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Abstract

In this paper, we prove the existence of weak positive radial solutions for a
system of differential equations with some given conditions via sub-super solutions
concept.

1 Introduction

We consider the following system of differential equations
−4p(x)u = λp(x) [λ1f (v) + µ1h (u)] in Ω,

−4q(x)v = θq(x) [λ2g (u) + µ2γ (v)] in Ω,

u = v = 0 on ∂Ω,

(1)

where
Ω = B (0, r) ⊂ RN , (2)

λ, θ, λ1, λ2, µ1, µ2 are positive parameters, and

1 < p (x) , q (x) ∈ C1
(
Ω
)

are radial symmetric positive functions, that is to say

p (x) = p (|x|) and q (x) = q (|x|) . (3)

Operator ∆p(x) is a p(x)-Laplacian defined as:

∆p(x)u = div
(
|∇u|p(x)−2∇u

)
,
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210 Existence of Positive Radial Solutions

with f, g, h, γ are monotone functions in [0,+∞[ and satisfy:

lim
u→+∞

f (u) = +∞, lim
u→+∞

g (u) = +∞, lim
u→+∞

h (u) = +∞, lim
u→+∞

γ (u) = +∞.

The differential equations and variational problems with nonstandard p(x)-growth con-
ditions has been extensively studied in the last two decades and it is a new and
interesting topic. It modelized from nonlinear elasticity theory, electro-rheological
fluids, etc. (For more information see [10, 22]). Many results regarding the exis-
tence of solution of this kind of problems are given by many authors, see for example
[1, 2, 3, 8, 9, 10, 12, 13, 15, 16, 18]. Moreover, in [7, 11, 15, 20], the regularity and
existence of solutions for some class of this problem has been studied, considering that
p (x) = q (x) = p (a constant). Then, in [11], the author considered the existence
and nonexistence of positive weak solutions to the following class of quasilinear elliptic
system 

−4pu = λuαvγ in Ω,

−4qv = λuδvβ in Ω,

u = v = 0 on ∂Ω,

(4)

where, he used the first eigenfunction to construct the subsolution of problem (4) and
he got the following results:

(i) If α, β ≥ 0, γ, δ > 0 and θ = (p− 1− α) (q − 1− β)− γδ > 0, then the problem
(4) has a positive weak solution for each λ > 0.

(ii) If θ = 0 and pγ = q (p− 1− α), then there exists λ0 > 0 such that for 0 < λ < λ0.
Thus, problem (4) has no nontrivial nonnegative weak solution. We refer to [9, 19]
for further system generalizations of (4).

In this current paper, motivated by the previous results given for some classes
of the differential equations and variational problems with nonstandard p(x)-growth
conditions in the previous mentioned references and our obtained results in [23, 24],
we prove the existence of weak positive radial solutions of a new class of the system
of differential equations with respect to (2) and (3), while maintaining the symmetry
conditions in [23, 24].
The outline of the paper is as follows: In section 2, we introduce some necessary

technical assumptions and auxiliary results. Then in section 3 we give our main result
which is the existence of weak positive radial solutions of a new class of the system of
differential equations (1) via sub-super solutions concept.

2 Preliminary Results

In this section, we need to introduce W 1,p(x)
0 (Ω). First, we give some basic spaces

properties of W 1,p(x)
0 (Ω). We define

Lp(x) (Ω)
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=

u : u is a measurable real-valued function such that
∫
Ω

|u (x)|p(x)
dx <∞


with the norm

|u (x)|p(x) = inf

λ > 0 :

∫
Ω

∣∣∣∣u (x)

λ

∣∣∣∣p(x)

dx ≤ 1

 ,

and
W 1,p(x) (Ω) =

{
u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)

}
with the norm

‖u‖ = |u|p(x) + |∇u|p(x) , ∀u ∈W
1,p(x) (Ω) .

Denote by W 1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x) (Ω). Assume that:

(H1) Ω = B (0, r) ⊂ RN is an open ball with center 0 and radius r > 0;

(H2) p (x) , q (x) ∈ C1
(
Ω
)
are radial symmetric functions, 1 < p− ≤ p+ and 1 < q− ≤

q+;

(H3) f, g, h, γ : [0,+∞[→ R are C1, monotone functions such that

lim
s→+∞

f (s) = +∞, lim
s→+∞

g (s) = +∞, lim
s→+∞

h (s) = +∞, lim
s→+∞

γ (s) = +∞;

(H4) lims→+∞
f

(
M(g(s))

1
q−−1

)
sp−−1 = 0 for all M > 0;

(H5) lims→+∞
h(s)

sp−−1 = 0 and lims→+∞
γ(s)

sq−−1 = 0.

