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Abstract

Certain refinements of a recently obtained integral inequality by Rather and
Bhat for the polar derivative of a polynomial with restricted zeros are given.

1 Introduction

Let P,, be the set of all complex polynomials P(z) of degree n. It was shown by Turan
[12] that if P € P, has all its zeros in |z| < 1, then

i [P(2)] < 2max |P(2)]. 1)
Equality in (1) holds for P(z) = az™ + 3, |a| = |8].
Govil [4] showed that if P € P, has all its zeros in |z| < k,k > 1, then

max |P()] < (1K) max| P/(2) 2)
zZ|= z|=1
The estimate is sharp and equality in (2) holds for P(z) = (2™ + k™).

Malik [7] obtained an extension of (1) in the sense that the left hand side of of (1)

is replaced by a factor involving the integral mean of |P(z)| on |z| = 1 by showing that
if P € P,, has all its zeros in |z| < 1, then for each g > 0,

1/q

27 ) 1/q 27 )
n {/ |P(619)|qd0} < {/ 11+ ele|qd9} ‘m‘a)i |P'(2)].
0 0 z|=

Exremal polynomial is P(z) = az™ + b, |a| = |b].
For the class of polynomials P € P,, having all their zeros in |z| < k,k > 1, Aziz
[1] proved for each g > 0,

n {/0% 1) d@}l/q < {/O% 11+ &))" de}l/q max|P'(z)].  (3)

|z]=1
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190 A Refinement of An Integral Inequality

Equality in (3) holds for P(z) = z™ + k™. In the limiting case when ¢ — oo, the
inequality (3) reduces to inequality (2). In literature there exist other similiar type of
results on polynomial approxmation theory(see [5, 9]).

For a € C, the polar derivative D, P(z) of a polynomial P € P, is defined by

DoP(z) :=nP(z) + (o — 2)P'(2)

(see [6, 8]). The polynomial D, P(z) is of degree at most n — 1 and it generalizes the
ordinary P’(z) of P(z) in the sense that

D, P
Lima— oo () _ P'(2)
«

uniformly with respect z for |z] < R, R > 0.

As an extension of inequality (2) to the polar derivative of a polynomial, Aziz and
Rather [2] proved that if P € P, has all its zeros in |z| < k where k > 1, then for every
a € C with |a| > k,

n (la| — k) max | P(z)

|z|=1

<(1+k") max |DoP(2)]. (4)

|2l

More recently Rather and Bhat [11] extended inequality (3) to the polar derivative of
polynomial and obtain a generalization of (4) in the sense that the left hand side of
(4) is replaced by a factor involving the integral mean of |P(z)| on |z| = 1 by showing
that if P € P, has all its zeros in |z| < k where k > 1, then for |a| > k and ¢ > 0,

n(ja| — k) {/0% |P(e“’)|qd0}1/q < {/O% 1+ knei0|qd9}1/qmaxDaP(z)| (5)

|z|=1
and under the same hypothesis, they [11] also proved that

1/q

n(|a| — k) {/0% |P(e') + pm|* da}

27 1/q
< {/ |1+ k;"ew|q d9} {|m|a>§ |DoP(2)] — nm/k”_l} (6)
0 z|=

where [3] < 1 and m = min,— |P(2)] .
In this paper we first present the following refinement of inequality (5).

THEOREM 1. If P(2) = }_7_ja;2 is a polynomial of degree n > 2 having all its
zeros in |z| < k where k > 1, then for every o € C with |a| > k and for each ¢ > 0,

n(ja| — k) {/0% |P(e“’)|qd9}

o 1/q
<{ / |1+k"e”|qd9} max |DaP(2)| = 6(k) Inao + aar]  (7)
0 z|=

1/q
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where
¢(k) = (1—1/k*) or (1—1/k) according as n > 2 or n = 2. (8)
Equality in (7) holds in the limiting case when o — oo and the extremal polynomial is

P(z) = (2" + k™).

