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Abstract

Certain refinements of a recently obtained integral inequality by Rather and
Bhat for the polar derivative of a polynomial with restricted zeros are given.

1 Introduction

Let Pn be the set of all complex polynomials P (z) of degree n. It was shown by Turan
[12] that if P ∈ Pn has all its zeros in |z| ≤ 1, then

nmax
|z|=1

|P (z)| ≤ 2 max
|z|=1

|P ′(z)| . (1)

Equality in (1) holds for P (z) = αzn + β, |α| = |β|.
Govil [4] showed that if P ∈ Pn has all its zeros in |z| ≤ k, k ≥ 1, then

nmax
|z|=1

|P (z)| ≤ (1 + kn) max
|z|=1

|P ′(z)| . (2)

The estimate is sharp and equality in (2) holds for P (z) = (zn + kn).
Malik [7] obtained an extension of (1) in the sense that the left hand side of of (1)

is replaced by a factor involving the integral mean of |P (z)| on |z| = 1 by showing that
if P ∈ Pn has all its zeros in |z| ≤ 1, then for each q > 0,

n

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q max

|z|=1
|P ′(z)| .

Exremal polynomial is P (z) = azn + b, |a| = |b|.
For the class of polynomials P ∈ Pn having all their zeros in |z| ≤ k, k ≥ 1, Aziz

[1] proved for each q > 0,

n

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + kneiθ)
∣∣q dθ}1/q max

|z|=1
|P ′(z)| . (3)
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190 A Refinement of An Integral Inequality

Equality in (3) holds for P (z) = zn + kn. In the limiting case when q → ∞, the
inequality (3) reduces to inequality (2). In literature there exist other similiar type of
results on polynomial approxmation theory(see [5, 9]).
For α ∈ C, the polar derivative DαP (z) of a polynomial P ∈ Pn is defined by

DαP (z) := nP (z) + (α− z)P ′(z)

(see [6, 8]). The polynomial DαP (z) is of degree at most n − 1 and it generalizes the
ordinary P ′(z) of P (z) in the sense that

Limα→∞
DαP (z)

α
= P ′(z)

uniformly with respect z for |z| ≤ R, R > 0.
As an extension of inequality (2) to the polar derivative of a polynomial, Aziz and

Rather [2] proved that if P ∈ Pn has all its zeros in |z| ≤ k where k ≥ 1, then for every
α ∈ C with |α| ≥ k,

n (|α| − k) max
|z|=1

|P (z)| ≤ (1 + kn) max
|z|=1

|DαP (z)| . (4)

More recently Rather and Bhat [11] extended inequality (3) to the polar derivative of
polynomial and obtain a generalization of (4) in the sense that the left hand side of
(4) is replaced by a factor involving the integral mean of |P (z)| on |z| = 1 by showing
that if P ∈ Pn has all its zeros in |z| ≤ k where k ≥ 1, then for |α| ≥ k and q > 0,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1
|DαP (z)| (5)

and under the same hypothesis, they [11] also proved that

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ) + βm
∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1
|DαP (z)| − nm/kn−1

}
(6)

where |β| ≤ 1 and m = min|z|=k |P (z)| .
In this paper we first present the following refinement of inequality (5).

THEOREM 1. If P (z) =
∑n
j=0 ajz

j is a polynomial of degree n ≥ 2 having all its
zeros in |z| ≤ k where k ≥ 1, then for every α ∈ C with |α| ≥ k and for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1
|DαP (z)| − φ(k) |na0 + αa1| (7)
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where
φ(k) =

(
1− 1/k2

)
or (1− 1/k) according as n > 2 or n = 2. (8)

Equality in (7) holds in the limiting case when α→∞ and the extremal polynomial is
P (z) = (zn + kn).

To see this, we divide the two sides of inequality (7) by |α|, let α→∞ and use the
fact that limα→∞

DαP (z)
α = P ′(z), we get

n

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1
|P ′(z)| − φ(k) |a1| .

For the polynomial P (z) = (zn + kn), max|z|=1 |P ′(z)| = n and a1 = 0. By using
property of definite of integrals, the left hand side of above inequality equals

n

{∫ 2π

0

∣∣einθ + kn
∣∣q dθ}1/q = n

{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q

whereas the right hand side equals

n

{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q .

