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Abstract

In this paper we introduce Korovkin subsets for a positive linear operator
T in the sense of summation process. The characterization of Korovkin subsets
of C0(X), closure of the set of all functions with compact support on X, for a
positive linear operator in the sense of summation process is obtained where X
is a locally compact Hausdorff space and has a countable base. We also provide
some examples that are Korovkin subsets for the identity operator in the sense
of summation process.

1 Introduction

The key moment in the development of approximation theory is Weierstrass’ theorem.
The problem has been studied by many famous mathematicians. Bernstein [7] has
succeeded to give the most elegant and short proof of this theorem via Bernstein poly-
nomials. Another important instrument in approximation theory by positive linear
operators is the Korovkin theory. In 1953, Korovkin [9] proved a well known approxi-
mation theorem: if {Tn} is a sequence of positive linear operators on C[0, 1], the set of
all continuous functions on [0, 1], such that

∥∥Tnek − ek∥∥→ 0 as n→∞ for k = 0, 1, 2,
where ek(x) = xk and ‖f‖ := max

x∈[0,1]
|f(x)|, then {Tn} converges strongly to the identity

operator. Takahasi [13, 14] has studied Korovkin type theorems with a different view.
Namely, he has answered the question of convergence of {Tn}, a sequence of positive
linear operators, to a positive linear operator T different from identity operator. This
theory has close connections with real analysis, functional analysis and summability
theory. Especially classical Korovkin theory has been generalized with the use of dif-
ferent convergences in summability theory [11, 12, 15]. Korovkin type theorems have
also been extended by various authors [2, 4, 8, 10] with the aim of finding other subsets
of functions, called Korovkin subsets, which satisfy the same property as {1, e1, e2}.

In this paper, we follow the idea of Altomare [3] with the use of summability theory,
especially summation process. We define the Korovkin subsets for a positive linear
operator T in the sense of summation process. The characterization of such subsets
of C0(X), where X is a locally compact Hausdorff space and has a countable base, is
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obtained. Finally, we provide examples of Korovkin subsets for the identity operator
in the sense of summation process.

Let A := {A(n)} = {a(n)kj } be a sequence of infinite matrices with non-negative real
entries. A sequence {Tj} of positive linear operators from C0(X) into C0(Y ) is called
an A -summation process in C0(X) if {Tjf} is A -summable to f for every f ∈ C0(X),
i.e.,

lim
k→∞

∥∥∥∥ ∞∑
j=1

a
(n)
kj Tjf − f

∥∥∥∥ = 0, uniformly in n, (1)

where it is assumed that the series in (1) converges for each k, n and f . Recall that a
sequence of real numbers {xj} is said to be A -summable [6] to L if

lim
k→∞

∞∑
j=1

a
(n)
kj xj = L, uniformly in n ∈ N.

Also, A is said to be a regular method of matrices if

lim
j→∞

xj = L implies lim
k→∞

∑∞
j=1 a

(n)
kj xj = L, uniformly in n ∈ N. It has been shown in

[6] that the method A := {A(n)} is regular if and only if

(i) for each j ∈ N, lim
k→∞

a
(n)
kj = 0, uniformly in n.

(ii) lim
k→∞

∑
j

a
(n)
kj = 1, uniformly in n.

(iii) for each n, k ∈ N,
∑
j

∣∣∣a(n)kj

∣∣∣ < ∞, and there exist integers N,M such that∑
j

∣∣∣a(n)kj

∣∣∣ < M for k ≥ N and all n = 1, 2, ....

DEFINITION 1. Let f : E → R be a real function on a topological space E. The
set

supp(f) := {x : f(x) 6= 0}

is called the support of f , where K is the closure of K ⊂ E.

Let C(E) be the set of all continuous functions on E. If E is locally compact, then
we will designate by Cc(E) the set of all f ∈ C(E) with compact support supp(f).
A function f ∈ C(E) lies in Cc(E) just if there is some compact subset of E in the
complement of which f is identically zero. We denote by Cb(E) and C0(E) all bounded
continuous real functions on E and the closure of Cc(E) with respect to the usual sup-
norm, respectively.

