A New Way Of Computing The Orthogonal Projection Onto The Intersection Of Two Hyperplanes In A Finite-Dimensional Hilbert Space*

Williams López ${ }^{\dagger}$

Received 1 August 2017

Abstract

In this work, we present and analyze a new way for computing the orthogonal projection onto the intersection of two hyperplanes in a finite-dimensional Hilbert space via the method of alternating projections and a line search.

1 Introduction

Let H be a Hilbert space with inner product \langle,$\rangle and let M$ be a closed subspace of H. The orthogonal projection onto M will be denoted by P_{M}. In particular, P_{M} is a linear, self-adjoint, idempotent operator, and $P_{M}(x)$ is the best approximation or the nearest point to x from M :

$$
\left\|x-P_{M}(x)\right\|=d(x, M)
$$

where $d(x, M)=\inf \{\|x-y\|: y \in M\},\|z\|^{2}=\langle z, z\rangle$, for any $z \in H . P_{M}$ is called the orthogonal projection onto M because of the characterising property

$$
\left\langle x-P_{M}(x), y\right\rangle=0, \quad \text { for any } y \in M
$$

In other words, $x-P_{M}(x)$ is orthogonal to M. Using the notation

$$
\begin{equation*}
M^{\perp}=\{y \in H:\langle y, x\rangle=0, \text { for any } x \in M\} \tag{1}
\end{equation*}
$$

we see that $x-P_{M}(x) \in M^{\perp}$. The set M^{\perp} defined in (1) is a subspace of H and it is called the orthogonal complement of M.

LEMMA 1 (von Neumann [17]). Let M_{1} and M_{2} be two closed subspaces in H. Then

$$
P_{M_{2}} P_{M_{1}}=P_{M_{1}} P_{M_{2}} \Longleftrightarrow P_{M_{2}} P_{M_{1}}=P_{M_{1} \cap M_{2}}
$$

In words, $P_{M_{1}}$ and $P_{M_{2}}$ commute if and only if their composition is also an orthogonal projection. In particular, von Neumann was interested in the case in which $P_{M_{1}}$ and $P_{M_{2}}$ dit not commute, proving the following:

[^0]THEOREM 1 (von Neumann [17]). If M_{1} and M_{2} are closed subspaces in H, then for each $x_{0} \in H$,

$$
\lim _{k \rightarrow \infty}\left(P_{M_{2}} P_{M_{1}}\right)^{k}\left(x_{0}\right)=P_{M_{1} \cap M_{2}}\left(x_{0}\right)
$$

This result was later extended to more than 2 subspaces.

THEOREM 2 (I. Halperin [12]). If M_{1}, \ldots, M_{p} are closed subspaces in H, then for each $x_{0} \in H$,

$$
\lim _{k \rightarrow \infty}\left(P_{M_{p}} P_{M_{p-1}} \ldots P_{M_{1}}\right)^{k}\left(x_{0}\right)=P_{\cap_{i=1}^{p} M_{i}}\left(x_{0}\right)
$$

Theorem 2 suggests an algorithm, called the method of alternating projections (or MAP for short); see [7, 8], which can be described as follows: for any $x_{0} \in H$, set

$$
\left\{\begin{align*}
x_{0}^{k} & =x_{p}^{k-1} \tag{2}\\
x_{i}^{k} & =P_{M_{i}}\left(x_{i-1}^{k}\right) \quad i=1,2, \ldots, p
\end{align*}\right.
$$

for $k \in Z^{+}$, with initial value $x_{p}^{0}=x_{0}$. It follows from Theorem 2 that for any $i=1,2, \ldots p$, the sequence $\left\{x_{i}^{k}\right\}$ generated by (2) converges to $P_{M}\left(x_{0}\right)$.

```
Algorithm 1 MAP
Require: \(x_{0} \in H\)
Ensure: \(P_{\cap_{i=1}^{p} M_{i}}\left(x_{0}\right)\)
    for \(k=0,1, \ldots\) do
    \(x_{k+1}=P_{M_{p}} P_{M_{p-1}} \cdots P_{M_{1}}\left(x_{k}\right)\)
    end for
```

The MAP has an r-linear rate of convergence that can be very slow when the angles between the subspaces are small (see, e.g., [8]). In fact, for the case of two subspaces, Franchetti and Light [9] and Bauschke, Borwein, and Lewis [1] gave examples to illustrate the possible slowness of MAP. Consequently, several acceleration schemes have been proposed (see, e.g. $[15,16,2,4,5,3,10,13]$).

