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Abstract

In the present note, by defining two new fractional difference operators, we

determine the explicit formulas for any arbitrary power of double band matrices.

Subsequently, adaptive algorithms for finding the arbitrary powers of both upper

and lower double band matrices have been developed. Respective programming

codes for the new algorithms have been constructed and verified by implementing

them in MATLAB. Some counter examples are also given in support to the new

programming codes.

1 Introduction

Let R and N be the set of all real numbers and positive integers, respectively. Let
A = (aij) (i, j ∈ N) be a non singular matrix of order n, (n ∈ N) i.e.,

A :=















a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
...

...
. . .

...
an1 an2 an3 . . . ann















.

Then, matrix A can be factorized as the product of a unit lower triangular matrix L
and an upper triangular matrix U , i.e., A = LU .
Suppose the matrices L(a, b) = (lij) and U(a, b) = (uij) denote the lower and upper
double band matrices, respectively, then for a 6= 0, we write

lij =











a for j = i,

b for j = i − 1,

0 otherwise,

and uij =











a for j = i,

b for i = j − 1,

0 otherwise.

Let w be the space of all real or complex valued sequences, and X and Y be two
subspaces of w, then we define a matrix mapping A : X → Y , as

(Ax)n :=
∑

k

ankxk; (n ∈ N). (1)
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In fact, for x = (xk) ∈ X, Ax is called the A-transform of x provided the series in (1)
converges for each n ∈ N. Moreover, the matrix A = (aij) (i, j ∈ N) is also regarded
as a linear operator. One of the most effective and powerful tools for the study of
summability and matrix theory is the development of several difference operators, their
related sequence spaces and their various applications. The applications of difference
operators become more apparent in study of several summable matrices and related
properties mostly involving inversion, powers and norm of matrices in Linear algebra
and the study of derivatives of arbitrary orders and their dynamic natures in Fractional
calculus. These operators are also being used in study of spectral properties of different
matrices and related eigenvalue problems in operator theory and many others. The idea
of difference operators of order one was initially provided by Kızmaz [1] and Altay and
Basar [2] and further these were extended to the case of positive integer m by Et and
Colak [3] and Ahmad and Mursaleen [4]. On generalization of the difference matrix ∆,
Altay and Başar [10] (see also [11–14]) defined the double band matrix B(r, s), where
0 6= r, s ∈ R and studied the related sequence spaces and their spectral properties.
For more detail on difference sequence spaces one may refer [15–28]. Recently, for a
proper fraction α, Baliarsingh [6](see also [5, 7, 8]) defined fractional difference operator
∆α, which not only generalizes most of difference operators defined earlier, but it also
provides some new and interesting ideas regarding fractional power of certain matrices,
fractional derivatives of some functions and many others. Motivated by the earlier
works, the main objective of this note is to define a fractional difference operator analog
to the double band matrix B(r, s) and establish certain results on finding powers of
these matrices. Let x = (xk) be any sequence in w and a(6= 0), b be two real numbers,
then we define the generalized difference operators which generate matrices L(a, b) and
U(a, b) as

(L(a, b)x)k = axk + bxk+1; (k ∈ N)

and

(U(a, b)x)k = axk + bxk−1,; (k ∈ N).

Particularly, the matrices L(a, b) and U(a, b) generalize the difference operators of order
one ∆ and ∆(1) (see [1, 2]), respectively under the case a = 1 and b = −1, where

∆ =















1 −1 0 0 . . .
0 1 −1 0 . . .
0 0 1 −1 . . .
0 0 0 1 . . .
...

...
...

...
. . .















and ∆(1) =















1 0 0 0 . . .
−1 1 0 0 . . .
0 −1 1 0 . . .
0 0 −1 1 . . .
...

...
...

...
. . .















.

It is also observed that the mth power of matrices ∆ and ∆(1) are being calculated by
taking difference operators ∆m and ∆(m) (see[3, 4, 5]) for all m ∈ N, respectively. One
of the interesting calculations involving arbitrary power (α ∈ R) of these matrices are
also being calculated by taking difference operators ∆α and ∆(α) (see[6, 7, 8]). Now,
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it is trivial to check that

(∆)α =















1 −α α(α−1)
2! −α(α−1)(α−2)

3! . . .