Clearly,
Cc(E) ⊂ C0(E) ⊂ Cb(E) ⊂ C(E)

since an f ∈ Cc(E) is bounded on its compact support, hence throughout E.
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Now let us recall positive bounded Radon measures which play key role in our main
theorem. A positive bounded Radon measure is a positive linear functional on C0(X)
where X is a locally compact Hausdorff space. The set of all of positive bounded Radon
measures is denoted by M+

b . It is obvious that every µ ∈ M+
b , that is, every positive

linear functional µ : C0(X)→ R is continuous with respect to the norm which is given
by

‖µ‖ := sup
{
|µ(f)| : f ∈ C0(X), |f | ≤ 1

}
.

The following result is known as Urysohn’s lemma [5].

PROPOSITION 1. Let E be a locally compact space and let U be an open neigh-
bourhood of the compact subset B. Then Cc(E) contains a function ψ which satisfies

0 ≤ ψ ≤ 1, ψ(B) = {1} and supp(ψ) ⊂ U.

We now give the definition of Korovkin subsets of E for a positive linear operator
T in the sense of summation process which is our main definition in the paper.

DEFINITION 2. Let A := {A(n)} be a sequence of infinite matrices with non-
negative real entries. Let E and F be Banach lattices and consider a positive linear
operator T : E → F . A subset M of E is said to be a Korovkin subset of E for T in
the sense of summation process if for every sequence {Lj} of positive linear operators
from E into F satisfying

(i) sup
n,k

∑
j

a
(n)
kj ‖Lj‖ <∞.

(ii) lim
k→∞

∑
j

a
(n)
kj Lj(g) = T (g) uniformly in n, for every g ∈ M, it follows that, for

every f ∈ E,

lim
k→∞

∑
j

a
(n)
kj Lj(f) = T (f) uniformly in n.

2 Main Results

In this section we give our main theorem which characterizes the Korovkin subsets of
C0(X) for a positive linear operator T in the sense of summation process and give some
results which can be deduced from our main theorem. We also provide examples of
Korovkin subsets for the identity operator in the sense of summation process.

Now we are ready to give our main theorem.

THEOREM 1. Let A := {A(n)} be a regular method of infinite matrices with
non-negative real entries. Let X and Y be locally compact Hausdorff spaces. Further,
assume that X has a countable base and Y is metrizable. Given a positive linear
operator T : C0(X) → C0(Y ) and a subset M of C0(X), the following statements are



E. Taş 173

equivalent:
(a) M is a Korovkin subset of C0(X) for T in the sense of summation process.
(b) If µ ∈ M+

b (X) and y ∈ Y satisfy µ(g) = T (g)(y) for every g ∈ M , then µ(f) =
T (f)(y) for every f ∈ C0(X).

PROOF. Assume that µ ∈ M+
b (X) and y ∈ Y such that µ(g) = T (g)(y) for every

g ∈M . Let us take a decreasing countable base (Uj) of open neighbourhoods of y in Y .
From Proposition 1 if we consider the compact set {y}, we choose ψj ∈ Cc(Y ) such that:
0 ≤ ψj ≤ 1, ψj(y) = 1 and also supp(ψj) ⊂ Uj . Let us define Lj : C0(X)→ C0(Y ) by

Lj(f) := µ(f)ψj + vjT (f)(1− ψj) for every f ∈ C0(X)

where v = (vj) is non-negative, bounded sequence such that the sequence {|vj − 1|} is
A -summable to 0, but not ordinary convergent to 0. Observe that {Lj} is a sequence
of positive linear operators and also∑

j

a
(n)
kj ‖Lj‖ ≤

∑
j

a
(n)
kj (‖µ‖+ |vj |‖T‖) ≤ (‖µ‖+ ‖v‖‖T‖)

∑
j

a
(n)
kj

which implies supn,k
∑
j a

(n)
kj ‖Lj‖ < ∞. On the other hand, since T (g) ∈ C0(Y ) for

every g ∈M , for every ε > 0, there exists v ∈ N such that for every z ∈ Uv∣∣T (g)(z)− T (g)(y)
∣∣ ≤ ε.

Thus one can get for every z ∈ Uv that

|T (g)(y)− vjT (g)(z)| = |T (g)(y)− vjT (g)(z)− T (g)(z) + T (g)(z)|
≤ |T (g)(z)− T (g)(y)|+ |T (g)(z)||vj − 1|
≤ ε+ |T (g)(z)||vj − 1|.

