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Abstract

We develop and implement a novel approach for determining the q-orthogonal
polynomial solutions to the Dq-Appell Equation (DqPn(x) = γnPn−1(x)), where
Dq is the Askey-Wilson divided-difference operator, and γn is a function of n
and q that is independent of x. More specifically, our methodology relies only on
the second and third coeffi cients of Pn(x) and a three-term recurrence relation.
Together, these structures lead to various difference equations from which recur-
sion coeffi cients can be inferred. Moreover, this approach has the potential to be
applied to other types of characterization problems as well.

1 Introduction

In this work, we characterize the Dq-Appell Equation

DqPn(x) = γnPn−1(x) (1)

by determining all of its q-orthogonal polynomial solutions {Pn(x)}∞n=0. We do this
in a way that is entirely different than what has been done previously, i.e., [1, 7],
and hence the title of this paper. We emphasize that in [1, 7], prior knowledge that
the Rogers’q-Hermite polynomials were solutions to (1) was necessary for completion.
We emphasize that the papers [1, 7] were concerned with showing that the Rogers’q-
Hermite polynomials were the only solutions to (1). In our work, we are concerned with
obtaining general solutions to (1), as our primary focus is the implementation of our
methodology. Furthermore, one of the utilities of our present work is that our method
applies to the structure equation (1) directly without using any previous information.
Thus, we anticipate that our method can be also be applied to other characterization
problems as well.
In relation (1), γn is a function of n and q that is independent of x, and Dq is the

Askey-Wilson degree-lowering, divided-difference, linear operator

Dqf(x) :=
f̆
(
q
1
2 z
)
− f̆

(
q−

1
2 z
)

ĕ
(
q
1
2 z
)
− ĕ

(
q−

1
2 z
) ,
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with z = eiθ, f̆(z) = f(x) = f(cos θ), for any function f and e(x) = x. For further
details regarding this operator, consider [1, 3, 8], as well as [6] and the additional
references therein.
Over the years, much attention has been paid to the generalized structure equation

π(x)T (Pn(x)) = (αnx+ βn)Pn(x) + γnPn−1(x) (2)

for different T -operators. In 1972, W.A. Al-Salam and T.S. Chihara [2] determined
all of the classical monic orthogonal polynomial sequences (OPS) that solve (2), where
π(x) is a polynomial of degree at most two1 , i.e.,

π(x)
d

dx
Pn(x) = (αnx+ βn)Pn(x) + γnPn−1(x). (3)

Since π(x) = ax2 + bx+ c is at most quadratic, (3) only needed to be analyzed for the
following cases:

π(x) =

 1
x
x2 + c.

Any other form of π(x) can be achieved via a linear change-of-variables.
In each case above, Al-Salam and Chihara simultaneously analyzed the structure

relation (3) and a three-term recurrence relation (a necessary and suffi cient condition
for orthogonality) of the form

Pn+1(x) = (x+Bn)Pn(x)− CnPn−1(x), Cn 6= 0

P−1(x) = 0, P0(x) = 1.
(4)

This led to equations relating the coeffi cients of π(x) and the recursion coeffi cients
in (3) and (4). From there, several difference equations were developed from which
expressions for Bn and Cn were determined. These expressions contained arbitrary
parameters, which when chosen judiciously lead to the sought after (monic) classical
OPS.

In particular, Al-Salam and Chihara determined that the Hermite, Laguerre and
Jacobi polynomials are respectively the only orthogonal polynomial solutions. For each
of these polynomial solutions, orthogonality was defined on the real line with respect
to a nondecreasing real function. When considering polynomials orthogonal on the real
line with respect to a function of bounded variation, the generalized Bessel polynomials
were also solutions in the limiting case c→ 0 for π(x) = x2 + c.

In 2006, S. Datta and J. Griffi n [4] discovered all q-orthogonal polynomials solutions
to the difference equation

π(x)DqPn(x) = (αnx+ βn)Pn(x) + γnPn−1(x), (5)

with the previous restrictions on π(x), and with the q-degree-lowering, divided-difference,
linear operator, Dq, cf. [6], defined as

(Dqf)(x) :=
f(x)− f(qx)

x− qx .

