A Refinement Of An Integral Inequality For The Polar Derivative Of A Polynomial*

Nisar Ahmad Rather ${ }^{\dagger}$, Sumeera Shafi ${ }^{\ddagger}$

Received 26 August 2017

Abstract

Certain refinements of a recently obtained integral inequality by Rather and Bhat for the polar derivative of a polynomial with restricted zeros are given.

1 Introduction

Let \mathcal{P}_{n} be the set of all complex polynomials $P(z)$ of degree n. It was shown by Turan [12] that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
n \max _{|z|=1}|P(z)| \leq 2 \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{1}
\end{equation*}
$$

Equality in (1) holds for $P(z)=\alpha z^{n}+\beta,|\alpha|=|\beta|$.
Govil [4] showed that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k, k \geq 1$, then

$$
\begin{equation*}
n \max _{|z|=1}|P(z)| \leq\left(1+k^{n}\right) \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{2}
\end{equation*}
$$

The estimate is sharp and equality in (2) holds for $P(z)=\left(z^{n}+k^{n}\right)$.
Malik [7] obtained an extension of (1) in the sense that the left hand side of of (1) is replaced by a factor involving the integral mean of $|P(z)|$ on $|z|=1$ by showing that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq 1$, then for each $q>0$,

$$
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right|
$$

Exremal polynomial is $P(z)=a z^{n}+b,|a|=|b|$.
For the class of polynomials $P \in \mathcal{P}_{n}$ having all their zeros in $|z| \leq k, k \geq 1$, Aziz [1] proved for each $q>0$,

$$
\begin{equation*}
\left.n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left.\left\{\int_{0}^{2 \pi} \mid 1+k^{n} e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{3}
\end{equation*}
$$

[^0]Equality in (3) holds for $P(z)=z^{n}+k^{n}$. In the limiting case when $q \rightarrow \infty$, the inequality (3) reduces to inequality (2). In literature there exist other similiar type of results on polynomial approxmation theory(see $[5,9])$.

For $\alpha \in \mathbb{C}$, the polar derivative $D_{\alpha} P(z)$ of a polynomial $P \in \mathcal{P}_{n}$ is defined by

$$
D_{\alpha} P(z):=n P(z)+(\alpha-z) P^{\prime}(z)
$$

(see $[6,8]$). The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary $P^{\prime}(z)$ of $P(z)$ in the sense that

$$
\operatorname{Lim}_{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

uniformly with respect z for $|z| \leq R, R>0$.
As an extension of inequality (2) to the polar derivative of a polynomial, Aziz and Rather [2] proved that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$,

$$
\begin{equation*}
n(|\alpha|-k) \max _{|z|=1}|P(z)| \leq\left(1+k^{n}\right) \max _{|z|=1}\left|D_{\alpha} P(z)\right| \tag{4}
\end{equation*}
$$

More recently Rather and Bhat [11] extended inequality (3) to the polar derivative of polynomial and obtain a generalization of (4) in the sense that the left hand side of (4) is replaced by a factor involving the integral mean of $|P(z)|$ on $|z|=1$ by showing that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for $|\alpha| \geq k$ and $q>0$,

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\alpha} P(z)\right| \tag{5}
\end{equation*}
$$

and under the same hypothesis, they [11] also proved that

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\} \tag{6}
\end{align*}
$$

where $|\beta| \leq 1$ and $m=\min _{|z|=k}|P(z)|$.
In this paper we first present the following refinement of inequality (5).
THEOREM 1. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n \geq 2$ having all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in C$ with $|\alpha| \geq k$ and for each $q>0$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
\leq & \left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\alpha} P(z)\right|-\phi(k)\left|n a_{0}+\alpha a_{1}\right| \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
\phi(k)=\left(1-1 / k^{2}\right) \text { or }(1-1 / k) \text { according as } n>2 \text { or } n=2 . \tag{8}
\end{equation*}
$$

Equality in (7) holds in the limiting case when $\alpha \rightarrow \infty$ and the extremal polynomial is $P(z)=\left(z^{n}+k^{n}\right)$.