To see this, we divide the two sides of inequality (7) by |al, let @ — 0o and use the

D, P(z)
a

fact that limy— oo = P'(z), we get

2 _ 1/q 2 _ 1/q
n{/o ’P(e“‘))‘qdﬁ} < {/0 ’1+k"ele‘qd9} mi)§|P’(z)| — (k) |aa] .

|2l

For the polynomial P(z) = (2" + k™), max ;= |[P'(2)] = n and a; = 0. By using
property of definite of integrals, the left hand side of above inequality equals

2 1/q 27 ' 1/q
n{/ |em9—|—k"|qd9} :n{/ |1—|—k"e’9{qd9}
0 0

whereas the right hand side equals

27
n{/ |1 +k”ei“’\qd9}
0

Thus the two sides of above inequality are equal. Therefore, the equality in Theorem 1
holds in limiting case when o — oo and the extremal polynomial is P(z) = (2™ + k™).
Further if we let ¢ — oo in (7), we get a refinement of inequality (4). We next prove:

1/4q

THEOREM 2. If P(z) = 3°7_, ajzl is a polynomial of degree n > 2 having all its

zeros in |z| < k where £ > 1 and m = min;— [P(2)|, then for every o, € C with
la] >k, |8] <1 and for each g > 0,

n(la] - k) {/02” |P(*) +/3myqd9}1/q

27 1/q
<{ [T eweaol L Dap() - nnn i} - 660 o +
0 2=
(9)
where ¢(k) is given by (8).
Equality in (9) holds in the limiting case when |a| — oo and the extremal polynomial

is P(z) = (2™ + k™) as can be verified as before since m = 0. For § = 0, Theorem 2
gives the following refinement of Theorem 1.

COROLLARY 1. If P(z) = Y."_,a;2’ is a polynomial of degree n > 2 having all

7=0
its zeros in |z| < k where k£ > 1 and m = min|,|—; |P(2)|, then for every a, 8 € C with
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la] >k, |8] <1 and for each g > 0,

n(jal — k) {/O% {P(ew)r’de}

2m 1/q
S{/ |1+k"ew|qd0} {ma)§|DaP(z)| —nm/k"l}
0 2=

— o(k) [nag + aa, |

1/q

where ¢(k) is same as defined in Theorem 1.

Letting ¢ — oo in (9) and chosing the argument of 8 with || = 1 suitably, we
obtain the following refinement of inequality (4).

COROLLARY 2. If P(z2) = Z;L:o a;z’ is a polynomial of degree n > 2 having all
its zeros in |z| < k where & > 1 and m = min|;— |P(2)|, then for every a € C with
laf = &,

(o] = k) max [P(2)| 0 (Ja| + 1/K ) m-+ (k) Inao + e
< (14 1) max [Do P(2)
z|l=

where ¢(k) is given by (8).

2 Lemmas

For the proofs of these theorems we need the following results. The first result is due
to Frappier, Rahman and Ruscheweyh [3].

LEMMA 1. If P(2) = Y7 a;2’ is a polynomial of degree n > 1, then for R > 1,

max [P(2)] < B max | P(2)] - (B” — R"=)|P(0)], if n>1
zZ|= z|l=

and

max [P(2)] < Rmax |P()] = (R~ DIPO)] if n=1.

Next result is due to Rahman and Schmeisser [10].

LEMMA 2. If P € P, and P(z) # 0 in |z| < 1, then for R > 1 and ¢ > 0,

{/o% [P (R6”>|qd9}l/q <C, {/02 |P<ew>|qde}1/q

{f(f” |1+R”ei9|qd9}1/q

- ) 1/q
{ 5 \1+629\Qd9}

where

Cy =
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3 Proofs of the Theorems
PROOF OF THEOREM 1. By hypothesis all the zeros of P(z) lie in |z| < k, therefore,

all the zeros of f(z) = P(kz) lie in |z| < 1. Applying inequality (5) with & = 1 to the
polynomial f(z), we get for each ¢ > 0 and || > 1,

2 ' 1/q 27 ‘ 1/q
n (|8l —1) {/0 |f(ew)|qd9} < {/0 |1+eze|qd9} gl‘i)ﬂD[jf(Z)‘.

Setting 3 = ¢ in above inequality and noting that |3| = |%| > 1, we have

n (“Z' _ 1) {/0% |f(e“’)\qda}l/q < {/0% 1 +ei"|qd9}1/q max |Dg £(2)] (10

Let g(z) = 2" f(1/%). Then

lg(2)| = |f(2)] for |2| =1

and f(z) #01in |z| < 1. By Lemma 2 applied to the polynomial g(z) with R =%k > 1,
it follows that for each ¢ > 0,

27 27 27
/ lg(ke®)|] ng/O |g(e’0)|qd0:BgA 1£(e)|" do, (1)