1A uniform derivation of (3) appears in [5].
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Their work was the q-analogue of [2] because the differential operator d/dx in (3) was
replaced by Dq above. Datta and Griffi n determined all of the q-orthogonal polynomial
solutions to (5) using essentially the same methodology as in [2] and also took into
account that (5) does not remain invariant under the linear transformation x→ ax+b.
Therefore, the following cases and sub-cases were considered:

π(x) =

 1
x, x+ c
x2, x2 + s, x2 + rx, x2 + rx+ s.

(6)

The solutions they obtained were the Al-Salam-Carlitz I, the discrete q-Hermite I, the
big and little q-Laguerre polynomials and the big and little q-Jacobi polynomials - the
q-Bessel polynomials were achieved by taking appropriate limits.
We also mention that the recent manuscript “q-Orthogonal polynomial solutions to

a class of difference equations," by D.J. Galiffa and S.J. Johnston, presents an analysis
of the difference equation

π(x)Dq−1Pn(x) = (αnx+ βn)Pn(x) + γnPn−1(x)

with

(Dq−1f)(x) :=
f(x)− f(x/q)

x− x/q .

The solutions turned out to be the Al-Salam-Carlitz II, the discrete q-Hermite II, the
q-Laguerre and the Stieltjes-Wigert polynomials, as well as q-orthogonal polynomials
that are currently not fully characterized.
Interestingly enough, OPS solutions of (2), for each corresponding case of π(x),

have been determined for the operators T = d/dx,Dq, Dq−1 , but not for the case when
T = Dq. In this paper, we consider Case 1 of (6) (π(x) = 1), from which it follows that
αn = βn = 0 and hence (1). We also mention that, to the very best of our knowledge,
results regarding Cases 2 and 3 of (6) (with T = Dq) do not appear in the literature.
In addition, characterizing Case 1 of [2] is actually equivalent to determining which

Appell sets are also orthogonal. Characterizing Case 1 of [4] is the same as determining
the q-Appell orthogonal sets. Similarly, (1) defines the Dq-Appell Equation. Therefore,
we also determine all of the Dq-Appell sets, as previously discussed.
We now outline the remainder of this paper. In Section 2, we develop some rudi-

mentary results and conventions that are important in our subsequent analysis. In
section 3, we derive the general recursion coeffi cients Bn and Cn of (4) for an OPS
satisfying (1). We then select concrete values for the arbitrary parameters contained
within our coeffi cients, which lead to our solution. We conclude the paper by briefly
stating some open research that stems from this paper.

2 Preliminaries

In our approach to characterizing (1), we make much use of second and third coeffi cients
of Pn(x), as denoted below:

Pn(x) = xn + Snx
n−1 +Rnx

n−2 +O
(
xn−3

)
, n = 1, 2, 3, . . . , (7)



D. J. Galiffa and B. W. Ong 253

with P1(x) = x+ S1. From (4) and (7), we immediately obtain expressions for Sn and
Rn in terms of Bn and Cn.

LEMMA 1. In regard to (4) and (7), the following recurrence relations hold

Sn+1 = Sn +Bn, n = 1, 2, 3, . . . , (8)

Rn+1 = Rn +BnSn − Cn, n = 2, 3, 4, . . . , (9)

with S1 = B0 for n = 0, and R2 = B0B1 − C1 for n = 1.

PROOF. From expanding (4) in terms of (7) we see that

xn+1 + Sn+1x
n +Rn+1x

n−1 +O
(
xn−2

)
= x

(
xn + Snx

n−1 +Rnx
n−2 +O

(
xn−3

))
+Bn

(
xn + Snx

n−1 +Rnx
n−2 +O

(
xn−3

))
−Cn

(
xn−1 + Sn−1x

n−2 +Rn−1x
n−3 +O

(
xn−4

))
.

We obtain our results by comparing coeffi cients of xn and xn−1.
We can readily see that (8) has the solution

Sn+1 =

n∑
k=0

Bk.

