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Abstract

A property of the unit n-sphere is that most of its mass lies near the equator
and that it is simultaneously concentrated near the surface. In this article, we
show that this property also holds for generalized unit balls in Euclidian space.
We also give exact formulas for the mass content of ”ball-caps” and derive upper
bounds for certain related volume content ratios.

1 Introduction

A well known fact about the unit sphere is that its volume shrinks to zero as the
dimension increases, with the maximum occurring for n = 5 (e.g., see [6]). More recent
analysis of the concentration of the mass within the sphere shows that most of the
mass is contained in a thin slice near the equator (see [2]). Moreover, it is easy to show
that the mass of the sphere in higher dimensions is concentrated in a narrow annulus
near the surface. These observations are of interest in the study of the foundations
of the theory of high dimensional data (see [3]). More generally, the interaction of
higher dimensional geometry and probability theory is an older well established theory.
In simple terms, this interaction is realized mainly in the study of inequalities. For
example, the concentration of the mass of a cube near its equator can be explained
using the weak law of large numbers. Important geometric inequalities arise from
volume (or other measures) ratios for sets. Such inequalities may also extend to sets of
functions and may be used to express probabilities. Bounds for the volumes or surface
areas of spherical caps play a role in the study of the concentration of measure in
geometry (see [2]). Looking at generalizations of such estimates for generalized balls
can perhaps be justified at least from a pedagogical point of view (see Remark [2]).
Generalized unit balls (GUB’s) are defined by sets of the form

BG(n,p) = {(x1, · · · , xn) : ||x|| := |x1|p1 + · · ·+ |xn|pn ≤ 1, 0 < pi < ∞}. (1)

We refer to their surfaces as hyperspheres. GUB’s are symmetrically centered objects
as −x ∈BG if x ∈ BG. For pi ≥ 1, it is well known that the GUB’s are convex. For
pi ≤ 1, the GUB’s are non-convex if at least one pj < 1 (see Proposition [1]). In [8],
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260 On the Concentration of Mass in Generalized Unit Balls

it is shown that the volume of GUB’s goes to zero as the dimension n goes to infinity.
The purpose of this article is to show that the volumes of GUB’s are concentrated in
a thin slice near the equator, and that their mass lies mostly near the surface.

Now we give a proposition that characterizes the convexity of GUB’s whenever at
least some p′is < 1. Recall that if a subset S of a vector space is convex and v1, · · · , vn

belong to the subset S, then for ti ≥ 0 and
∑k

i ti = 1, the convex combination∑k
i=1 tivi is in S, 1 < k ≤ n. Further, a set S in Rn is star-convex with respect to

a point s0 ∈ S, called the star-center of S, if for every s ∈S, the segment [s0, s] is
contained in S.

PROPOSITION 1. For BG (n,p) to be a convex set, all pj ≥ 1, j = 1, · · · , n. If
pj < 1 for one j, then BG (n,p) is non-convex. However, it is star-convex with respect
to the origin 0.

PROOF. Let ei = (0, · · · , 1, · · · , 0) denote the ith unit vector in the direction of
the ith coordinate. According to the definition of BG, ei and ej belong to B. Since
B is convex then (1− t) ei + tej = (0, · · · , 1− t, · · · , t, · · · , 0) ∈ B, ∀ t ∈ (0, 1) . This
implies that |1− t|pi + |t|pj = (1− t)pi + tpj ≤ 1, ∀ t ∈ (0, 1) . Hence,

tpj ≤ 1− (1− t)pi ⇒ pj ≥
ln(1− (1− t)pi)

ln(t)
∀ t ∈ (0, 1).

Take the limit of both sides, we obtain:

pj ≥ lim
t→0+

ln(1− (1− t)pi)
ln(t)

= 1.

So pj ≥ 1, j = 1, · · · , n. Therefor BG (n,p) is non-convex if there exists at least one j
such that pj < 1.

To show that BG is star-convex with respect to 0 ∈BG, let x be any point in BG,
then the line segment from the origin to x is given by tx+(1− t)0 =tx for every t in
[0, 1] . If x ∈BG and t ∈ (0, 1), then tx is in BG. This is so since we have tpi < 1 for
i = 1, · · · , n, and thus |tx1|p1 + |tx2|p2 + · · ·+ |txn|pn ≤ |x1|p1 + |x2|p2 + · · ·+ |xn|pn ≤ 1.
Thus BG is star-convex (or star-shaped) with respect to the origin.