0

where
. 1/
{7 1+ wme|ao} ™

) 1/q °
{ 02”\1+619|Qd9}

Combining (10) and (11), we get for each ¢ > 0,

n (ja] — k) {/02“ yg(ke“’)y"de}

27 ) 1/q
ngq{/o |1+e”|qd9} max | Dy ()

B, =

1/q

27 1/q
= neif | max |Da f(2)].
_k{/o |1+ E™e”| da} Izlil|Dkf( )| (13)

Also,

9(z) = 2" f(1/z) = 2" P(k/Z),
gives for 0 < 0 < 2w,

lg(ke'?| =

kneinem’ —kn |P(€i9)| )
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Using this in (13), we get

2m ) 1/q 2 ) 1/q
nk”(|a|k){/0 |P(619)|qd0} Sk{/o |1+k"e“’{qd0} Iril‘i)ﬂD%f(zﬂ.

(14)
Again, noting that D, P(z) is a polynomial of degree at most n — 1 and
‘mla>§|D « f(2)| = max|D P(z)],
by Lemma 1 for R = k > 1, we have
max ‘D f(z ’ = maX |D P(z)| < k"1 ‘m‘zi)i |Do P(2)|— (k"' =k""%)|nag+aas |, (15)
if n > 2 and
max |Da f(z)| = max ax | Do P(2)| < klmla>§ |DoP(2)] — (k — 1)|nag + aay|, (16)

if n = 2. Combining (14), (15) and (16), we immediately get the desired result. This
completes the proof of Theorem 1.

The proof of Theorem 2 follows on the lines of proof of Theorem 2 of [11]. However,
for the sake of completeness we present a proof.

PROOF OF THEOREM 2. Since f(z) = P(kz) has all its zeros in |z| < 1, therefore,

applying the inequality (6) to the polynomial f(z) ( with & = 1 and « replaced by «/k),
we get for each ¢ > 0,8 <1 and |a] > &,

(L )

§{/027r|1+ew‘qd9}l/q{max’D £(2)] = n min |f( )|}. (17)

|z|=1

f(€?) + B min |£(2)

Also since

m = min |P(2)] = min |P(k2)] = min|£(:)].

therefore, from (17), we obtain for each ¢ > 0,|8| <1 and |a| > k,

wtiad =1 { [ 15" + g as}

2 I 1/q
gk{/o |1+ €| d@} {lmlmﬂDf |nm} (18)

Moreover, f(z) =01in |z| <1 and

1/q

m < |f(z)| for |2 =1,
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it follows by the maximum modulus theorem,
m|z|" < |f(2)| for |z| > 1. (19)

We show all the zeros of polynomial g(z) = f(z) + fm lie in |z| < 1 for every 8 with
|B| < 1. This is obvious if m = 0, that is, if f(z) has a zero on |z| = 1. Assume that
f(2) has no zero on |z| = 1 so that m # 0. If there is a point z = zg with |z9| > 1 such
that g(z0) = f(20) + fm = 0, then we have

|f(z0)| = [Blm < mlzo|", 20| > 1,

a contradiction to (19). Hence, the polynomial g(z) has all its zeros in |z| < 1 and
therefore, the polynomial h(z) = 2"¢(1/Z) # 0 in |z| < 1. Applying Lemma 2 to the
polynomial h(z) with R =k > 1, it follows that for each ¢ > 0,

27 27 27
/0 |h(kei9)|qd9§Bg/0 |h(ei9)|qd9:qu/0 |g(ei0)|qd0
27
= Bg/o |£(e) + Bm]|" do (20)

where B, is the same as given by (12). Using (18) in (20), we obtain for each ¢ > 0,

n(lal — k) {/0% ’h(ke“’)|qd0}

™ 1/4
Sk{/Q ll—l—kneie‘qd@} {maX|D%f(z)’ —nm}. (21)
0

|z|=1

1/q

But

h(z) = 2"g(1/2) = 2" f(1/2) + Bz"m,
therefore, for |z| = 1, we get

|h(k2)| = |k"2" f(1/kZ) + Bz"mk™| = k™ |f(2/k) + Bm| = k" |P(2) + Bm|.  (22)

From (15), (16), (21) and (22), we deduce after short simplication for each ¢ > 0, |8] < 1
and |a| > k,

1/q

n(la| - k) {/:ﬂ |P(") +ﬂm|qd0}

21 1/q
g{/ |1+l€”ew|qd9} {ma)§|DaP(z)| —nm/k"l}
0 =

|2

— o(k) |nap + aaq] .

This proves Theorem 2.
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