The solution to (9) is established in Section 3 of the paper.
We conclude this section with some fundamental results regarding Dq that are used

in Section 3. For these, we call upon the Chebyshev polynomials of the first and second
kind, respectively denoted {Tn(x)}∞n=0 and {Un(x)}∞n=0. It then follows that

Dq(1) = 0, q(x) = 1,

and
DqTn(x) = νnUn−1(x), (10)

where

νn :=
qn/2 − q−n/2
q1/2 − q−1/2 . (11)

3 The Main Result

In this section, we derive the general recursion coeffi cients Bn and Cn of (4) for an OPS
satisfying (1), by utilizing the results of the previous section. From there, we select
concrete values for the arbitrary parameters contained within our coeffi cients, which
lead to our solution. We conclude this section by briefly summarizing some relevant
open research.
To begin, we note that since Dq is linear, in order to evaluate DqPn(x) we only

need to know Dq(xm) for m = 0, 1, 2, . . .. This leads to the proceeding statement.
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THEOREM 1. For any natural number m,

2m−1Dq(xm) = νmUm−1(x) +mνm−2Um−3(x)

+

(
m

2

)
νm−4Um−5(x) +O

(
xm−7

)
.

PROOF. With z = eiθ, we have 2x = z + z−1 so that

(2x)
m

=
(
z + z−1

)m
= zm +mzm−2 +

(
m

2

)
zm−4 + · · ·+mz2−m + z−m

=
(
zm + z−m

)
+m

(
zm−2 + z2−m

)
+

(
m

2

)(
zm−4 + z4−m

)
+ · · ·

= 2

(
Tm(x) +mTm−2(x) +

(
m

2

)
Tm−4(x) + · · ·

)
.

Using (10) we have

Dq(2mxm) = 2

(
νmUm−1(x) +mνm−2Um−3(x) +

(
m

2

)
νm−4Um−5(x) +O

(
xm−7

))
,

where we have used the fact that all negatively indexed Un(x)-terms must be zero.
Since Dq is linear, we complete the proof by dividing both sides of the above equation
by 2.

THEOREM 2. Equation (1) gives rise to the following difference equations in Sn
and Rn, as in Lemma 1:

νn−1Sn = νnSn−1, n = 2, 3, 4, . . . , (12)

νn−2

(
Rn +

n

4

)
= νn

(
Rn−1 +

n− 2

4

)
, n = 3, 4, 5, . . . . (13)

PROOF. The right-hand side of (1) is

γnPn−1(x) = γn
(
xn−1 + Sn−1x

n−2 +Rn−1x
n−3 +O

(
xn−4

))
and the left-hand side is

DqPn(x) = Dq
(
xn + Snx

n−1 +Rnx
n−2 +O

(
xn−3

))
=

1

2n−1
(
νnUn−1(x) + nνn−2Un−3(x) +O

(
xn−5

))
+

Sn
2n−2

(
νn−1Un−2(x) + (n− 1)νn−3Un−4(x) +O

(
xn−6

))
+

Rn
2n−3

(
νn−2Un−3(x) + (n− 2)νn−4Un−5(x) +O

(
xn−7

))
+ · · · .
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After comparing the coeffi cients of xn−1 and noting that the Chebyshev polynomials
of the second kind, {Un(x)}∞n=0, have a leading coeffi cient of 2n, we obtain

γn = νn.

Similarly, comparing coeffi cients of xn−2 establishes (12).
In order to compare the coeffi cients of xn−3, we call upon the formula

Un(x) =

bn2 c∑
r=0

(−1)r
(
n− r
r

)
(2x)

n−2r
.

We then have

Un−1(x) = 2n−1xn−1 − (n− 2)2n−3xn−3 +O
(
xn−5

)
,

which implies that

νnRn−1 =
n

4
νn−2 + νn−2Rn −

(n− 2)

4
νn,

from which (13) follows.
The relation (12), together with the solution to equation (8), imply that Sn = νnB0

and that
Bn = (νn+1 − νn)B0, n = 0, 1, 2, . . . . (14)

We now derive a more explicit form for Rn in terms of R2 by iterating (13), begin-
ning with n = 3.

LEMMA 2. For n ≥ 3, the solution to equation (13) is

Rn =
νnνn−1
ν2

(
R2 +

1

4
−
n−2∑
k=2

ν2
4νkνk+1

)
− n

4
. (15)

PROOF. We prove this statement via induction on n. For n = 3, equation (13)
yields

ν1

(
R3 +

3

4

)
= ν3

(
R2 +

1

4

)
⇒ R3 = ν3

(
R2 +

1

4

)
− 3

4
.