We define

〈L (u) , v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx,∀u, v ∈W 1,p(x)
0 (Ω) .

Thus
L : W

1,p(x)
0 (Ω)→

(
W

1,p(x)
0 (Ω)

)∗
is a continuous, bounded and strictly monotone operator, and it is a homeomorphism,
see [17, Theorem 3.1].

Define A : W
1,p(x)
0 (Ω)→

(
W

1,p(x)
0 (Ω)

)∗
as

〈A (u) , ϕ〉 =

∫
Ω

(
|∇u|p(x)−2∇u∇ϕ+ h (x, u)ϕ

)
dx, for all u, ϕ ∈W 1,p(x)

0 (Ω) ,
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where h (x, u) is continuous on Ω× R.and h (x, .) is increasing. It can be checked that
A is a continuous bounded mapping according to the result of Lemma 1 in [23].

DEFINITION 1. Let (u, v) ∈
(
W

1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω)
)
, (u, v) is said a weak

solution of (1) if it satisfies
∫
Ω

|∇u|p(x)−2∇u.∇ϕdx =
∫
Ω

λp(x) [λ1f (v) + µ1h (u)]ϕdx,

∫
Ω

|∇v|q(x)−2∇v.∇ψdx =
∫
Ω

θq(x) [λ2g (u) + µ2γ (v)]ψdx,

for all (ϕ,ψ) ∈
(
W

1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω)
)
with (ϕ,ψ) ≥ 0.

3 Main Result

In the present paper, we use (λ, θ) > (λ∗, θ∗) to denote λ > λ∗, θ > θ∗ and the same
meaning for other cases, and denote by ρ (x) = |x| . Then we have the following result:

THEOREM 1. If (H1)—(H5) hold, then there exists (λ∗, θ∗) > (0, 0) such that for
any (λ, θ) > (λ∗, θ∗) , problem (1) has at least one positive solution.

PROOF. Construct a positive subsolution (φ1, φ2) and supersolution (z1, z2) of
problem (1), where φ1 ≤ z1 and φ2 ≤ z2, i.e., (φ1, φ2) and (z1, z2) satisfy

∫
Ω

|∇φ1|
p(x)−2∇φ1.∇ϕdx ≤

∫
Ω

λp(x) [λ1f (φ2) + µ1h (φ1)]ϕdx,

∫
Ω

|∇φ2|
q(x)−2∇φ2.∇ψdx ≤

∫
Ω

θq(x) [λ2g (φ1) + µ2γ (φ2)]ψdx,

and 
∫
Ω

|∇z1|p(x)−2∇z1.∇ϕdx ≥
∫
Ω

λp(x) [λ1f (z2) + µ1h (z1)]ϕdx,

∫
Ω

|∇z2|q(x)−2∇z2.∇ψdx ≥
∫
Ω

θq(x) [λ2g (z1) + µ2γ (z2)]ψdx,

for all (ϕ,ψ) ∈
(
W

1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω)
)
with (ϕ,ψ) ≥ 0. By using to the sub-super

solution concept for p (x)-Laplacian equations, see [16], problem (1) has a positive
solution such that (λ, θ) > (λ∗, θ∗).
Step 1. Construct a subsolution of problem (1).
By (H3)—(H5), we see that there exists M > 2 such that

λ1f (0) + µ1g (0) ≥ 1 and λ2h (0) + µ2γ (0) ≥ 1.

Let

σ =
lnM

k
and τ =

lnM

l
.
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Then there exists k1 = l1 > 1 such that for any k > k1, l > l1, we have σ, τ ∈ (0, r) .
We denote

φ1 (x) = φ1 (ρ) =


ek(r−ρ) − 1, r − σ < ρ ≤ r,

ekσ − 1 +
r−σ∫
ρ

kekσ
(

t
r−σ

) 1
p(t)−1

dt, 0 ≤ ρ ≤ r − σ,

and

φ2 (x) = φ1 (ρ) =


el(r−ρ) − 1, r − τ < ρ ≤ r,

elτ − 1 +
r−τ∫
ρ

lelτ
(

t
r−τ

) 1
q(t)−1

dt, 0 ≤ ρ ≤ r − τ .

