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Abstract

In this paper, we prove the existence of weak positive radial solutions for a
system of differential equations with some given conditions via sub-super solutions
concept.

1 Introduction

We consider the following system of differential equations

—Dp@yu = A [Mf () + pyh(u)] in Q,
=D g0 = 09 [Aag (u) 4 poy (v)]in Q, (1)
u=v =0 on 09,

where
Q=DB(0,r) CRY, (2)

A, 0, A1, Ao, 114, lo are positive parameters, and
1<p(z),q(z) € C* ()
are radial symmetric positive functions, that is to say

p(z)=p(z|) and q(z)=q(|z]). (3)

Operator A,y is a p(z)-Laplacian defined as:

Apzyu = div (\Vu|p(x)_2 Vu) ,
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210 Existence of Positive Radial Solutions

with f, g, h, v are monotone functions in [0, +oo[ and satisfy:

lim f(u) =400, lim g(u)=+4oc0, lim h(u)=+4oc0, lim ~v(u)=+o0.
uU——+00 u——+00 U——+00 u——+00
The differential equations and variational problems with nonstandard p(z)-growth con-
ditions has been extensively studied in the last two decades and it is a new and
interesting topic. It modelized from nonlinear elasticity theory, electro-rheological
fluids, etc. (For more information see [10, 22]). Many results regarding the exis-
tence of solution of this kind of problems are given by many authors, see for example
[1, 2, 3, 8,9, 10, 12, 13, 15, 16, 18]. Moreover, in [7, 11, 15, 20], the regularity and
existence of solutions for some class of this problem has been studied, considering that
p(x) = q(z) = p (a constant). Then, in [11], the author considered the existence
and nonexistence of positive weak solutions to the following class of quasilinear elliptic
system
—Apu = Au*v” in Q,

—Agv =P in Q, (4)
u=v =0 on 0,

where, he used the first eigenfunction to construct the subsolution of problem (4) and
he got the following results:

(i) fa,8>0, v,60>0and 0 =(p—1—a)(g—1— ) — 6 > 0, then the problem
(4) has a positive weak solution for each A > 0.

(ii) If @ = 0 and py = ¢ (p — 1 — ), then there exists A9 > 0 such that for 0 < A < Ao.
Thus, problem (4) has no nontrivial nonnegative weak solution. We refer to [9, 19]
for further system generalizations of (4).

In this current paper, motivated by the previous results given for some classes
of the differential equations and variational problems with nonstandard p(z)-growth
conditions in the previous mentioned references and our obtained results in [23, 24],
we prove the existence of weak positive radial solutions of a new class of the system
of differential equations with respect to (2) and (3), while maintaining the symmetry
conditions in [23, 24].

The outline of the paper is as follows: In section 2, we introduce some necessary
technical assumptions and auxiliary results. Then in section 3 we give our main result
which is the existence of weak positive radial solutions of a new class of the system of
differential equations (1) via sub-super solutions concept.

2 Preliminary Results

In this section, we need to introduce VVO1 p(e) (Q). First, we give some basic spaces
properties of W) (Q). We define

L@ (Q)
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= ( u:w is a measurable real-valued function such that / |u (x)|p(x) dr < o0

Q

with the norm

p(z)
de <153,

. o |u(z)
[ (2)] 0y = inf )\>O./ )

Q

and
Wl,p(m) (Q) _ {u c LP(JE) (Q) : |Vu| S LP(JL’) (Q)}

with the norm

Denote by W, (Q) the closure of Cg° () in W@ (Q). Assume that:

(H1) Q= B(0,7) C RY is an open ball with center 0 and radius r > 0;

(H2) p(x),q(z) € C! (ﬁ) are radial symmetric functions, 1 <p~ <pt and 1 < ¢~ <
+.
q;

(H3) f,9,h,7:[0,4+00[ — R are C'!, monotone functions such that

lim f(s)=+oc0, lim g¢g(s)=4o0, lim h(s)=4o00, lim ~v(s)= +oo;

s—+00 s—+00 s—+00 s—+00

1
M(g(s))a™ 1

sp——1

f
(H4) limg_ 4o ( ) =0 for all M > 0;

v(s) = 0.

sa” —1

(H5) lims— 400 Sﬁhfig_)l =0 and lims_, 4 oo

We define

(L (u),v) = / V"™ 2 VuVodz, Yu,v € WeP™ ().
O

Thus .
LWy (@) - (wy ) (@)

is a continuous, bounded and strictly monotone operator, and it is a homeomorphism,
see [17, Theorem 3.1].