To see this, we divide the two sides of inequality (7) by $|\alpha|$, let $\alpha \rightarrow \infty$ and use the fact that $\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)$, we get

$$
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right|-\phi(k)\left|a_{1}\right|
$$

For the polynomial $P(z)=\left(z^{n}+k^{n}\right), \max _{|z|=1}\left|P^{\prime}(z)\right|=n$ and $a_{1}=0$. By using property of definite of integrals, the left hand side of above inequality equals

$$
n\left\{\int_{0}^{2 \pi}\left|e^{i n \theta}+k^{n}\right|^{q} d \theta\right\}^{1 / q}=n\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}
$$

whereas the right hand side equals

$$
n\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}
$$

Thus the two sides of above inequality are equal. Therefore, the equality in Theorem 1 holds in limiting case when $\alpha \rightarrow \infty$ and the extremal polynomial is $P(z)=\left(z^{n}+k^{n}\right)$. Further if we let $q \rightarrow \infty$ in (7), we get a refinement of inequality (4). We next prove:

THEOREM 2. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n \geq 2$ having all its zeros in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for every $\alpha, \beta \in C$ with $|\alpha| \geq k,|\beta| \leq 1$ and for each $q>0$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
\leq & \left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\}-\phi(k)\left|n a_{0}+\alpha a_{1}\right| \tag{9}
\end{align*}
$$

where $\phi(k)$ is given by (8).

Equality in (9) holds in the limiting case when $|\alpha| \rightarrow \infty$ and the extremal polynomial is $P(z)=\left(z^{n}+k^{n}\right)$ as can be verified as before since $m=0$. For $\beta=0$, Theorem 2 gives the following refinement of Theorem 1.

COROLLARY 1. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n \geq 2$ having all its zeros in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for every $\alpha, \beta \in C$ with
$|\alpha| \geq k,|\beta| \leq 1$ and for each $q>0$,

$$
\begin{aligned}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
\leq & \left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\} \\
& -\phi(k)\left|n a_{0}+\alpha a_{1}\right|
\end{aligned}
$$

where $\phi(k)$ is same as defined in Theorem 1.
Letting $q \rightarrow \infty$ in (9) and chosing the argument of β with $|\beta|=1$ suitably, we obtain the following refinement of inequality (4).

COROLLARY 2. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n \geq 2$ having all its zeros in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for every $\alpha \in C$ with $|\alpha| \geq k$,

$$
\begin{gathered}
n(|\alpha|-k) \max _{|z|=1}|P(z)|+n\left(|\alpha|+1 / k^{n-1}\right) m+\phi(k)\left|n a_{0}+\alpha a_{1}\right| \\
\leq\left(1+k^{n}\right) \max _{|z|=1}\left|D_{\alpha} P(z)\right|
\end{gathered}
$$

where $\phi(k)$ is given by (8).

2 Lemmas

For the proofs of these theorems we need the following results. The first result is due to Frappier, Rahman and Ruscheweyh [3].

LEMMA 1. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n \geq 1$, then for $R \geq 1$,

$$
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)|-\left(R^{n}-R^{n-2}\right)|P(0)|, \text { if } n>1
$$

and

$$
\max _{|z|=R}|P(z)| \leq R \max _{|z|=1}|P(z)|-(R-1)|P(0)| \text {, if } n=1 \text {. }
$$

Next result is due to Rahman and Schmeisser [10].
LEMMA 2. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for $R \geq 1$ and $q>0$,

$$
\left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq C_{q}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q}
$$

where

$$
C_{q}=\frac{\left\{\int_{0}^{2 \pi}\left|1+R^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}} .
$$

3 Proofs of the Theorems

PROOF OF THEOREM 1. By hypothesis all the zeros of $P(z)$ lie in $|z| \leq k$, therefore, all the zeros of $f(z)=P(k z)$ lie in $|z| \leq 1$. Applying inequality (5) with $k=1$ to the polynomial $f(z)$, we get for each $q>0$ and $|\beta| \geq 1$,

$$
n(|\beta|-1)\left\{\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\beta} f(z)\right|
$$