It is easy to see that φ1, φ2 ∈ C1
(
Ω
)
. It can be easily got by some simple calculations

−4p(x)φ1 = −k
(
kek(r−ρ)

)p(ρ)−1 [
k (p (ρ)− 1)− p′ (ρ) ln k

−kp′ (ρ) (r − ρ)− N − 1

ρ

]
for r − σ < ρ < r, (5)

−4p(x)φ1 = −
(
lelσ
)p(ρ)−1 [

p′ (ρ) (ln k + kσ)
ρ

r − σ

− 1

r − σ +
N − 1

ρ

ρ

r − σ

]
for 0 < ρ < r − σ, (6)

−4q(x)φ2 = −l
(
lel(r−ρ)

)q(ρ)−1 [
l (q (ρ)− 1)− q′ (ρ) ln l

−lq′ (ρ) (r − ρ)− N − 1

ρ

]
for r − τ < ρ < r,

and

−4q(x)φ2 = −
(
lelτ
)q(ρ)−1 [

q′ (ρ) (ln l + lτ)
ρ

r − τ −
1

r − τ

+
N − 1

ρ

ρ

r − τ

]
for 0 < ρ < r − τ .

Denote

α1 = min

{
inf p (x)− 1

4 (sup |∇p (x)|+ 1)
, 1

}
, α2 = min

{
inf q (x)− 1

4 (sup |∇q (x)|+ 1)
, 1

}
,

ζ1 = λ1f (0) + µ1h (0) and ζ2 = λ2g (0) + µ2γ (0) .

From (5) and (6), there exists k2 > 0 such that when k > k2, we have

−4p(x)φ1 ≤ −kp(x)α1, r − σ < ρ < r. (7)
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Let λ = kα1
ζ1
. We have kp(x)α1 ≥ λp(x)ζ1. Then

−4p(x)φ1 ≤ −λp(x)ζ1 ≤ λp(x) (λ1f (0) + µ1h (0))

≤ λp(x) (λ1f (φ2) + µ1h (φ1)) for r − σ < ρ < r. (8)

When 0 < ρ < r − σ, there exists C1 > 0 such that

−4p(x)φ1 ≤ C1

(
kekσ

)p(ρ)−1
ln k. (9)

Then there exists k3 > 0 such that when k > k3, λ = kα1
ζ1
, we have

C1

(
kekσ

)p(ρ)−1
ln k ≤ λp(x) (λ1 + µ1) . (10)

From (9) and (10), we have

−4p(x)φ1 ≤ λp(x) (λ1f (φ2) + µ1h (φ1)) , 0 < ρ < r − σ. (11)

Let k∗ = {k1, k2, k3}. Similarly, we obtain l2 and l3. Denote

λ∗ =
α1

ζ1

k∗ and θ∗ =
α2

ζ2

l∗ where l∗ = {l1, l2, l3} .

Then for any (λ, θ) > (λ∗, θ∗), we let

σ =
α1 lnM

ζ1λ
and τ =

α2 lnM

ζ2λ

and (7) (11) still hold, that is

−4p(x)φ1 ≤ λp(x) (λ1f (φ2) + µ1h (φ1)) a.e on Ω. (12)

Similarly, we have

−4q(x)φ2 ≤ λq(x) (λ2g (φ1) + µ2γ (φ2)) a.e on Ω. (13)

From (12) and (13), it can be seen that (φ1, φ2) is a sub-solution of (1) for all
(λ, θ) > (λ∗, θ∗) .

Step 2. Construct a supersolution of (1):
−4p(x)z1 = λp+ (λ1 + µ1)µ in Ω,

−4q(x)z2 = θq+ (λ2 + µ2) g (β (λp+ (λ1 + µ1)µ)) in Ω,

z1 = z2 = 0 on ∂Ω,

(14)

where ω1 = ω1

(
λp+ (λ1 + µ1)µ

)
= maxx∈Ω z1 (x). We shall prove that (z1, z2) is a

supersolution of problem (1). It can be seen

z1 =

r∫
ρ

(
λp+ (λ1 + µ1)µ

N
t

) 1
p(t)−1

dt,
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z2 =

r∫
ρ

(
θq+ (λ2 + µ2) g (β (λp+ (λ1 + µ1)µ))