In Hilbert spaces of dimension n the hyperplanes are special cases of translated closed subspaces of dimension $n-1$. Thus, in this paper we proof that if M_{1} and M_{2} are closed subspaces of the Hilbert space H, and if the dimension of M_{2}^{\perp} is 1 , then in order to know the projection $P_{M_{1} \cap M_{2}}\left(x_{0}\right)$ it is enough to know the iterates x_{2}^{1} and x_{2}^{2} generated by (2), which is equivalent to knowing $x_{1}=P_{M_{2}} P_{M_{1}}\left(x_{0}\right)$ and $x_{2}=P_{M_{2}} P_{M_{1}}\left(x_{1}\right)$ generated by Algorithm 1. This result is obtained by using the Gearhart and Koshy scheme given in [10].

The rest of this paper is organized as follows. In section 2 we describe the Gearhart and Koshy scheme. In section 3 we give a closed formula depending of the two iterates from the Algorithm 1 to find the projection on the intersection of two closed subspaces, then we apply this result to find the intersection of two hyperplanes in a finite-dimensional Hilbert space.

2 The Gearhart and Koshy Scheme

We will give a brief explanation of the Gearhart and Koshy scheme. Let us denote x_{0} the given starting point and by Q the composition of the projection operators, i.e, $Q=P_{M_{p}} P_{M_{p-1}} \cdots P_{M_{1}}$, where $P_{M_{i}}$ is the projection operator onto M_{i} for all i. Let x_{k} the k th iterate, and let $Q x_{k}$ be the next iterate after applying a sweep of MAP. The idea is to search along the line through the points x_{k} and $Q x_{k}$ to obtain the point closest to the solution $x^{*}=P_{\cap_{i=1}^{p} M_{i}}\left(x_{0}\right)$. Let us represent any point on this line as

$$
x^{k}(\alpha)=\alpha Q x_{k}+(1-\alpha) x_{k}=x_{k}+\alpha\left(Q x_{k}-x_{k}\right),
$$

for some real number α. Let α_{k} be the value of α for which this point is closest to x^{*}. Then,

$$
\begin{equation*}
\left\langle x^{k}\left(\alpha_{k}\right)-x^{*}, x_{k}-Q x_{k}\right\rangle=0 \tag{3}
\end{equation*}
$$

Now, since $x^{*} \in \cap_{i=1}^{p} M_{i}$ and the projections $P_{M_{i}}$ are self-adjoint, then

$$
\left\langle x^{*}, Q x_{k}\right\rangle=\left\langle P_{M_{1}} P_{M_{2}} \cdots P_{M_{p}} x^{*}, x_{k}\right\rangle=\left\langle x^{*}, x_{k}\right\rangle
$$

Consequently, $\left\langle x^{*}, x_{k}-Q x_{k}\right\rangle=0$, and so x^{*} can be eliminated from (3) to obtain

$$
\left\langle x^{k}\left(\alpha_{k}\right), x_{k}-Q x_{k}\right\rangle=0
$$

Solving for α_{k} gives

$$
\begin{equation*}
\alpha_{k}=\frac{\left\langle x_{k}, x_{k}-Q x_{k}\right\rangle}{\left\|x_{k}-Q x_{k}\right\|^{2}} . \tag{4}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
x_{k}+\alpha_{k}\left(Q x_{k}-x_{k}\right) \tag{5}
\end{equation*}
$$

where α_{k} is given in (4), is the point in the line connecting $Q x_{k}$ and x_{k} closest to the solution x^{*}.

3 Projecting onto the Intersection of Two Subspaces

Let M_{1} and M_{2} be two closed subspaces in the Hilbert space H. In this section we will always assume that $P_{M_{2}} P_{M_{1}}(x) \neq P_{M_{1} \cap M_{2}}(x)$ for all $x \in H$. As a consequence, the iterates generated by (2) are all different.