Define A : Wy*) (Q) — (Wol’p(m) (Q))* as

(A(u),p) = / (|Vu|]”(gc)72 VuVe + h(z,u) <p) dx, for all u, o € Wo'™ (),
o)
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where h (x,u) is continuous on Q x R.and h (z,.) is increasing. It can be checked that
A is a continuous bounded mapping according to the result of Lemma 1 in [23].

DEFINITION 1. Let (u,v) € (Wol’p(x) (Q) x Wha@® (Q)) (u,v) is said a weak

solution of (1) if it satisfies
[ VUl 72 Vu.Veds = [ M@ [Af (v) + pyh (u)] @da,
) 9)

S |Vv\q(z)_2 Vou.Vipdz = [ 64 [Aag (u) + pyy (v)] dz,
Q Q
for all (p,1) € (W&”’(m) (Q) x Wi (Q)) with (g, %) > 0.

3 Main Result

In the present paper, we use (\,6) > (A\*,0%) to denote A > A\*,0 > 6" and the same
meaning for other cases, and denote by p (z) = |z|. Then we have the following result:

THEOREM 1. If (H1)-(H5) hold, then there exists (A*,0") > (0,0) such that for
any (X, 0) > (\*,0"), problem (1) has at least one positive solution.

PROOF. Construct a positive subsolution (¢,,¢,) and supersolution (z1,z2) of
problem (1), where ¢; < z1 and ¢y < 29, i.e., (¢1,¢5) and (21, z2) satisfy

(jz’|v¢1|p<x>‘2 Ve, . Veds < ({Avw ALf (63) + pyh ()] pd,

/ V5|72 Wy Vipda < J0° Drag (90) + 127 (6)] Vo,

and
/ |Vzl|]0(gc)_2 Vz1.Vedr > [ Ar@ [\ f (22) + pih (21)] eda,
Q Q

[ V2|12 V2. Vipda > [ 699 [Nag (21) + poy (22)] P,
Q Q

for all (p,9) € (Wol’p(x) (Q) x Wol’q(x) (Q)) with (p,1) > 0. By using to the sub-super
solution concept for p (z)-Laplacian equations, see [16], problem (1) has a positive
solution such that (X, 0) > (A", 0%).

Step 1. Construct a subsolution of problem (1).

By (H3)—(H5), we see that there exists M > 2 such that

Af(0) + g (0) > 1 and Azh (0) + poy (0) > 1.

Let
B In M In M

o= and 7= ——.

k l
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Then there exists k; = I3 > 1 such that for any k > ky,1 > Iy, we have o,7 € (0,7).
We denote

eklr=r) _ 1, r—o<p<rm,
r—o 1
¢)1<.’L‘)—¢1(p)— ekg—l—ka‘ekg(ﬁ)p()_ldt, OSPST—U,
P
and
ellr=r) 1, r—7<p<r,
r—T -
02@) =1 () =4 gr _ 14 e (7)™ at, o<p<r—r
P

It is easy to see that ¢, ¢, € C* (ﬁ) It can be easily got by some simple calculations

p(p)—1
“Dpwydy = —k (k’ek(”’p)) [k' (p(p)—1)—p (p)Ink
N -1
k' (p) (= p) = =] forr o <p<r (5)
p(p)—1
Dy = — () [ (o) (mk+ ko) L
1 N -1
- + L ] for0<p<r—o, (6)
r—o p r—o
I(r—p) q(p)—1 ,
Dy = I (le 8 ) {l (a(p) =1) =d (p)Inl
N -1
—lq’(p)(r—p)—T} forr—7<p<r,
and
q(p)—1 1
_ _ T / 14 _
Ng)Pa = (le ) {q (p) (Inl +17) T
N -1
L } forO<p<r—r.
p Tr—T
Denote

— min infp(x)—1 o — min infqg(z)—1
o {4<sup|Vp<x>|+1>’1}’ ; {4<suqu<x>|+1>’1}’

Ci=Af(0)+ph(0) and Cy = A2g(0) + pyy (0).
From (5) and (6), there exists k2 > 0 such that when k > ko, we have

—Dpa) 1 < _kp(m)oéh r—o<p<r. (7)
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Let A = % We have kP(®)q; > /\p(z)g‘l. Then

Dy < —APEC <A@ (A (0) + 1y (0))
< AP@ (A f (d2) + pyh (@) forr—o<p<r. (8)

When 0 < p < r — o, there exists C; > 0 such that

— Ay < Cr (ke")" " Ik, )
Then there exists k3 > 0 such that when k > k3, A = k’gl, we have
Oy (ke**)™ ™ ke < W (A + pay) (10)

From (9) and (10), we have

—Dp)y$r < N ALf (6) + mah(dy)), 0<p<r—o. (11)
Let k* = {k1, ko, k3}. Similarly, we obtain Iy and I3. Denote
aq (€3]

A= —Fk* and 0" ==
¢1 Co

I* where I = {lIy,15,13} .