2 Volumes of Ball-Caps

As hyperspheres are less symmetric than the n-sphere (p=2), we define the equator as
the intersection of a GUB centered at the origin with a coordinate hyperplane. For
instance, if we take the hyperplane x1 = 0, the set {x : |x| ≤ 1, x1 = 0} is called an
equator. Now we describe our starting point to find the volume of the portion of
a GUB above a certain hyperplane x1 = ε. This is the volume of solid-cap T lying
between x1 = ε and x1 = 1, and we refer to it as the ball-cap. First we note that the
volumes of the hyper-ellipsoids defined by{

(y1, y2, · · · , yn) :
∣∣∣∣y1

c1

∣∣∣∣p1

+
∣∣∣∣y2

c2

∣∣∣∣p2

+ · · ·+
∣∣∣∣yn

cn

∣∣∣∣pn

≤ 1, ci, pi > 0
}

,
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are given by

V (n, p) = 2n

∏n
i=1 ciΓ

(
1 + 1

pi

)
Γ
(
1 +

∑n
i=1

1
pi

) ; pi > 0, n = 1, 2, 3 · · · , (2)

where Γ (x) is the Euler gamma function. The formulas in (2) were obtained by G. P.
Lejeune Dirichlet (see [4, 8]). An alternative derivation that is useful to us below is
given in [1], which extends the method of P. Hein (see [5]). We recall the derivation
briefly.

The Gauss hypergeometric function is defined by

2F1 (a, b; c; z) =
∑
k≥0

(a)k (b)k

(c)k

zk

k!
,

for |z| < 1, where a, b, c are complex numbers, c 6= 0,−1,−2, · · · , and (α)k is the
Pochhammer symbol defined as (α)k = α (α + 1) · · · (α + k − 1) = Γ(α+k)

Γ(α) , n > 0,

(α)0 = 1 for α 6= 1. For convenience, we denote 2F1 by F. We have the following
integral ∫

(a− xm)
d
n dx = a

d
n xF

(
1
m

,− d

n
; 1 +

1
m

;
xm

a

)
, (3)

for |xm|< a. A well known result due to Gauss for F with unit argument is (The-
orem 18 in [7], p. 47): F (a, b; c; 1) = Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b) , for < (c− a− b) > 0, and c is
neither zero nor a negative integer. Also we obtain easily the equality for the product∏k

i=1 F
(

1
m ,− i

m ; 1 + 1
m ; 1

)
= (Γ(1+ 1

m ))k+1

Γ(1+ k+1
m ) .

A simple linear transformation converts a hyper-ellipsoid into a GUB (E.q (1)).
Denote by

E (n, p) =

{
(x1, · · · , xn) :

n∑
i=1

xpi

i ≤ 1, all xi ≥ 0, pi > 0

}
the positive orthant of the GUB. Using the symmetry of the GUB’s about the origin,
we can start from the volume integral 2n

∫
E(n,p)

dx1 · · · dxn. A reduction can be effected
by integrating first over xn and using the integral in (3). Then continue the reduction

process to arrive at the integral
∏n

i=3 Pi−1

∫ 1

0
(1− xp1

1 )Σ
n
j=2

1
pj dx1, where Pi−1 denotes

F
(

1
pi−1

,−Σn
k=i

1
pk

; 1 + 1
pi−1

; 1
)

. Let T denote the set {x ∈BG: ||x|| ≤ 1, x1 ≥ ε} . It is
clear now that the last integral expression in the reduction can be used as a starting
point for us to develop a formula for V (T ) . To show that the mass of a GUB is near the
equator, we compute the mass of the ball-cap T lying above the slice between x1 = 0
and x1 = ε. Let α =

∑n
i=2

1
pi

. Thus, we have

V (T ) = V (n− 1)
∫ 1

ε

(1− xp1
1 )αdx1 (4)

= V (n− 1)
(

F

(
1
p1

,−α; 1 +
1
p1

; 1
)
− εF

(
1
p1

,−α; 1 +
1
p1

; εp1

))
,
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where V (n− 1) is the volume of BG of dimension n− 1 given in (2).
Now we derive a lower bound for the volume of the upper-half of BG. Define the

slab S := {x ∈BG:0 < ||x|| ≤ ε} . Then the exact volume of S is given by the integral

V (S) = V (n− 1)
∫ ε

0

(1− xp1
1 )α

dx1 = V (n− 1) εF

(
1
p1

,−α; 1 +
1
p1

; εp1

)
. (5)

Therefore, the exact ratio of the volume of the ball-cap T to the volume of the slab S
is given by

V (T )
V (S)

=

(
F
(

1
p1

,−α; 1 + 1
p1

; 1
)
− εF

(
1
p1

,−α; 1 + 1
p1

; εp1

))
εF
(

1
p1

,−α; 1 + 1
p1

; εp1

) .