THEOREM 3. Let M_{1} and M_{2} be two closed subspaces in H, and $x_{0} \in H$. Let $x_{1}^{1}=P_{M_{1}}\left(x_{0}\right), x_{2}^{1}=P_{M_{2}}\left(x_{1}^{1}\right), x_{1}^{2}=P_{M_{1}}\left(x_{2}^{1}\right)$ and $x_{2}^{2}=P_{M_{2}}\left(x_{1}^{2}\right)$ be generated by (2). If $x_{1}^{1}+\alpha\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right)$ for some $\alpha \in \mathbb{R}$, then

$$
P_{M_{1} \cap M_{2}}\left(x_{0}\right)=x_{1}^{1}+\alpha\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right) .
$$

PROOF. Let $\alpha \in \mathbb{R}$ be such that

$$
\begin{equation*}
z=x_{1}^{1}+\alpha\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right) \tag{6}
\end{equation*}
$$

Therefore $z \in M_{1} \cap M_{2}$. We will establish that $z=P_{M_{1} \cap M_{2}}\left(x_{0}\right)$. For it is enough to show that $z-x_{0}$ is orthogonal to $M_{1} \cap M_{2}$. We have that $x_{1}^{1}-x_{0}=P_{M_{1}}\left(x_{0}\right)-x_{0}$ is orthogonal to M_{1}, and so in particular $x_{1}^{1}-x_{0}$ is orthogonal to $M_{1} \cap M_{2}$. Since $x_{2}^{1}-x_{1}^{1}=P_{M_{2}}\left(x_{1}^{1}\right)-x_{1}^{1}$ is orthogonal to M_{2}, then $x_{2}^{1}-x_{1}^{1}$ is orthogonal to $M_{1} \cap M_{2}$. Since $x_{1}^{2}-x_{2}^{1}=P_{M_{1}}\left(x_{2}^{1}\right)-x_{2}^{1}$ is orthogonal to M_{1}, then $x_{1}^{2}-x_{2}^{1}$ is orthogonal to $M_{1} \cap M_{2}$.

Therefore, for any $w \in M_{1} \cap M_{2}$, we have that

$$
\left\langle x_{1}^{2}-x_{1}^{1}, w\right\rangle=\left\langle x_{1}^{2}-x_{2}^{1}, w\right\rangle+\left\langle x_{2}^{1}-x_{1}^{1}, w\right\rangle=0
$$

and hence $x_{1}^{2}-x_{1}^{1}$ is orthogonal to $M_{1} \cap M_{2}$. Now, using (6),

$$
z-x_{1}^{1}=\alpha\left(x_{1}^{2}-x_{1}^{1}\right)
$$

and so $z-x_{1}^{1}$ is also orthogonal to $M_{1} \cap M_{2}$. Finally, for any $w \in M_{1} \cap M_{2}$,

$$
\left\langle z-x_{0}, w\right\rangle=\left\langle z-x_{1}^{1}, w\right\rangle+\left\langle x_{1}^{1}-x_{0}, w\right\rangle=0
$$

and the result is established.
THEOREM 4. Let M_{1} and M_{2} be two closed subspaces in H, and $x_{0} \in H$. Let $x_{1}^{1}, x_{2}^{1}, x_{1}^{2}$ and x_{2}^{2} be generated by (2). Then $x_{1}^{1}+\alpha\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right)$ for some $\alpha \in \mathbb{R}$, if and only if $\left\{x_{2}^{1}-x_{1}^{1}, x_{2}^{2}-x_{1}^{2}\right\}$ is a linearly dependent set of vectors.

PROOF. Let us consider the lines

$$
l_{1}=\left\{x_{1}^{1}+\alpha\left(x_{1}^{2}-x_{1}^{1}\right): \alpha \in \mathbb{R}\right\} \quad \text { and } l_{2}=\left\{x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right): \alpha \in \mathbb{R}\right\}
$$

Then

$$
x_{1}^{1}+\alpha\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right) \text { for some } \alpha \in \mathbb{R} \Longleftrightarrow l_{1} \cap l_{2} \neq \emptyset
$$

But

$$
\begin{align*}
x_{1}^{1}+\alpha\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right) & \Longleftrightarrow x_{2}^{1}-x_{1}^{1}=\alpha\left(x_{1}^{2}-x_{1}^{1}\right)-\alpha\left(x_{2}^{2}-x_{2}^{1}\right) \\
& \Longleftrightarrow x_{2}^{1}-x_{1}^{1}=\alpha\left(x_{1}^{2}-x_{1}^{1}-x_{2}^{2}+x_{2}^{1}\right) . \tag{7}
\end{align*}
$$