0 1 −α
α(α−1)

2! . . .
0 0 1 −α . . .
0 0 0 1 . . .
...

...
...

...
. . .















and (∆(1))α = ((∆)α)
T
,

where AT represents the transposition of A. On generalizing all the difference operators
discussed above, we define

(Uα(a, b)x)k =

∞
∑

i=0

Γ(α + 1)

i!Γ(α − i + 1)
aα−ibixk+i, (k ∈ N) (2)

(Lα(a, b)x)k =

∞
∑

i=0

Γ(α + 1)

i!Γ(α − i + 1)
aα−ibixk−i, (k ∈ N), (3)

where Γ(α) denotes the well known Gamma function of a real number α and α /∈
{0,−1,−2,−3 . . .}. For any integral values of α, Eqns.(2) and (3) reduce to the finite
sums. It is remarked that the difference sequences defined in (2) and (3) generate the
operator ∆ for α = 1, a = 1, b = −1, B(r, s) for α = 1, a = r, b = s, ∆α for a = 1,
b = −1 and ∆m for α = m, a = 1, b = −1. Now, we state some numerical examples on
certain sequences via these operators.

EXAMPLES.

• Let us take a sequence x = (xk) = e = (1, 1, 1, . . .). Then the difference sequences
(Uα(a, b)x)k → (a + b)α and (Lα(a, b)x)k → (a + b)α as k → ∞.

• Suppose we consider a sequence x = (xk) with xk = k for all k ∈ N and b = −a,
then by straight forward calculations, we have

(Uα(a,−a)x)k =

∞
∑

i=0

Γ(α + 1)

i!Γ(α − i + 1)
aα−i(−a)i(k + i)

= aα
∞

∑

i=0

Γ(α + 1)

i!Γ(α − i + 1)
(−1)i(k + i)

= kaα
∞

∑

i=0

(−1)i Γ(α + 1)

i!Γ(α − i + 1)
+ aα

∞
∑

i=0

(−1)i Γ(α + 1)

i!Γ(α − i + 1)
i.

In fact, both of the difference sequences (Uα(a,−a)x)k and (Lα(a,−a)x)k go to
zero as k → ∞ provided α is either an integer or a real number greater than one.

• Let us consider a sequence x = (xk) with xk = (−1)k for all k ∈ N . Then the
difference sequences (Uα(a, b)x)k = 0 for a = b and (Uα(a, b)x)k = (−1)k(2a)α

for b = −a.
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Recently, Baliarsingh et al. [9] studied the fractional powers of double band matrices
using fractional difference operators. Also, in that paper certain theoretical results on
finding arbitrary powers of a matrix have been discussed. The main objective of this
paper is to give a technical and numerical treatment to these results.

Using [9] now, we state following theorems involving the integral and non integral
powers of double band matrices U(r, s) and L(r, s).

LEMMA 1. Let the lower double band matrix L = (lnk) be defined by

lnk =







r for k = n,
s for k = n − 1,
0 otherwise,

then for α ∈ R, Lα = (lαnk) is given by

lαnk =







rα for k = n,
Γ(α+1)

(n−k)!Γ(α−n+k+1)r
α−n+ksn−k for 0 ≤ k < n,

0, for k > n.

LEMMA 2. Let the upper double band matrix U = (unk) be defined by

unk =







r for k = n,
s for k = n + 1,
0 otherwise,

then for α ∈ R, Uα = (uα
nk) is given by

uα
nk =







rα for k = n,
Γ(α+1)

(k−n)!Γ(α−k+n+1)r
α−k+nsk−n for k > n,

0 for 0 ≤ k < n.

2 Main Results

In this section, we provide some applications of Lemmas 1 and 2.

THEOREM 1. The arbitrary power α of the lower double band matrix L(1, c) is
given by Lα(1, c) = (lαnk), where

lαnk =







1 for k = n,
Γ(α+1)

(n−k)!Γ(α−n+k+1)c
n−k for 0 ≤ k < n,

0 for k > n.

PROOF. The proof is a direct consequence of Lemma 1.
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THEOREM 2. The arbitrary power α of the lower double band matrix U(a, b) is
given by Uα(a, b) = (uα

nk), where

uα
nk =







aα for k = n,
Γ(α+1)

(k−n)!Γ(α−k+n+1)a
α−k+nbk−n for k > n,

0 for 0 ≤ k < n.