Thus the two sides of above inequality are equal. Therefore, the equality in Theorem 1
holds in limiting case when α→∞ and the extremal polynomial is P (z) = (zn + kn).
Further if we let q →∞ in (7), we get a refinement of inequality (4). We next prove:

THEOREM 2. If P (z) =
∑n
j=0 ajz

j is a polynomial of degree n ≥ 2 having all its
zeros in |z| ≤ k where k ≥ 1 and m = min|z|=k |P (z)|, then for every α, β ∈ C with
|α| ≥ k, |β| ≤ 1 and for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ) + βm
∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1
|DαP (z)| − nm/kn−1

}
− φ(k) |na0 + αa1|

(9)

where φ(k) is given by (8).

Equality in (9) holds in the limiting case when |α| → ∞ and the extremal polynomial
is P (z) = (zn + kn) as can be verified as before since m = 0. For β = 0, Theorem 2
gives the following refinement of Theorem 1.

COROLLARY 1. If P (z) =
∑n
j=0 ajz

j is a polynomial of degree n ≥ 2 having all
its zeros in |z| ≤ k where k ≥ 1 and m = min|z|=k |P (z)|, then for every α, β ∈ C with
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|α| ≥ k, |β| ≤ 1 and for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1
|DαP (z)| − nm/kn−1

}
− φ(k) |na0 + αa1|

where φ(k) is same as defined in Theorem 1.

Letting q → ∞ in (9) and chosing the argument of β with |β| = 1 suitably, we
obtain the following refinement of inequality (4).

COROLLARY 2. If P (z) =
∑n
j=0 ajz

j is a polynomial of degree n ≥ 2 having all
its zeros in |z| ≤ k where k ≥ 1 and m = min|z|=k |P (z)|, then for every α ∈ C with
|α| ≥ k,

n (|α| − k) max
|z|=1

|P (z)|+n
(
|α|+ 1/kn−1

)
m+ φ(k) |na0 + αa1|

≤ (1 + kn) max
|z|=1

|DαP (z)|

where φ(k) is given by (8).

2 Lemmas

For the proofs of these theorems we need the following results. The first result is due
to Frappier, Rahman and Ruscheweyh [3].

LEMMA 1. If P (z) =
∑n
j=0 ajz

j is a polynomial of degree n ≥ 1, then for R ≥ 1,

max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)| − (Rn −Rn−2)|P (0)|, if n > 1

and
max
|z|=R

|P (z)| ≤ Rmax
|z|=1

|P (z)| − (R− 1)|P (0)|, if n = 1.

Next result is due to Rahman and Schmeisser [10].

LEMMA 2. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for R ≥ 1 and q > 0,{∫ 2π

0

∣∣P (Reiθ)
∣∣q dθ}1/q ≤ Cq {∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

where

Cq =

{∫ 2π
0

∣∣1 +Rneiθ
∣∣q dθ}1/q{∫ 2π

0
|1 + eiθ|q dθ

}1/q .
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3 Proofs of the Theorems

PROOF OF THEOREM 1. By hypothesis all the zeros of P (z) lie in |z| ≤ k, therefore,
all the zeros of f(z) = P (kz) lie in |z| ≤ 1. Applying inequality (5) with k = 1 to the
polynomial f(z), we get for each q > 0 and |β| ≥ 1,

n (|β| − 1)

{∫ 2π

0

∣∣f(eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q max

|z|=1
|Dβf(z)| .

Setting β = α
k in above inequality and noting that |β| =

∣∣α
k

∣∣ ≥ 1, we have

n

(
|α|
k
− 1

){∫ 2π

0

∣∣f(eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q max

|z|=1

∣∣Dα
k
f(z)

∣∣ (10)

Let g(z) = znf(1/z̄). Then

|g(z)| = |f(z)| for |z| = 1

and f(z) 6= 0 in |z| < 1. By Lemma 2 applied to the polynomial g(z) with R = k ≥ 1,
it follows that for each q > 0,∫ 2π

0

∣∣g(keiθ)
∣∣q ≤ Bqq ∫ 2π

0

∣∣g(eiθ)
∣∣q dθ = Bqq

∫ 2π

0

∣∣f(eiθ)
∣∣q dθ, (11)

where

Bq =

{∫ 2π
0

∣∣1 + kneiθ
∣∣q dθ}1/q{∫ 2π

0
|1 + eiθ|q dθ

}1/q . (12)

Combining (10) and (11), we get for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣g(keiθ)
∣∣q dθ}1/q

≤ kBq
{∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q max

|z|=1

∣∣Dα
k
f(z)

∣∣
= k

{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1

∣∣Dα
k
f(z)

∣∣ . (13)