On the other hand, observe that

$$
l_{1}=\left\{x_{1}^{2}+\beta\left(x_{1}^{2}-x_{1}^{1}\right): \beta \in \mathbb{R}\right\} \text { and } l_{2}=\left\{x_{2}^{2}+\beta\left(x_{2}^{2}-x_{2}^{1}\right): \beta \in \mathbb{R}\right\}
$$

Then

$$
x_{1}^{2}+\beta\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{2}+\beta\left(x_{2}^{2}-x_{2}^{1}\right) \text { for some } \beta \in \mathbb{R} \Longleftrightarrow l_{1} \cap l_{2} \neq \emptyset .
$$

But

$$
\begin{align*}
x_{1}^{2}+\beta\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{2}+\beta\left(x_{2}^{2}-x_{2}^{1}\right) & \Longleftrightarrow x_{2}^{1}-x_{1}^{1}=\alpha\left(x_{2}^{2}-x_{1}^{2}\right)-\beta\left(x_{2}^{2}-x_{2}^{1}\right) \\
& \Longleftrightarrow x_{2}^{2}-x_{1}^{2}=\beta\left(x_{1}^{2}-x_{1}^{1}-x_{2}^{2}+x_{2}^{1}\right) . \tag{8}
\end{align*}
$$

If $x_{1}^{1}+\alpha\left(x_{1}^{2}-x_{1}^{1}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right)$ for some $\alpha \in \mathbb{R}$, then $l_{1} \cap l_{2} \neq \emptyset$ and from (7) and (8) it follows that $\left\{x_{2}^{1}-x_{1}^{1}, x_{2}^{2}-x_{1}^{2}\right\}$ is a linearly dependent set of vectors. If $\left\{x_{2}^{1}-x_{1}^{1}, x_{2}^{2}-x_{1}^{2}\right\}$ is a linearly dependent set of vectors, then $x_{2}^{1}-x_{1}^{1}=\lambda\left(x_{2}^{2}-x_{1}^{2}\right)$, for some $\lambda \in \mathbb{R}$. We have that $\lambda \neq 0$, otherwise $P_{M_{2}} P_{M_{1}}\left(x_{0}\right)=P_{M_{1} \cap M_{2}}\left(x_{0}\right)$, and $\lambda \neq 1$, otherwise the lines l_{1} and l_{2} would be parallel and as a consequence the sequence $\left\{x_{2}^{k}\right\}$ does not converge. Then

$$
\begin{aligned}
x_{1}^{2}-x_{1}^{1}-x_{2}^{2}+x_{2}^{1} & =x_{2}^{1}-x_{1}^{1}-\left(x_{2}^{2}-x_{1}^{2}\right) \\
& =\lambda\left(x_{2}^{2}-x_{1}^{2}\right)-\left(x_{2}^{2}-x_{1}^{2}\right) \\
& =(\lambda-1)\left(x_{2}^{2}-x_{1}^{2}\right) .
\end{aligned}
$$

Hence $x_{2}^{2}-x_{1}^{2}=1 /(\lambda-1)\left(x_{1}^{2}-x_{1}^{1}-x_{2}^{2}+x_{2}^{1}\right)$ and from (8) the result is established.
COROLLARY 1. Let M_{1} and M_{2} be two closed subspaces in H, and $x_{0} \in H$. Suppose that M_{2}^{\perp} is a one-dimensional subspace. Let x_{2}^{1} and x_{2}^{2} be generated by (2). Then

$$
P_{M_{1} \cap M_{2}}\left(x_{0}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right) \text { for some } \alpha \in \mathbb{R} .
$$

PROOF. We have that $x_{2}^{1}-x_{1}^{1}=P_{M_{2}}\left(x_{1}^{1}\right)-x_{1}^{1} \in M_{2}^{\perp}$ and $x_{2}^{2}-x_{1}^{2}=P_{M_{2}}\left(x_{1}^{2}\right)-$ $x_{1}^{2} \in M_{2}^{\perp}$. Since M_{2}^{\perp} is a one-dimensional subspace, then $\left\{x_{2}^{1}-x_{1}^{1}, x_{2}^{2}-x_{1}^{2}\right\}$ is a linearly dependent set of vectors. From Theorem 4 and Theorem 3 it follows that $P_{M_{1} \cap M_{2}}\left(x_{0}\right)=x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right)$, for some $\alpha \in \mathbb{R}$.