PROOF. The proof follows from Lemma 2.

THEOREM 3. Let A be a nonsingular matrix of order n and A = LU , then for any
real α 6= 0,−1, we have

Aα 6= UαLα. (4)

However, if A = L(1, c)U(a, b), then the explicit formula for A−1 = a−1
ij is given by

a−1
ij =

{

(−1)i+ja−1−j+ibj−i +
∑n

k=j+1(−1)i+ja−1−k+ibk−ick−j for i ≤ j,

(−1)i+jci−ja−1 +
∑n

k=i+1(−1)(i+j)a−1−k+ibk−ick−j for i > j.

PROOF. The entire proof is divided into two parts. In the first part, supporting
to Eqn (4) we have mentioned the following counter example: Consider a non singular
matrix A of order 5, where

A =













9 2 0 0 0
45 19 2 0 0
0 45 19 2 0
0 0 45 19 2
0 0 0 45 19













.

On LU factorization of the tridiagonal type matrix A, we have A = LU, where

L =













1 0 0 0 0
5 1 0 0 0
0 5 1 0 0
0 0 5 1 0
0 0 0 5 1













and U =













9 2 0 0 0
0 9 2 0 0
0 0 9 2 0
0 0 0 9 2
0 0 0 0 9













.

Clearly, using Theorems 1 and 2, square roots of the matrix L and U are being calcu-
lated directly and

L1/2 =













1 0 0 0 0
5/2 1 0 0 0

−25/8 5/2 1 0 0
125/16 −25/8 5/2 1 0

−3225/128 125/16 −25/8 5/2 1
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and

U1/2 =













3 1/3 −1/54 1/486 −5/17496
0 3 1/3 −1/54 1/486
0 0 3 1/3 −1/54
0 0 0 3 1/3
0 0 0 0 3













.

It can be easily shown that
A1/2 6= U1/2L1/2.

However, the equality holds in Eq.(4) for α = −1. In fact, for any natural number α the
equality sign holds provided the matrices L and U commute. Secondly, from Theorems
1 and 2, we can calculate the explicit inverses of L and U which are mentioned below:

l−1
nk =







1 for k = n,
(−1)n−kcn−k for 0 ≤ k < n,
0 for k > n,

and

u−1
nk =







1/a for k = n,
(−1)k−na−1−k+nbk−n for k > n,
0 for 0 ≤ k < n.

Now, using above results in Eq.(4), it is calculated that the inverse of A as A−1 = (a−1
ij ),

where

a−1
ij =

n
∑

k=0

u−1
ik l−1

kj =

n
∑

k=j

u−1
ik l−1

kj = u−1
ij l−1

jj +

n
∑

k=j+1

u−1
ik l−1

kj

=(−1)i+ja−1−j+ibj−i +
n

∑

k=j+1

(−1)i+ja−1−k+ibk−ick−j for i ≤ j.

Similarly,

a−1
ij =

n
∑

k=0

u−1
ik l−1

kj =

n
∑

k=i

u−1
ik l−1

kj = u−1
ii l−1

ij +

n
∑

k=i+1

u−1
ik l−1

kj

=(−1)i+jci−ja−1 +

n
∑

k=i+1

(−1)(i+j)a−1−k+ibk−ick−j for all i > j.

This completes the proof.

3 Applications

As an application of above theorems, we have developed algorithms for finding arbitrary
powers of double band matrices. Subsequently, required MATLAB programming for
both the algorithms have been constructed.

Algorithm 1:
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Step 1 : Input n, a, b, α and A = (aij) where aij = a for i = j, b for j = i − 1 and 0
otherwise.

Step 2 : Compute Sn−k(L) = Γ(α+1)
(n−k)!Γ(α−n+k+1)

aα−n+kbn−k.

Step 3 : Compute L−1(a, b) = (l−1
nk ), where l−1

nk = Sn−k(L) for 1 ≤ k < n and aα for
k = n and 0 for k > n.

Algorithm 2:

Step 1 : Input n, a, b, α and A = (aij) where aij = a for i = j, b for i = j − 1 and 0
otherwise.