N
t

) 1
q(t)−1

dt,

are the positive solutions of problem (14). Certainly, there exists a η ∈ [0, r] such that

ω1 = max
x∈Ω

z1 (x) =

r∫
ρ

(
λp+ (λ1 + µ1)µ

N
t

) 1
p(t)−1

dt

=
[
λp+ (λ1 + µ1)µ

] 1
p(η)−1

r∫
ρ

(
t

N

) 1
p(t)−1

dt,

when µ is large. Then we obtain

C2

[
λp+ (λ1 + µ1)µ

] 1

p+−1 ≤ ω1 ≤ C2

[
λp+ (λ1 + µ1)µ

] 1

p−−1 (15)

where

C2 =

r∫
ρ

(
t

N

) 1
p(t)−1

dt

is a positive constant. Similarly, we have

C3

[
θq+ (λ2 + µ2) g (β (λp+ (λ1 + µ1)µ))

] 1

q+−1

≤ ω2 ≤ C3

[
θq+ (λ2 + µ2) g (β (λp+ (λ1 + µ1)µ))

] 1

q−−1 .

For any ψ ∈W 1,q(x)
0 (Ω) with ψ ≥ 0, it is easy to see that∫

Ω

|∇z2|q(x)−2∇z2.∇ψdx

=

∫
Ω

θ
q+

(λ2 + µ2) g (β (λp+ (λ1 + µ1)µ))ψdx

≥
∫
Ω

θ
q+

λ2g (z1)ψdx+

∫
Ω

θ
q+

µ2g
(
β
(
λp+ (λ1 + µ1)µ

))
ψdx.

By (H4) and (H5), for µ large enough, we have

g
(
β
(
λp+ (λ1 + µ1)µ

))
≥ γ

(
C2

[
θ
q+

(λ2 + µ2) g
(
β
(
λp+ (λ1 + µ1)µ

))] 1

q−−1
)

≥ γ (z2) . (16)

Hence ∫
Ω

|∇z2|q(x)−2∇z2.∇ψdx ≥
∫
Ω

θ
q+

λ2g (z1)ψdx+

∫
Ω

θ
q+

µ2γ (z2)ψdx. (17)
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Also, for ϕ ∈W 1,p(x)
0 (Ω) with ϕ ≥ 0, it is easy to see that∫

Ω

|∇z1|p(x)−2∇z1.∇ϕdx =

∫
Ω

λp+ (λ1 + µ1)µϕdx.

By (H3) and (H4), when µ is suffi ciently large, we have

(λ1 + µ1)µ ≥ 1

λp+

[
1

C2
β
(
λp+ (λ1 + µ1)µ

)]p−−1

≥ µ1h
(
β
(
λp+ (λ1 + µ1)µ

))
+λ1f

(
C2

[
θ
q+

(λ2 + µ2) g
(
β
(
λp+ (λ1 + µ1)µ

))] 1

q−−1
)
.

Then ∫
Ω

|∇z1|p(x)−2∇z1.∇ϕdx ≥
∫
Ω

λp+λ1f (z2)ϕdx+

∫
Ω

λp+µ1h (z1)ϕdx. (18)

According to (17) and (18), we can conclude that (z1, z2) is a supersolution of problem
(1).
Now, we only need to show that (φ1, φ2) ≤ (z1, z2) in Ω. When µ is large enough,

we have

lim
ρ→r−

φ1 (ρ)

z1 (ρ)
=

k(
λp+(λ1+µ1)µ

N r
) 1
p(r)−1

< 1.

By the continuity of φ1 (x) and z1 (x), there exists ε > 0 such that

φ1 (x) ≤ z1 (x) , r − ε < ρ ≤ r.

When 0 ≤ ρ ≤ r − ε, we can see that φ1 (x) is bounded and

z1 =

r∫
ρ

(
λp+ (λ1 + µ1)µ

N
t

) 1
p(t)−1

dt ≥
r∫

r−ε

(
λp+ (λ1 + µ1)µ

N
t

) 1
p(t)−1

dt→∞ as µ→∞.

Then φ1 (x) ≤ z1 (x) , x ∈ Ω when µ is large enough. Similarly, when µ is large enough,
we obtain

φ2 (x) ≤ z2 (x) , x ∈ Ω.

We complete the proof of Theorem 1.
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