THEOREM 5. Let M_{1} and M_{2} be two closed subspaces in H, and $x_{0} \in H$. Suppose that M_{2}^{\perp} is a one-dimensional subspace. Let x_{2}^{1} and x_{2}^{2} be generated by (2). Then

$$
P_{M_{1} \cap M_{2}}\left(x_{0}\right)=x_{2}^{1}+\left(\left\langle x_{2}^{1}, x_{2}^{1}-x_{2}^{2}\right\rangle /\left\|x_{2}^{1}-x_{2}^{2}\right\|^{2}\right)\left(x_{2}^{2}-x_{2}^{1}\right)
$$

PROOF. From Corollary 1 it follows that $P_{M_{1} \cap M_{2}}\left(x_{0}\right) \in\left\{x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right): \alpha \in \mathbb{R}\right\}$. From (4) and (5) it follows that $x_{2}^{1}+\left(\left\langle x_{2}^{1}, x_{2}^{1}-x_{2}^{2}\right\rangle /\left\|x_{2}^{1}-x_{2}^{2}\right\|^{2}\right)\left(x_{2}^{2}-x_{2}^{1}\right)$ is the point in the line $\left\{x_{2}^{1}+\alpha\left(x_{2}^{2}-x_{2}^{1}\right): \alpha \in \mathbb{R}\right\}$ closest to $P_{M_{1} \cap M_{2}}\left(x_{0}\right)$. Therefore

$$
P_{M_{1} \cap M_{2}}\left(x_{0}\right)=x_{2}^{1}+\left(\left\langle x_{2}^{1}, x_{2}^{1}-x_{2}^{2}\right\rangle /\left\|x_{2}^{1}-x_{2}^{2}\right\|^{2}\right)\left(x_{2}^{2}-x_{2}^{1}\right)
$$

EXAMPLE 1. We consider the following two closed subspaces in the space of square real matrices $\mathbb{R}^{2 \times 2}$, with the Frobenius norm $\|A\|_{F}^{2}=\langle A, A\rangle=\operatorname{trace}\left(A^{T} A\right)$:

$$
M_{1}=\left\{A=\left(A_{i j}\right) \in \mathbb{R}^{2 \times 2}: A^{T}=A\right\} \text { and } M_{2}=\left\{A=\left(A_{i j}\right) \in \mathbb{R}^{2 \times 2}: A_{12}=0\right\}
$$

Clearly M_{1}^{\perp} and M_{2}^{\perp} are one-dimensional closed subspaces. In that case the projections onto each of the individual subspaces M_{i} are simple to compute. If $A=\left(A_{i j}\right) \in \mathbb{R}^{2 \times 2}$ then

$$
P_{M_{1}}(A)=\left(A^{T}+A\right) / 2 \quad \text { and } \quad P_{M_{2}}(A)=\left(\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right)
$$

We will use the Theorem 5 for finding the projection of

$$
A_{0}=\left(\begin{array}{ll}
3 & 5 \\
4 & 6
\end{array}\right)
$$

onto $M_{1} \cap M_{2}$. After the first cycle of MAP, we have that

$$
A_{2}^{1}=P_{M_{2}} P_{M_{1}}\left(A_{0}\right)=P_{M_{2}} P_{M_{1}}\left(\begin{array}{cc}
3 & 5 \\
4 & 6
\end{array}\right)=P_{M_{2}}\left(\begin{array}{cc}
3 & 4.5 \\
4.5 & 6
\end{array}\right)=\left(\begin{array}{cc}
3 & 0 \\
4.5 & 6
\end{array}\right)
$$

and after the second cycle we obtain

$$
A_{2}^{2}=P_{M_{2}} P_{M_{1}}\left(A_{2}^{1}\right)=P_{M_{2}} P_{M_{1}}\left(\begin{array}{cc}
3 & 0 \\
4.5 & 6
\end{array}\right)=P_{M_{2}}\left(\begin{array}{cc}
3 & 2.25 \\
2.25 & 6
\end{array}\right)=\left(\begin{array}{cc}
3 & 0 \\
2.25 & 6
\end{array}\right) .
$$