Step 2 : Compute Sk−n(U) = Γ(α+1)
(k−n)!Γ(α−k+n+1)a

α−k+nbk−n.

Step 3 : Compute U−1(a, b) = (u−1
nk ), where u−1

nk = Sk−n(U) for k > n and aα for
k = n and 0 for for 1 ≤ k < n .

Total number of operations for both of the algorithms is O(n2) in worse case, where
n is the size of the matrix. Especially, step 2 in both of the algorithms are involved
O(n2) multiplication operations. Since these algorithms are unstable under the case
a = 0, it is strictly suggested to choose the matrices with non zero diagonal elements.
From both of the algorithms it is calculated that

‖L(a, b)‖ = ‖U(a, b)‖ ≤ |aα|

n
∑

k=0

Γ(α + 1)

(k)!Γ(α − k + 1)

∣

∣

∣

∣

b

a

∣

∣

∣

∣

k

.

In fact, if |a| < |b| the above matrix norms are unbounded for larger matrices (n >>).
Therefore, above algorithms are numerically stable under the suitable condition |a| ≥
|b|.
Programming for lower double band matrices:

n=input ( ’ Enter the va lue o f n : ’ ) ;
a=input ( ’ Enter the va lue o f a : ’ ) ;
b=input ( ’ Enter the va lue o f b : ’ )
alpha=input ( ’ Enter the va lue o f alpha : ’ ) ;

matrix power=ze ro s (n ) ; f o r row=1:n
f o r column=1:n

i f ( column==row)
matrix power ( row , column)=a . ˆ alpha ;

e l s e i f ( column>row)
matrix power ( row , column)=0;

e l s e
z=row−column ;
z1=f a c t o r i a l ( z ) ;

matrix power ( row , column)=
gamma( alpha +1)/( z1∗gamma( alpha−z+1))∗a . ˆ ( alpha−z )∗b . ˆ z ;

end
end

end matrix power
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Programming for upper double band matrices:

c l c
n=input ( ’ Enter the va lue o f n : ’ ) ;

a=input ( ’ Enter the va lue o f a : ’ ) ;
b=input ( ’ Enter the va lue o f b : ’ ) ;
alpha=input ( ’ Enter the va lue o f alpha : ’ ) ;

matrix power=ze ro s (n ) ;
f o r row=1:n

f o r column=1:n
i f ( column==row)

matrix power ( row , column)=a . ˆ alpha ;
e l s e i f ( row>column)

matrix power ( row , column)=0;
e l s e

z=column−row ;
z1=f a c t o r i a l ( z ) ;

matrix power ( row , column)=
gamma( alpha +1)/( z1∗gamma( alpha−z+1))∗a . ˆ ( alpha−z )∗b . ˆ z ;

end
end

end matrix power

In supporting to both of the above codings, here two examples are mentioned which
have been verified by MATLAB software.
Example 1:

Enter the va lue o f n : 5
Enter the va lue o f a : 4
Enter the va lue o f b : 9
Enter the va lue o f alpha : 1/2

matrix power =
2 .0000 0 0 0 0
2 .2500 2 .0000 0 0 0

−1.2656 2 .2500 2 .0000 0 0
1 .4238 −1.2656 2 .2500 2 .0000 0

−2.0023 1 .4238 −1.2656 2 .2500 2 .0000

Example 2:

Enter the va lue o f n : 5
Enter the va lue o f a : 18

Enter the va lue o f b : 16 Enter the va lue o f alpha : 1/5
matrix power =

1 .7826 0 .3169 −0.1127 0 .0601 −0.0374
0 1 .7826 0 .3169 −0.1127 0 .0601
0 0 1 .7826 0 .3169 −0.1127
0 0 0 1 .7826 0 .3169
0 0 0 0 1 .7826
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Conclusion: Fractional difference operators analog to double band matrices have
been introduced using which new algorithms for integral and non integral powers of
double band matrices have been proposed. The corresponding MATLAB programming
has been constructed. As one of its applications, it is being used for finding the inverse
of tridiagonal type matrices. Furthermore, using the proposed difference operators, one
may also define related sequence spaces and study their topological and geometrical
properties. The spectral properties of these operators are yet to be studied which may
generalize the notion of fine spectra of all double band matrices and difference operators
of any arbitrary orders.
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