Substituting n = 3 into formula (15), we obtain

R3 =
ν3ν3−1
ν2

(
R2 +

1

4
−

1∑
k=2

ν2
4νkνk+1

)
− 3

4
= ν3

(
R2 +

1

4

)
− 3

4

and the base case is secured.
Now assume the formula holds for n = N − 1, i.e.,

RN−1 =
νN−1νN−2

ν2

(
R2 +

1

4
−
N−3∑
k=2

ν2
4νkνk+1

)
− N − 1

4
.
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Thus, using the above relation and (13), with n = N , we have

RN +
N

4
=

νN
νN−2

(
νN−1νN−2

ν2

(
R2 +

1

4
−
N−3∑
k=2

ν2
4νkνk+1

)
− 1

4

)

=
νNνN−1

ν2

(
R2 +

1

4
−
N−3∑
k=2

ν2
4νkνk+1

− ν2
4νN−2νN−1

)

=
νNνN−1

ν2

(
R2 +

1

4
−
N−2∑
k=2

ν2
4νkνk+1

)
.

This evidently establishes our result.
We now evaluate Cn. Equation (9) of Lemma 1 implies that

Cn = BnSn − (Rn+1 −Rn)

= νn (νn+1 − νn)B20 − (Rn+1 −Rn). (16)

We can further simplify the difference Rn+1 −Rn via Lemma 2 as follows

Rn+1 −Rn =
νn+1
νn−1

Rn −Rn +
νn+1
νn−1

(
n− 1

4

)
− n+ 1

4

=

(
νn+1
νn−1

− 1

)(
Rn +

n

4

)
− 1

4

(
νn+1
νn−1

+ 1

)
=
µnνn
ν2

(
R2 +

1

4
−
n−2∑
k=2

ν2
4νkνk+1

)
− µ1νn

4νn−1
, (17)

with
µn := qn/2 + q−n/2.

The above sum can be written in closed form using a telescoping technique, as seen in
the next statement.

LEMMA 3. With νn as defined in (11), we have

n−2∑
k=2

ν2
4νkνk+1

=
q(1− qn−3)
4(1− qn−1) .

PROOF. From considering the expansion of the rational function below

1− x
(1− xk+1)(1− xk)

=
1

1− xk −
x

1− xk+1 ,

we see that

1

νkνk+1
=

1− q
1− qk q

k
2−

1
2

1− q
1− qk+1 q

k+1
2 −

1
2

= (1− q)
(
qk−

1
2

1− qk −
qk+

1
2

1− qk+1

)
.
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Therefore,

n−2∑
k=2

ν2
4νkνk+1

=
ν2
4

(1− q)
n−2∑
k=2

(
qk−

1
2

1− qk −
qk+

1
2

1− qk+1

)

=
1

4q1/2
(1− q2)

(
q3/2

1− q2 −
qn−

3
2

1− qn−1

)

=
q(1− qn−3)
4(1− qn−1) .

Recalling that R2 = B0B1 − C1 via Lemma 1, we can expand (17) as follows:

Rn+1 −Rn =
(1− q) (1− qn) (q − qn) + 4q

(
1− q2n

)
(B0B1 − C1)

4qn (1− q2) .

Therefore, from expanding (16), we achieve

Cn =

(
1−√q

)
q
1
2−n (1− qn)

(
1 + q

1
2+n

)
(1− q)2

B20

−
(1− q) (1− qn) (q − qn) + 4q

(
1− q2n

)
(B0B1 − C1)

4qn (1− q2) . (18)

We now have the general recursion coeffi cients Bn and Cn, as respectively in (14)
and (18) that an OPS, {Pn(x)}∞n=0, must satisfy in order to solve (1). These coeffi cients
contain the arbitrary parameters B0 and C1. In other words, all q-orthogonal poly-
nomial solutions satisfying the structure equation (1) and the three-term recurrence
relation (4) must have recursion coeffi cients of the form (14) and (18).
We can obtain the recursion coeffi cients for the continuous Rogers’q-Hermite poly-

nomials as a special case of our recursion coeffi cients in (14) and (18) by concretely
selecting B0 = 0 and C1 = (1− q)/4. Namely, with these choices we obtain

Bn ≡ 0 and Cn =
1

4
(1− qn),

which are the desired coeffi cients.
We leave open for consideration the problem of determining all q-OPS that satisfy

the structure equation

π(x)DqPn(x) = (αnx+ βn)Pn(x) + γnPn−1(x)

for π(x) as in Cases 2 and 3 of (6). M. E. H. Ismail also discusses this problem in
[6], cf. eq. (24.7.7). As stated in Section 1, these completed characterizations do not
appear in the literature.
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