From Theorem 5 it follows that

$$
\begin{aligned}
P_{M_{1} \cap M_{2}}\left(A_{0}\right) & =A_{2}^{1}+\left(\left\langle A_{2}^{1}, A_{2}^{1}-A_{2}^{2}\right\rangle /\left\|A_{2}^{1}-A_{2}^{2}\right\|^{2}\right)\left(A_{2}^{2}-A_{2}^{1}\right) \\
& =\left(\begin{array}{cc}
3 & 0 \\
4.5 & 6
\end{array}\right)+2\left(\left(\begin{array}{cc}
3 & 0 \\
2.25 & 6
\end{array}\right)-\left(\begin{array}{cc}
3 & 0 \\
4.5 & 6
\end{array}\right)\right) \\
& =\left(\begin{array}{ll}
3 & 0 \\
0 & 6
\end{array}\right) .
\end{aligned}
$$

3.1 Projecting onto the Intersection of Two Hyperplanes

Let H be a n-dimensional Hilbert space with inner product \langle,$\rangle . For each a \in H$, $a \neq 0$, and b (scalar), let M be the subset of H defined by

$$
\begin{equation*}
M=\{x \in H:\langle a, x\rangle=b\} . \tag{9}
\end{equation*}
$$

The closet and convex set M is called hyperplane in H. For each $x \in H$, the projection onto M is given by

$$
P_{M}(x)=x-\frac{b-\langle a, x\rangle}{\langle a, a\rangle} a .
$$

If $b=0$ in (9) then M is a closed subspace of dimension $n-1$ and M^{\perp} is a onedimensional closed subspace. In that case, we can use the Theorem 5 for finding the best approximation to x onto the intersection of two hyperplanes.

COROLLARY 2. Let M_{1} and M_{2} be two hyperplanes in H, and $x_{0} \in H$. Let $Q=P_{M_{2}} P_{M_{1}}$ be the composition of the $P_{M_{i}}, i=1,2$. Then
$P_{M_{1} \cap M_{2}}\left(x_{0}\right)=Q\left(x_{0}\right)+\left(\left\langle Q\left(x_{0}\right), Q\left(x_{0}\right)-Q^{2}\left(x_{0}\right)\right\rangle /\left\|Q\left(x_{0}\right)-Q^{2}\left(x_{0}\right)\right\|^{2}\right)\left(Q^{2}\left(x_{0}\right)-Q\left(x_{0}\right)\right)$.

PROOF. This is a consequence of Theorem 5 .

EXAMPLE 2. We consider the following two hyperplanes in \mathbb{R}^{3} :
$M_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+2 x_{2}-4 x_{3}=0\right\}$ and $M_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right): 5 x_{1}+11 x_{2}-21 x_{3}=0\right\}$.
We will use the Corollary 2 for finding the projection of $x_{0}=(1,1,1)$ onto $M_{1} \cap M_{2}$. After the first cycle of MAP, we have that

$$
\begin{aligned}
P_{M_{1}}\left(x_{0}\right) & =x_{0}-\frac{\left\langle(1,2,-4), x_{0}\right\rangle}{\langle(1,2,-4),(1,2,-4)\rangle}(1,2,-4) \\
& =1 / 21(20,19,25)
\end{aligned}
$$

and

$$
\begin{aligned}
Q\left(x_{0}\right) & =P_{M_{2}} P_{M_{1}}\left(x_{0}\right) \\
& =P_{M_{1}}\left(x_{0}\right)-\frac{\left\langle(5,11,-21), P_{M_{1}}\left(x_{0}\right)\right\rangle}{\langle(5,11,-21),(5,11,-21)\rangle}(5,11,-21) \\
& =1 / 12327(12820,13529,10139)
\end{aligned}
$$

After the second cycle we obtain

$$
\begin{aligned}
P_{M_{1}}\left(Q\left(x_{0}\right)\right) & =P_{M_{1}}\left(x_{2}^{1}\right) \\
& =Q\left(x_{0}\right)-\frac{\left\langle(1,2,-4), Q\left(x_{0}\right)\right\rangle}{\langle(1,2,-4),(1,2,-4)\rangle}(1,2,-4) \\
& =1 / 86289(89966,95155,70069),
\end{aligned}
$$

and

$$
\begin{aligned}
Q^{2}\left(x_{0}\right) & =P_{M_{2}} P_{M_{1}}\left(Q\left(x_{0}\right)\right) \\
& =P_{M_{1}}\left(Q\left(x_{0}\right)\right)-\frac{\left\langle(5,11,-21), P_{M_{1}}\left(Q\left(x_{0}\right)\right)\right\rangle}{\langle(5,11,-21),(5,11,-21)\rangle}(5,11,-21) \\
& =1 / 50651643(52684612,55580039,41657309) .
\end{aligned}
$$