Set ε = c
p1
√

n−1
in V (T ) such that c ≤ p1

√
n− 1, and ε = 1

p1
√

n−1
in V (S) . Then we

have

V (T )
V (S)

=
p1
√

n− 1F
(

1
p1

,−α; 1 + 1
p1

; 1
)
− cF

(
1
p1

,−α; 1 + 1
p1

; cp1

n−1

)
F
(

1
p1

,−α; 1 + 1
p1

; 1
n−1

) . (6)

Now the Gauss function is related to the incomplete beta function by

Bx (p, q) =
xp

p
F (p, 1− q, 1 + p;x) ,

where
Bx(p, q) =

∫ x

0

tp−1(1− t)q−1dt, 0 ≤ x ≤ 1, p, q > 0.

Take p = 1
p1

, q = 1 + α, and x = 1
n−1 . Then we can obtain an alternative expression

for the ratio in terms perhaps of the more familiar beta function. We have

F

(
1
p1

,−α; 1 +
1
p1

;
cp1

n− 1

)
=

p1
√

n− 1
cp1

B cp1
n−1

(
1
p1

, 1 + α

)
.

Also as F (a, b; c, 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) , we have F

(
1
p1

,−α; 1 + 1
p1

; 1
)

=
Γ

“
1+ 1

p1

”
Γ(1+α)

Γ
“
1+α+ 1

p1

”
= 1

p1
B
(

1
p1

, 1 + α
)

. Then

V (T )
V (S)

=
B
(

1
p1

, 1 + α
)
−B cp1

n−1

(
1
p1

, 1 + α
)

B 1
n−1

(
1
p1

, 1 + α
) . (7)

Now the regularized beta function is defined as Ix (a, b) = Bx(a,b)
B(a,b) . Hence, we can

express the ratio as

V (T )
V (S)

=
1− I cp1

n−1

(
1
p1

, 1 + α
)

I 1
n−1

(
1
p1

, 1 + α
) . (8)
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3 Bounds on Ball-Caps Volumes

There is a good number of different volume ratios that appear in the study of convex
geometry and multiplicative geometric inequalities (e.g., see [2]). In section 2 of [3], a
bound on the volume fraction of the hemi-spherical cap is given. The volume fraction is
obtained by dividing V (T ) by a lower bound for the volume of the upper hemi-sphere.
The lower bound is taken to be the volume of a certain inscribed cylinder in such a
way that the bound on the volume fraction obtained is independent of n.

THEOREM A (Theorem 2.6 in [3]). For any c ≥ 1, and n ≥ 3, at least a 1− 2
c e−

c2
2

fraction of the volume of the n-dimensional unit ball has |x1| ≤ c√
n−1

.

Estimates of this sort could also play a role in the further study of the concentration
(or distribution) of measure in geometry. We now obtain bounds on the volume of ball-
caps for GUB’s.

We first find an upper bound on V (T ). As in [3], we make use of the inequalities
1 + xm ≤ exm

, and
(

x1
ε

)
> 1. The last integral in the reduction we discussed above is

our starting point. Thus we have that

V (T ) = V (n− 1)
∫ 1

ε

(1− xp1)
Pn

i=2
1

pi
dx1

≤ V (n− 1)
∫ ∞

ε

xp1−1
1

εp1−1
e
−x

p1
1

Pn
i=2

1
pi dx1

= −V (n− 1)
p1εp1−1

e
−x

p1
1

Pn
i=2

1
pi∑n

i=2
1
pi

|∞ε ,

which gives us an upper bound

V (T ) ≤ V (n− 1)(
Σn

i=2
1
pi

)
p1εp1−1

e
−

“
Σn

i=2
1

pi

”
εp1

=
V (n− 1)

αp1

e−αεp1

εp1−1
. (9)

where α = Σn
i=2

1
pi

.
Next, we derive a lower bound for the volume of the upper half of the GUB’s. We

first consider the case where α ≥ 1. A lower bound is given by the volume of the slab S
between x1 = 0 and x1 = ξ < 1, n > 2. This volume is given by the following integral.
Upon using the Weierstrass inequality (1− x)a ≥ 1 − ax, which holds for |x| < 1 and
a ≥ 1, we have