Also,
g(z) = znf(1/z̄) = znP (k/z̄),

gives for 0 ≤ θ < 2π, ∣∣g(keiθ
∣∣ =

∣∣∣kneinθP (eiθ)
∣∣∣ = kn

∣∣P (eiθ)
∣∣ .
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Using this in (13), we get

nkn (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ k{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1

∣∣Dα
k
f(z)

∣∣ .
(14)

Again, noting that DαP (z) is a polynomial of degree at most n− 1 and

max
|z|=1

∣∣Dα
k
f(z)

∣∣ = max
|z|=k

|DαP (z)| ,

by Lemma 1 for R = k ≥ 1, we have

max
|z|=1

∣∣Dα
k
f(z)

∣∣ = max
|z|=k

|DαP (z)| ≤ kn−1 max
|z|=1

|DαP (z)|−(kn−1−kn−3)|na0+αa1|, (15)

if n > 2 and

max
|z|=1

∣∣Dα
k
f(z)

∣∣ = max
|z|=k

|DαP (z)| ≤ kmax
|z|=1

|DαP (z)| − (k − 1)|na0 + αa1|, (16)

if n = 2. Combining (14), (15) and (16), we immediately get the desired result. This
completes the proof of Theorem 1.

The proof of Theorem 2 follows on the lines of proof of Theorem 2 of [11]. However,
for the sake of completeness we present a proof.

PROOF OF THEOREM 2. Since f(z) = P (kz) has all its zeros in |z| ≤ 1, therefore,
applying the inequality (6) to the polynomial f(z) ( with k = 1 and α replaced by α/k),
we get for each q > 0, |β| ≤ 1 and |α| ≥ k,

n

(
|α|
k
− 1

){∫ 2π

0

∣∣∣∣f(eiθ) + β min
|z|=1

|f(z)|
∣∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q {max

|z|=1

∣∣Dα
k
f(z)

∣∣− n min
|z|=1

|f(z)|
}
. (17)

Also since
m = min

|z|=k
|P (z)| = min

|z|=1
|P (kz)| = min

|z|=1
|f(z)| ,

therefore, from (17), we obtain for each q > 0, |β| ≤ 1 and |α| ≥ k,

n (|α| − k)

{∫ 2π

0

∣∣f(eiθ) + βm
∣∣q dθ}1/q

≤ k
{∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q {max

|z|=1

∣∣Dα
k
f(z)

∣∣− nm} . (18)

Moreover, f(z) = 0 in |z| ≤ 1 and

m ≤ |f(z)| for |z| = 1,
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it follows by the maximum modulus theorem,

m|z|n < |f(z)| for |z| > 1. (19)

We show all the zeros of polynomial g(z) = f(z) + βm lie in |z| ≤ 1 for every β with
|β| ≤ 1. This is obvious if m = 0, that is, if f(z) has a zero on |z| = 1. Assume that
f(z) has no zero on |z| = 1 so that m 6= 0. If there is a point z = z0 with |z0| > 1 such
that g(z0) = f(z0) + βm = 0, then we have

|f(z0)| = |β|m < m|z0|n, |z0| > 1,

a contradiction to (19). Hence, the polynomial g(z) has all its zeros in |z| ≤ 1 and
therefore, the polynomial h(z) = zng(1/z̄) 6= 0 in |z| < 1. Applying Lemma 2 to the
polynomial h(z) with R = k ≥ 1, it follows that for each q > 0,∫ 2π

0

∣∣h(keiθ)
∣∣q dθ ≤ Bqq ∫ 2π

0

∣∣h(eiθ)
∣∣q dθ = Bqq

∫ 2π

0

∣∣g(eiθ)
∣∣q dθ

= Bqq

∫ 2π

0

∣∣f(eiθ) + βm
∣∣q dθ (20)

where Bq is the same as given by (12). Using (18) in (20), we obtain for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣h(keiθ)
∣∣q dθ}1/q

≤ k
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1

∣∣Dα
k
f(z)

∣∣− nm} . (21)

But
h(z) = zng(1/z̄) = znf(1/z̄) + β̄znm,

therefore, for |z| = 1, we get

|h(kz)| =
∣∣∣knznf(1/kz̄) + β̄znmkn

∣∣∣ = kn |f(z/k) + βm| = kn |P (z) + βm| . (22)

From (15), (16), (21) and (22), we deduce after short simplication for each q > 0, |β| ≤ 1
and |α| ≥ k,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ) + βm
∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1
|DαP (z)| − nm/kn−1

}
− φ(k) |na0 + αa1| .

This proves Theorem 2.
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