Then by Corollary 2 we have that

$$
\begin{aligned}
P_{M_{1} \cap M_{2}}\left(x_{0}\right) & =Q\left(x_{0}\right)+\left(\left\langle Q\left(x_{0}\right), Q\left(x_{0}\right)-Q^{2}\left(x_{0}\right)\right\rangle /\left\|Q\left(x_{0}\right)-Q^{2}\left(x_{0}\right)\right\|^{2}\right)\left(Q^{2}\left(x_{0}\right)-Q\left(x_{0}\right)\right) \\
& =(4 / 3,2 / 3,2 / 3)
\end{aligned}
$$

Acknowledgment. The author would like to thank the reviewers for their valuable suggestions and corrections.

References

[1] H. H. Bauschke, J. M. Borwein and A. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, In Y. Censor and S. Reich, editors, Contemporary Mathematics, 204: Recent Developments in Optimization Theory and Nonlinear Analysis, 1-38, American Mathematical Society, Providence, RI, 1997.
[2] H. H. Bauschke, P. L. Combettes and S. G. Kruk, Extrapolation algorithm for affine-convex feasibility problems, Numer. Algorithms, 41(2006), 239-274.
[3] H. H. Bauschke, F. Deutsch, H. Hundal and S. H. Park, Accelerating the convergence of the method of alternating projections, Trans. Amer. Math. Soc., 355(2003), 3433-3461.
[4] P. L. Combettes, The convex feasibility problem in image recovery, In P. Hawkes editors, Advances in Imaging and Electron Physics, 95, 155-270, Academic Press, New York, NJ, 1996.
[5] P. L. Combettes, Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections, IEEE Trans. Image Process, 6(1997), 493-506.
[6] F. Deutsch, The method of alternating orthogonal projections. In S.P. Singh, editor, Approximation Theory, Spline Functions and Applications, 105-121, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
[7] F. Deutsch, Best Approximation in Inner Product Space, Springer, New York, 2001.
[8] R. Escalante and M. Raydan, Alternating Projection Methods, SIAM, Philadelphia, 2011.
[9] C. Franchetti and W. Light, On the von Neumann alternating algorithm in Hilbert space, J. Math. Anal. Appl., 114(1986), 305-314.
[10] W. Gearhart and M. Koshy, Acceleration schemes for the method of alternating projection, J. Comput. Appl. Math., 26(1989), 235-249.
[11] L. G. Gubin, B. T. Polyak and E. V. Raik, The method of projections for finding the common point of convex sets, USSR Comput. Math. Phys., 7(6)(1967), 1-24.
[12] I. Halperin, The product of projection operators, Acta Sci. Math. (Szeged), 23(1962), 96-99.
[13] L. M. Hernández, R. Escalante and M. Raydan, Unconstrained optimization techniques for the acceleration of alternating projection methods, Numer. Funct. Anal. Optim., 32(2011), 1041-1066.
[14] S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Internat. Acad. Pol. Sci. Lett. A, 35(1937), 355-357.
[15] W. López, A new geometric acceleration of the von Neumann-Halperin projection method, Electron. Trans. Numer. Anal., 45(2016), 330-341.
[16] W. López and M. Raydan, An acceleration scheme for Dykstra's algorithm, Comput. Optim. Appl., 63(2016), 29-44.
[17] J. Von Neumann, Functional operators. Vol II. The Geometry of Orthogonal Spaces, Annals of Math. Studies, 22(1950). Princeton University Press, Princeton, NJ. This is a reprint of mimeographed lecture notes first distributed in 1933.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 41A65, 90C25, 47J25, 52A20.
 ${ }^{\dagger}$ Departamento de Física y Matemáticas, Núcleo Universitario "Rafael Rangel", Universidad de Los Andes, Trujillo, Venezuela