V (S) = V (n− 1)
∫ ξ

0

(1− xp1
1 )α

dx1 (10)

≥ V (n− 1)
∫ ξ

0

(1− αxp1
1 ) dx1

= V (n− 1)
(

ξ − αξp1+1

p1 + 1

)
.
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Then the fraction of the volume, Vf := V (T )
V (S) , above the hyperplane x1 = ε is bounded

by the upper bound divided by the lower bound below the hyperplane x1 = ξ. Thus,
we obtain

Vf ≤
1

αp1

e−αεp1

εp1−1

ξ − αξp1+1

p1+1

. (11)

Let m = min1≤i≤n pi, and k = max1≤i≤n pi. Then n−1
k ≤ α ≤ n−1

m . If we pick
ε = c

p1
√

n−1
, for some 0 < c < p1

√
n− 1, and ξ = m

p1
√

n−1
, then from (11) we get that

k

m(n−1)
1

p1

(
e−

1
k

cp1

cp1−1

)
( m

(n−1) )
1

p1

p1+1

(
1 + p1 − n−1

m

(
m

(n−1)

)) = km− p1+1
p1

p1 + 1
p1

(
e−

1
k cp1

cp1−1

)
. (12)

Hence we obtain the following theorem, which is a generalization of the Theorem
A stated above.

THEOREM 1. For any 1 ≤ c ≤ p1
√

n− 1, α ≥ 1, and n ≥ 3, at least a 1 −

km− p1+1
p1

p1+1
p1

(
e−

1
k

cp1

cp1−1

)
fraction of the volume of the n-dimensional unit ball has |x1| ≤

c
p1
√

n−1
.

REMARK 1. Although the bound in Theorem 1 is independent of n, and the upper
bound allows for having c ≥ 1, Nevertheless, since |x1| ≤ 1, we have added the bound
1 ≤ c < p1

√
n− 1, and this upper bound on c helps satisfy the bound on x in the

definition of Bx(p, q).

Now we consider the case for α := Σn
i=2

1
pi

< 1, and thus pi < 1 for all i = 1, · · · , n.

We note first that (9) is still valid for α < 1. So we only need to find a lower bound on
V (S) whenever α < 1. Going back to (5), for n > 2, the volume of the slab S between
x1 = 0 and x1 = ε was given by

V (S) = V (n− 1)
∫ ε

0

(1− xp1
1 )α

dx1.

Recall the generalized binomial theorem is given by (x + y)r =
∑∞

k=0
r(r−1)···(r−k+1)

k! xr−kyk.
From this we get that (

1− xβ
)α ≥ 1− αxβ +

a (α− 1)
2!

x2β .

Hence we have ∫ ε

0

(1− xp1)α
dx ≥

∫ ε

0

(
1− αxp1 +

α (α− 1)
2!

x2p1

)
dx,

where the last integral can be simply evaluated, and we have

I :=
∫ ε

0

(
1− αxp1 +

α (α− 1)
2!

x2p1

)
dx = ε− εp1+1

p1 + 1
α +

1
2

ε2p1+1

2p1 + 1
α (α− 1) .
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p1 = · · · = pn c Vf (E.q(8)) U.B. (E.q(12)) V (T )
V (BG)

p1 = 1
2 , n = 7 1 0.4204 1.6240 0.1480

30 3.0482e-13 0.0011 1.0730e-13

p1 = 4, n = 7 1 0.2327 0.6884 0.0944
1.5 0.0017 0.0739 7.0450e-4

p1 = 1
2 , n = 20 1 0.5888 1.6240 0.1853

100 7.529e-12 2.4734e-7 2.3769e-12

p1 = 4, n = 20 1 0.3042 0.6884 0.1166
2 2.6112e-6 0.0020 1.0011e-6

Table 1: Volume ratios with α ≥ 1.

Set ε = 1
p1
√

n−1
, then

I =
1

p1
√

n− 1
−

(
1

p1
√

n−1

)p1+1

p1 + 1
α +

1
2

(
1

p1
√

n−1

)2p1+1

2p1 + 1
α (α− 1) .

Then we obtain

Vf :=
V (T )
V (S)

≤

1

αp1

“
c

p1
√

n−1

”p1−1

1
p1
√

n−1
−

“
1

p1
√

n−1

”p1+1

p1+1 α + 1
2

“
1

p1
√

n−1

”2p1+1

2p1+1 α (α− 1)

e−α cp1
n−1 .

