

ϕ
)

∣∣∣∣2 dx
≤ (‖v0‖L2(Ω) + ‖u0‖L2(Ω))‖w0‖L∞(Ω)e

ρ
D ‖w0‖L∞(Ω)‖u

ϕ
‖2L4(Ω)

≤ D
2 ‖O(

u

ϕ
)‖2L2(Ω) + ‖u

ϕ
‖2L1(Ω)c‖w0‖H2(Ω),‖u0‖L1(Ω),‖v0‖L2(Ω)

. (32)

Since ( uϕ )2ϕ = u2e−
ρ
Dw ≥ u2e−

ρ
D ‖w0‖L∞(Ω) , by solving the differential inequality (32),

we obtain

sup
0≤t≤TU

‖u‖L2(Ω) (t) ≤ tc(‖w0‖L∞(Ω), ‖u0‖L2(Ω), ‖v0‖L2(Ω)). (33)

It remains to prove the estimate in the space X for the two solution components
v, w of (1). Multiplying the third equation of (1) by A2v and integrating over Ω, and
taking into account (8), we see that∫ t

0

‖v‖2H2(Ω) ≤ cΩ‖v0‖2H1(Ω) + cΩ

∫ t

0

‖u‖2L2(Ω)ds

≤ cΩ‖v0‖2H1(Ω) + cΩtsup
t≥0
‖u‖2L2(Ω). (34)

Next, we know that for Ω ⊂ Rd (d = 2, 3), so

‖w0e
−
∫ t
0
γv‖2H2(Ω) ≤ cΩ‖w0‖2H2(Ω)‖e−

∫ t
0
γv‖2H2(Ω).

Using the same arguments as in [12, inequality (13.34)], we see that

‖w‖2H2(Ω) ≤ cΩ‖w0‖2H2(Ω)

(
1 +

∫ t

0

‖v‖H2(Ω)

)2

‖e−
∫ t
0
γv‖2L∞(Ω).

Recalling (23), (34) and (33), we see that

‖w‖H2(Ω) ≤
(
1 + t2

)
c(‖v0‖H1(Ω), ‖w0‖H2(Ω), ‖u0‖L1(Ω),Ω). (35)

The next step is devoted to showing the estimate in the space D(A
β
2 ). Using (13),

[12, Eq. (2.128)] and [12, Theorem 2.28] with some exponent d2 < β′ < β and a constant
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cΩ > 0,

∥∥∥∥A β
2
1 u

∥∥∥∥
L2(Ω)

≤
∥∥e−tA1

∥∥
L(L2(Ω))

∥∥∥∥A β
2
1 u0

∥∥∥∥
L2(Ω)

+

t∫
0

∥∥∥∥A β
2
1 e
− 1

2 (t−s)A1

∥∥∥∥
L(L2(Ω))

∥∥∥e− 1
2 (t−s)A1

∥∥∥
L(L2(Ω))

‖O. (uOw)‖L2(Ω) ds

≤ cΩ ‖u0‖Hβ(Ω) +

t∫
0

cΩ (t− s)−
β
2 e−

1
2 (t−s) ‖u‖Hβ′ (Ω) ‖w‖H2(Ω) ds. (36)

By the same arguments as in [12, inequality (2.119)], (6), (33) and (35), we see that,
for all ε > 0,

‖w‖H2(Ω) ‖u‖Hβ′ (Ω) ≤ cΩ
(
1 + t2

) ∥∥∥∥A β′
2

1 u

∥∥∥∥
L2(Ω)

≤ cΩ
(
1 + t2

)
‖u‖1−

β′
β

L2(Ω) .

∥∥∥∥A β
2
1 u

∥∥∥∥
β′
β

L2(Ω)

≤ cΩ,ε (1 + t)
3β
β−β′ + ε

∥∥∥∥A β
2
1 u

∥∥∥∥
L2(Ω)

. (37)

Therefore, summing up (28), (37) and (36), we have for 0 ≤ t ≤ TU ,

sup
0≤t′≤t

∥∥∥∥A β
2
1 u

∥∥∥∥
L2(Ω)

≤ cΩ ‖u0‖Hβ(Ω) + cΩ,ε (1 + t)
3β
β−β′

+∞∫
0

(t− s)−
β
2 e−

1
2 (t−s)ds

+
εcΩ

+∞∫
0

(t−s)−
β
2 e−

1
2

(t−s)ds

2 sup
0≤t′≤t

∥∥∥∥A β
2
1 u

∥∥∥∥
L2(Ω)

.