Moreover for every j ≥ v and z ∈ Y , we have∣∣∣∑
j

a
(n)
kj Lj(g)(z)− T (g)(z)

∣∣∣
=
∣∣∣µ(g)

∑
j

a
(n)
kj ψj(z) + T (g)(z)

∑
j

a
(n)
kj vj − T (g)(z)

∑
j

a
(n)
kj vjψj(z)− T (g)(z)

∣∣∣
=
∣∣∣∑
j

a
(n)
kj ψj(z)

[
µ(g)− vjT (g)(z)

]
+ T (g)(z)

[∑
j

a
(n)
kj vj − 1

]∣∣∣
≤
∑
j

a
(n)
kj ψj(z)

∣∣T (g)(y)− vjT (g)(z)
∣∣+
∣∣T (g)(z)

∣∣∣∣∣∣∑
j

a
(n)
kj vj − 1

∣∣∣∣.
Hence using the last inequality we get∣∣∣∑j a

(n)
kj Lj(g)(z)−T (g)(z)

∣∣∣≤
∣∣T (g)(z)

∣∣∣∣∑
j a

(n)
kj vj−1

∣∣ , z /∈ Uj∑
j a

(n)
kj (ε+|T (g)(z)||vj−1|)+

∣∣T (g)(z)
∣∣∣∣∑

j a
(n)
kj vj−1

∣∣ , z ∈ Uj
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and therefore we have

lim
k

∥∥∥∑
j

a
(n)
kj Lj(g)− T (g)

∥∥∥ = 0, uniformly in n,

i.e., lim
k

∑
j a

(n)
kj Lj(g) = T (g) uniformly in n on M . Since M is a Korovkin subset for

T in the sense of summation process, it is obtained that for every f ∈ C0(X),

lim
k→∞

∑
j

a
(n)
kj Lj(f) = T (f) uniformly in n.

Therefore we get lim
k→∞

∑
j

a
(n)
kj Lj(f)(y) = T (f)(y) uniformly in n and for every k ∈ N.

On the other hand observe that µ(f) = Lj(f)(y) for every f ∈ C0(X). It follows that
we obtain µ(f) = T (f)(y) for every f ∈ C0(X). This completes the proof of (b).

Conversely if µ ∈M+
b (X) and y ∈ Y satisfy µ(g) = T (g)(y) for every g ∈M , then

µ(f) = T (f)(y) for every f ∈ C0(X). Observe that

if µ ∈M+
b (X) and µ(g) = 0 for every g ∈M, then µ = 0. (2)

Since X has a countable base, every bounded sequence in M+
b (X) has a vaguely con-

vergent subsequence. Consider now a sequence {Lj} of positive linear operators from
C0(X) into C0(Y ) satisfying properties (i) and (ii) of Definition 2 and suppose that for

some f0 ∈ C0(X) the sequence {
∑
j

a
(n)
kj Lj(f0)}nk does not converge for k uniformly in

n. So there exist ε0 > 0, a sequence
∑
j

a
(nk)
rk,j

Lj and a sequence (yk) in Y and {nk} ⊂ N

such that ∣∣∣∑
j

a
(nk)
rk,j

Lj(f0)(yk)− T (f0)(yk)
∣∣∣ ≥ ε0 for every k ≥ 1. (3)

We have two cases: (yk) is converging to the point at infinity of Y or not (see [1],
p. 18). In the first case, since (yk) converges to the point at infinity of Y we get
limk→∞ h(yk) = 0 for every h ∈ C0(Y ). For every k ≥ 1, define µk ∈M+

b (X) by

µk(f) :=
∑
j

a
(nk)
rk,j

Lj(f)(yk) (f ∈ C0(X)).

From hypothesis, we have ‖µk‖ ≤
∑
j

a
(nk)
rk,j
‖Lj‖ < ∞. Since (µk) is bounded, we may

assume that there exists µ ∈ M+
b (X) such that µk → µ vaguely (If necessary the

sequence µk is replaced with a suitable subsequence). On the other hand if g ∈ M ,
then for each k ≥ 1 we get

|µk(g)| ≤
∣∣∣∑
j

a
(nk)
rk,j

Lj(g)(yk)− T (g)(yk)
∣∣∣+
∣∣T (g)(yk)

∣∣
≤
∥∥∥∑

j

a
(nk)
rk,j

Lj(g)− T (g)
∥∥∥+

∣∣T (g)(yk)
∣∣
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which implies µ(g) = lim
k
µk(g) = 0. From (2) we obtain µ(f0) = 0 as well and hence

for any k ≥ 1 we have∣∣∣∑
j

a
(nk)
rk,j

Lj(f0)(yk)− T (f0)(yk)
∣∣∣ =

∣∣µk(f0)− T (f0)(yk)
∣∣→ 0.