Then for any (A, 0) > (A*,0%), we let

apln M and
o= nd 7=
G A CaA

and (7) (11) still hold, that is

_Ap(w)¢1 < AP() (ALf (¢2) + p1h(91)) a.e on Q. (12)

Similarly, we have

—Ng(ayb2 < AT (Nag (61) + 112y (65))  a.e on Q. (13)

From (12) and (13), it can be seen that (¢;,¢5) is a sub-solution of (1) for all
(\0) > (A", 07).
Step 2. Construct a supersolution of (1):
—Ap(w)zl =\t (M + py) pin Q,

—Dyyz2 = 07" (A2 + 119) g (B (W* (A + ) ) in €, (14)

21 = 20 = 0 on 09,

where wy = wy (AP (A1 + 1) p) = max, g 21 (z). We shall prove that (z1,22) is a
supersolution of problem (1). It can be seen

T 1

)\p+ A p(8)—1

2 _/<( 1N+“1)“t> dt,
P
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r

. <eq+ Oat )9 (00 O +u1)u))t>“<"1>‘l "

p

are the positive solutions of problem (14). Certainly, there exists a n € [0, ] such that

T

P+ W
w1 = maxzi (m) = / <)\()\1]\;‘_M1)’ut> dt

xeQ

P
P+ 3 1 f t ﬁ
= [N (O ) p] /<N> dt,
P

when p is large. Then we obtain

1

Co [APF (M + ) p] 770 Sy S Co [N (A + gy ] 77 (15)

where
I

£\ FO=T

P
is a positive constant. Similarly, we have

1

Cy [07F (Mo + 112) 9 (B (W (a4 py) )]
< ws < Gy [077 (ot p13) g (B O+ ) )] 77

For any 1 € Wol’qm (Q) with ¢ > 0, it is easy to see that

/ V25|12 V2, Vipd
Q

- / 0" Oz 4 112) 9 (8 O (M1 + p1y) ) ol
Q

Y

/QH)\QQ (z1) dz + /9q+u29 (5 ()‘p+ (A1 +pq) N)) Ydx.
Q Q

By (H4) and (H5), for u large enough, we have

g(ﬁ (Ap+ (M +.U1),U)) > ’Y(Cg [9q+ ()\2+,u2)g(5 ()\p-i- ()‘1+#1)H))] q_ll)

> v(22). (16)

V

Hence

/ V25|12 V2 Vipda > /Oﬁ Aag (z1) Ydz + / 0" 1oy (22) Wi (17)
! o) O
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Also, for ¢ € Wol’p(l) (Q) with ¢ > 0, it is easy to see that

/ |V [P 2 V2 Vpda = //\p+ (A1 + py) ppdee.
o) )

By (H3) and (H4), when p is sufficiently large, we have

-1

V

M +p)p > A% [0125 (A" (A +u1)u)r
pah (B (AP (M 4 ) 1))

AL (02 [0 O+ 112) g (8 (1 + ) ) | ) :

Y]

Then

/|Vzl|p(w)_2 Vz1.Vdr > /)\p+/\1f (22) pdx + /)\Hulh (21) pdz. (18)
) ) )

According to (17) and (18), we can conclude that (z1, z2) is a supersolution of problem
(1).

Now, we only need to show that (¢, d5) < (21,22) in Q. When p is large enough,
we have

i 200 _ K <1.

1
p—r= 21 (p) APt (A 4p)p ) PO—T
- N r

By the continuity of ¢, () and z; (z), there exists ¢ > 0 such that
O () <z (x), r—e<p<r

When 0 < p <1 — ¢, we can see that ¢, (x) is bounded and

T

1 T 1
AP (N p(t)—1 AP (A p()—1
ne () e [ (TR )T

P r—e

Then ¢, (z) < z1 (z), « € Q when p is large enough. Similarly, when p is large enough,
we obtain
Oo () < 29 (x), €.

We complete the proof of Theorem 1.
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