Setting $\beta=\frac{\alpha}{k}$ in above inequality and noting that $|\beta|=\left|\frac{\alpha}{k}\right| \geq 1$, we have

$$
\begin{equation*}
n\left(\frac{|\alpha|}{k}-1\right)\left\{\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right| \tag{10}
\end{equation*}
$$

Let $g(z)=z^{n} \overline{f(1 / \bar{z})}$. Then

$$
|g(z)|=|f(z)| \text { for }|z|=1
$$

and $f(z) \neq 0$ in $|z|<1$. By Lemma 2 applied to the polynomial $g(z)$ with $R=k \geq 1$, it follows that for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|g\left(k e^{i \theta}\right)\right|^{q} \leq B_{q}^{q} \int_{0}^{2 \pi}\left|g\left(e^{i \theta}\right)\right|^{q} d \theta=B_{q}^{q} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{q} d \theta \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{q}=\frac{\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}} \tag{12}
\end{equation*}
$$

Combining (10) and (11), we get for each $q>0$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|g\left(k e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq k B_{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right| \\
& =k\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right| \tag{13}
\end{align*}
$$

Also,

$$
g(z)=z^{n} \overline{f(1 / \bar{z})}=z^{n} \overline{P(k / \bar{z})}
$$

gives for $0 \leq \theta<2 \pi$,

$$
\mid g\left(k e^{i \theta}\left|=\left|k^{n} e^{i n \theta} \overline{P\left(e^{i \theta}\right)}\right|=k^{n}\right| P\left(e^{i \theta}\right) \mid .\right.
$$

Using this in (13), we get

$$
\begin{equation*}
n k^{n}(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq k\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right| \tag{14}
\end{equation*}
$$

Again, noting that $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$ and

$$
\max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right|=\max _{|z|=k}\left|D_{\alpha} P(z)\right|
$$

by Lemma 1 for $R=k \geq 1$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right|=\max _{|z|=k}\left|D_{\alpha} P(z)\right| \leq k^{n-1} \max _{|z|=1}\left|D_{\alpha} P(z)\right|-\left(k^{n-1}-k^{n-3}\right)\left|n a_{0}+\alpha a_{1}\right| \tag{15}
\end{equation*}
$$

if $n>2$ and

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right|=\max _{|z|=k}\left|D_{\alpha} P(z)\right| \leq k \max _{|z|=1}\left|D_{\alpha} P(z)\right|-(k-1)\left|n a_{0}+\alpha a_{1}\right| \tag{16}
\end{equation*}
$$

if $n=2$. Combining (14), (15) and (16), we immediately get the desired result. This completes the proof of Theorem 1 .

The proof of Theorem 2 follows on the lines of proof of Theorem 2 of [11]. However, for the sake of completeness we present a proof.

PROOF OF THEOREM 2. Since $f(z)=P(k z)$ has all its zeros in $|z| \leq 1$, therefore, applying the inequality (6) to the polynomial $f(z)$ (with $k=1$ and α replaced by α / k), we get for each $q>0,|\beta| \leq 1$ and $|\alpha| \geq k$,

$$
\begin{align*}
n\left(\frac{|\alpha|}{k}-1\right) & \left\{\left.\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)+\beta \min _{|z|=1}\right| f(z)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right|-n \min _{|z|=1}|f(z)|\right\} \tag{17}
\end{align*}
$$

Also since

$$
m=\min _{|z|=k}|P(z)|=\min _{|z|=1}|P(k z)|=\min _{|z|=1}|f(z)|
$$

therefore, from (17), we obtain for each $q>0,|\beta| \leq 1$ and $|\alpha| \geq k$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
& \leq k\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right|-n m\right\} \tag{18}
\end{align*}
$$

Moreover, $f(z)=0$ in $|z| \leq 1$ and

$$
m \leq|f(z)| \text { for }|z|=1
$$

it follows by the maximum modulus theorem,

$$
\begin{equation*}
m|z|^{n}<|f(z)| \text { for }|z|>1 \tag{19}
\end{equation*}
$$