This contradicts (3). In the second case we assume that the sequence (yk) does not
converge to the point at infinity of Y . By replacing it with a suitable subsequence, we
may assume that it converges to some y ∈ Y . Let us consider for any k ≥ 1

µk(f) :=
∑
j

a
(nk)
rk,j

Lj(f)(yk) (f ∈ C0(X)).

As in the first case, by the same reasoning we may assume that there exists µ ∈M+
b (X)

such that µk → µ vaguely. Moreover since for every g ∈M ,∣∣∣µk(g)− T (g)(yk)
∣∣∣ ≤∑

j

a
(nk)
rk,j
‖Lj(g)− T (g)‖ → 0,

we have µ(g) = T (g)(y). So (b) implies µ(f0) = T (f0)(yk), i.e.

lim
k→∞

[∑
j

a
(nk)
rk,j

Lj(f0)(yk)− T (f0)(yk)
]

= 0

which contradicts (3).

If we replace T : X → Y with the identity operator IX : X → X in the above
theorem, one can observe the following

COROLLARY 1. Let A := {A(n)} be a regular method of infinite matrices with
non-negative real entries. Let X be a locally compact Hausdorff space with a countable
base, which is then metrizable as well. For a given subset M of C0(X), the following
statements are equivalent:

(i) M is a Korovkin subset of C0(X) for identity operator IX in the sense of sum-
mation process.

(ii) If µ ∈ M+
b (X) and x ∈ X satisfying µ(g) = g(x) for every g ∈ M , then µ(f) =

f(x) for every f ∈ C0(X) i.e. µ = IX .

Combining our main theorem and Theorem 5.5 of [3], we have the following:

COROLLARY 2. Under the assumptions of Theorem 1, the following statements
are equivalent:

(i) M is a Korovkin subset of C0(X) for T .

(ii) M is a Korovkin subset of C0(X) for T in the sense of summation process.
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Let X and Y be locally compact Hausdorff spaces. A mapping ϕ : Y → X is said
to be proper if for every compact subset K ⊂ X, ϕ−1(K) := {y ∈ Y : ϕ(y) ∈ K}, the
pre-image of K, is compact in Y . In this case, foϕ ∈ C0(Y ) for every f ∈ C0(X). Now
we can give the following as a consequence of Theorem 1.

COROLLARY 3. Let A := {A(n)} be a regular method of infinite matrices with
non-negative real entries. Let Y be a metrizable locally compact Hausdorff space. If
M is a Korovkin subset of C0(X) for IX in the sense of summation process, then M is
a Korovkin subset in the sense of summation process for any positive linear operator
T : C0(X)→ C0(Y ) of the form

T (f) := λ(foϕ), (f ∈ C0(X))

where λ ∈ Cb(Y ), λ ≥ 0 and ϕ : Y → X is a proper mapping.

Now we can give some examples of Korovkin subsets for the identity operator in the
sense of summation process following our Corollary 1 and Corollary 6.7 and Proposition
6.8 of [3]. Let λ1, λ2, λ3 ∈ R and 0 < λ1 < λ2 < λ3. Then

• {eλ1
, eλ2

, eλ3
} is a Korovkin subset of C0(X) in the sense of summation process

where eλk
(x) := xλk for every x ∈ X := (0, 1] and k = 1, 2, 3.

• {e−λ1 , e−λ2 , e−λ3} is a Korovkin subset of C0(X) in the sense of summation
process where e−λk

(x) := x−λk for every x ∈ X := [1,∞) and k = 1, 2, 3.

• {fλ1
, fλ2

, fλ3
} is a Korovkin subset of C0(X) in the sense of summation process

where fλk
(x) := e−λkx for every x ∈ X := [0,∞) and k = 1, 2, 3.

Using Corollary 2 one can obtain all results given in Chapter 6 of [3] for Korovkin
subset in the sense of summation process.
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