If pi = m < 1 for all i = 1, · · · , n, n > 2, α = n−1
m , we obtain

Vf ≤ 2 (n− 1) (m + 1) m2 (2m + 1)
n− nm + 6nm3 + 4m4n− 2nm2 − 4m4 − 6m3 + m2 − 1

e−
cm

m

cm−1
(13)

≤ 2 (m + 1) m2 (2m + 1)
1−m + 6m3 + 4m4 − 2m2 + −m2−m

2

e−
cm

m

cm−1
.

So we have the following theorem:

THEOREM 2. For any 1 ≤ c ≤ m
√

n− 1, pi = m, 1 ≤ i ≤ n, α < 1, and n ≥ 3, at

least a 1− 4(m+1)(2m+1)m2

2−3m−5m2+12m3+8m4
e−

cm

m

cm−1 fraction of the volume of the n-dimensional unit
ball has |x1| ≤ c

m
√

n−1
.

For the numerical illustration of our results, we present in Tables 1 and 2 some
estimates for the volume fractions from (8), and compute upper bounds for the vol-
ume fractions from (12) (c.f. Theorem [1]) and from (13) (c.f. Theorem [2]), and
V (T ) /V (BG) from (4) and (2), for various p vectors with α < 1 or α ≥ 1, and for
different values of n and c. U.B. stands for upper bound. The results in Tables 1 and
2 show clearly that V (T )

V (BG) < Vf < U.B, as expected. As the value of c approached its
upper bound, smaller values for U.B. were obtained.
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p1 = · · · = pn c Vf (E.q(8)) U.B. (E.q(13)) V (T )
V (BG)

p1 = 8, n = 7 1 0.1518 0.8962 0.0659
1.2 0.0119 0.1656 0.0052

p1 = 25, n = 20 1 00906 0.9624 0.0415
1.12 5.2100e-4 0.0334 2.3886e-4

Table 2: Volume ratios with α < 1.

Finally, we show that the volume of the GUB’s is near the surface. Consider the
hyper-ellipsoid{

(y1, y2, · · · , yn) :
∣∣∣∣y1

a1

∣∣∣∣p1

+
∣∣∣∣y2

a2

∣∣∣∣p2

+ · · ·+
∣∣∣∣yn

an

∣∣∣∣pn

≤ R, ai, pi > 0, 0 < R < 1
}

.

Then defining ci = aiR
1

pi and applying (2), we get R
Σn

i=1
1

pi 2n

Qn
i=1 aiΓ

“
1+ 1

pi

”
Γ

“
1+

Pn
i=1

1
pi

” . Then it

follows that the ratio of the volume of a hyper-ellipsoid with R := (1− δ) < 1, to
the volume of a hyper-ellipsoid with R = 1, and with the same set of {ai} , equals
(1− δ)Σ

n
i=1

1
pi ≤ e

−Σn
i=1

1
pi

δ ≤ e−
n
k δ, where k = max1≤i≤n pi, and thus Σn

i=1
1
pi
≥ n

k . It
follows that for fixed δ and k, the ratio will go to zero as n goes to infinity. This shows
that most of the volume of a GUB(whenever, ai = 1 for i = 1, · · · , n) lies in a thin
shell near the surface. As the volume of GUB goes to zero as n goes to infinity, the
volume of this shell will also shrink accordingly.

In [3] for the case of the n-sphere, the volume ratio for a ball with radius (1− ε)
to a unit ball is (1− ε)n ≤ e−nε. Picking ε = c

n and drawing two random vectors
from the unit ball, then we have with high probability these vectors have a length
of 1 − O

(
1
n

)
. For a GUB, pick δ = ck

n , we see that the shell near the surface, that
contains most of the volume, has a thickness O

(
ck
n

)
= O

(
1
n

)
. As we have shown

that the volume is concentrated near the equator (according to our definition of the
equator), this indicates that a good portion of the vectors picked at random from a
GUB have length 1 − O

(
1
n

)
. In 3D, for a convex ball, this means that most of the

volume is concentrated near a 3D symmetric ”cross-like” structure.

REMARK 2. In Chapter 2 of [3], the bounds on the volumes of spherical caps
are shown to have several consequences. In [2], Lecture 2, upper and lower bounds
on the area measure of spherical caps using volume ratios were derived These bounds
were employed to characterize bounds on the number of facets a symmetric polytope
K in Rn needs to have in order to approximate the Euclidean ball within a given
distance. One can naively ask the same questions by replacing the Euclidean ball with
a convex GUB, and attempt to formulate and prove similar results. For further possible
generalizations and applications for considering such bounds, see Lectures 8,9 in [2].
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