Let (β2 )1− β2 Γ
(

1− β
2

)
=

+∞∫
0

s−
β
2 e−

βs
2 ds and ε−1 = cΩ(β2 )1− β2 Γ

(
1− β

2

)
. From (6) and

(35), it follows that

sup
0≤t≤TU

‖u‖Hβ(Ω) ≤ (1 + t)
3β
β−β′ c(‖v0‖H1+β(Ω), ‖w0‖H2(Ω), ‖u0‖Hβ(Ω),Ω). (38)
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In a similar manner, thanks to (28) and (38), we have for all 0 ≤ t ≤ T,

‖v‖H1+β(Ω) ≤ ‖v0‖H1+β(Ω)

+αcΩ,ω

t∫
0

∥∥∥A 1
2
2 e
− %2 (t−s)A2

∥∥∥
L(L2(Ω))

∥∥∥e− %2 (t−s)A1

∥∥∥
L(L2(Ω))

‖u‖Hβ(Ω) ds

≤ ‖v0‖H1+β(Ω) + sup
t≥0
‖u‖Hβ(Ω) αcΩ,ω

t∫
0

(t− s)−
1
2 e−

%
2 (t−s)ds

≤ (1 + t)
3β
β−β′ c(‖v0‖H1+β(Ω), ‖v0‖H2(Ω), ‖u0‖L1(Ω),Ω). (39)

Finally we use (35), (38) and (39), for 0 ≤ t ≤ TU , there exists a continuous increasing
function p(·) such that

‖u‖Hβ(Ω) + ‖v‖H1+β(Ω) + ‖w‖H2(Ω) ≤ p(t+ ‖u0‖Hβ(Ω) + ‖v0‖H1+β(Ω) + ‖w0‖H2(Ω)).

We will take the same steps and expressions of the proof of global existence in [12]
to prove the following result.

THEOREM 4.6. For any U0 = (u0, v0, w0) ∈ K, there exists a unique global
solution of (1) in the function space:

u ∈ C(]0,+∞[ ;H2
N (Ω)) ∩ C([0,+∞[ ;Hβ

N (Ω)) ∩ C1 ]0,+∞[ ;L2 (Ω)),

v ∈ C(]0,+∞[ ;H3
N (Ω)) ∩ C([0,+∞[ ;H1+β

N (Ω)) ∩ C1(]0,+∞[ ;H1 (Ω)),

w ∈ C([0,+∞[ ;H2
N (Ω)) ∩ C1(]0,+∞[ ;H2

N (Ω)).

PROOF. Utilizing the a priori estimate (29), we shall construct a global solution
to (1). For U0 ∈ K, we know that there exists a local solution at least on an interval
[0, TU0

]. Let 0 < t1 < TU0
. Then, U1 = U(t1) ∈ K. We next consider problem (1)

with the initial value U1 on an interval [t1, T ], where the end time T > 0 is any finite

time. The estimate (29) ensures for any local solution V ,
∥∥∥A β

2 V (t)
∥∥∥ ≤ p(‖A β

2 U1‖+T ),

t1 ≤ t ≤ TV . Then, the local solution V can always be extended over an interval
[t1, TV + τ ] as local solution, τ > 0 being dependent only on p(‖A β

2 U1‖X + T ) and
hence being independent of the extreme time TV (cf. [12. Corollary 4.1]). This means
that our Cauchy problem possesses a global solution on the interval [t1, T ].
This argument is meaningful for any finite time T > 0. So, we conclude the global

existence of solution. For any initial value U0 ∈ K, there exists a unique global solution
to (1) with U(t) ∈ K, 0 ≤ t <∞, in the function space

U ∈ C(]0,+∞[;D(A)) ∩ C([0,+∞[;D(A
β
2 )) ∩ C1((]0,+∞[;X).
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