We show all the zeros of polynomial $g(z)=f(z)+\beta m$ lie in $|z| \leq 1$ for every β with $|\beta| \leq 1$. This is obvious if $m=0$, that is, if $f(z)$ has a zero on $|z|=1$. Assume that $f(z)$ has no zero on $|z|=1$ so that $m \neq 0$. If there is a point $z=z_{0}$ with $\left|z_{0}\right|>1$ such that $g\left(z_{0}\right)=f\left(z_{0}\right)+\beta m=0$, then we have

$$
\left|f\left(z_{0}\right)\right|=|\beta| m<m\left|z_{0}\right|^{n}, \quad\left|z_{0}\right|>1
$$

a contradiction to (19). Hence, the polynomial $g(z)$ has all its zeros in $|z| \leq 1$ and therefore, the polynomial $h(z)=z^{n} \overline{g(1 / \bar{z})} \neq 0$ in $|z|<1$. Applying Lemma 2 to the polynomial $h(z)$ with $R=k \geq 1$, it follows that for each $q>0$,

$$
\begin{align*}
\int_{0}^{2 \pi}\left|h\left(k e^{i \theta}\right)\right|^{q} d \theta & \leq B_{q}^{q} \int_{0}^{2 \pi}\left|h\left(e^{i \theta}\right)\right|^{q} d \theta=B_{q}^{q} \int_{0}^{2 \pi}\left|g\left(e^{i \theta}\right)\right|^{q} d \theta \\
& =B_{q}^{q} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta \tag{20}
\end{align*}
$$

where B_{q} is the same as given by (12). Using (18) in (20), we obtain for each $q>0$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|h\left(k e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq k\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\frac{\alpha}{k}} f(z)\right|-n m\right\} . \tag{21}
\end{align*}
$$

But

$$
h(z)=z^{n} \overline{g(1 / \bar{z})}=z^{n} \overline{f(1 / \bar{z})}+\bar{\beta} z^{n} m
$$

therefore, for $|z|=1$, we get

$$
\begin{equation*}
|h(k z)|=\left|k^{n} z^{n} \overline{f(1 / k \bar{z})}+\bar{\beta} z^{n} m k^{n}\right|=k^{n}|f(z / k)+\beta m|=k^{n}|P(z)+\beta m| . \tag{22}
\end{equation*}
$$

From (15), (16), (21) and (22), we deduce after short simplication for each $q>0,|\beta| \leq 1$ and $|\alpha| \geq k$,

$$
\begin{aligned}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
\leq & \left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\} \\
& -\phi(k)\left|n a_{0}+\alpha a_{1}\right| .
\end{aligned}
$$

This proves Theorem 2.
Acknowledgment. The authors are highly grateful to the referee for his useful suggestions.

References

[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx., 55(1988), 232-238.
[2] A. Aziz and N. A. Rather, A refinement of a theorem of P.Turan concerning polynomials, J. Math. Ineq. and Appl., 1(1998), 231-238.
[3] C. Frappier, Q. I. Rahman and St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Soc., 288(1985), 69-99.
[4] N. K. Govil, On the derivative of a polynomial, Proc. Amer. Soc., 41(1973), 543546.
[5] G. G. Lorentz, M. V. Golitscchek and Y. Makovoz, Constructive Approximation, Springer, 1996.
[6] M. Marden, Geometry of polynomial, Math. Survey No. 3, Amer. Math. Soc., Providence, RI, 1966.
[7] M. A. Malik, An integral mean estimate for polynomials, Proc. Amer. Soc., 91(1984), 281-284.
[8] G. V. Milvanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World Scientific Publishing Co., Singapore, 1994.
[9] G. V. Milvanovic and Th. M. Rassias(eds.), Analytic Number Theory, Approximation Theory and Special Functions, Springer, New York, 2014.
[10] Q. I. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory, 53(1988), 26-32.
[11] N. A. Rather and F.A. Bhat, Inequalities for the polar derivatives of a polynomial, Applied Math. E-Notes, 17(2017), 231-241.
[12] P. Turán, Über die ableitung von polynomen, Compositio Math., 7(1939), 89-95.

[^0]: *Mathematics Subject Classifications: 30C10, 26D10, 41A17.
 ${ }^{\dagger}$ Department of Mathematics, Kashmir University, Hazratbal, Srinagar, 190006, India
 \ddagger Department of Mathematics, South Campus Kashmir University, Anantnag 192122, India

