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Abstract

In this work, we present and analyze a new way for computing the orthogonal
projection onto the intersection of two hyperplanes in a finite-dimensional Hilbert
space via the method of alternating projections and a line search.

1 Introduction

Let H be a Hilbert space with inner product (, ) and let M be a closed subspace of
H. The orthogonal projection onto M will be denoted by P,;. In particular, Py is a
linear, self-adjoint, idempotent operator, and Pys(z) is the best approximation or the
nearest point to x from M:

[ = Par (@) = d(z, M),

where d(x, M) = inf{||z — y|| : y € M}, ||2]|? = (z, 2), for any z € H. Py is called the
orthogonal projection onto M because of the characterising property

(x — Py(x),y) =0, forany ye M.
In other words, © — Pys(x) is orthogonal to M. Using the notation
M* ={yec H: (y,z) =0, for any x € M}, (1)

we see that © — Py(z) € M+. The set M+ defined in (1) is a subspace of H and it is
called the orthogonal complement of M.

LEMMA 1 (von Neumann [17]). Let M; and Ms be two closed subspaces in H.
Then
P]\/[2PM1 = PM1PM2 < PM2PM1 = PMlﬂMZ.

In words, Py, and Py, commute if and only if their composition is also an orthog-
onal projection. In particular, von Neumann was interested in the case in which P,
and Py, dit not commute, proving the following:
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THEOREM 1 (von Neumann [17]). If M; and M are closed subspaces in H, then
for each zy € H,

lim (Pag, Par, )" (0) = Pary i, (20)-

k—oo

This result was later extended to more than 2 subspaces.

THEOREM 2 (I. Halperin [12]). If My,..., M, are closed subspaces in H, then for
each g € H,

Jim (Pag, Py, - - Par,)*(20) = Prp_ ar, (wo)-

Theorem 2 suggests an algorithm, called the method of alternating projections (or
MAP for short); see [7, 8], which can be described as follows: for any xo € H, set

g
x
for k € Z*, with initial value acg = x¢. It follows from Theorem 2 that for any

i=1,2,...p, the sequence {x¥} generated by (2) converges to Pys(zo).

k-1
Lp

. e

I
=

Algorithm 1 MAP

Require: zo € H

Ensure: Phr_ 7, (20)
for k=0,1,...do

Try1 = Pu, Py, - P (T1)
end for

The MAP has an r-linear rate of convergence that can be very slow when the
angles between the subspaces are small (see, e.g., [8]). In fact, for the case of two
subspaces, Franchetti and Light [9] and Bauschke, Borwein, and Lewis [1] gave examples
to illustrate the possible slowness of MAP. Consequently, several acceleration schemes
have been proposed (see, e.g. [15, 16, 2, 4, 5, 3, 10, 13]).

In Hilbert spaces of dimension n the hyperplanes are special cases of translated
closed subspaces of dimension n — 1. Thus, in this paper we proof that if M; and
My are closed subspaces of the Hilbert space H, and if the dimension of Mj- is 1,
then in order to know the projection Pys,nas (o) it is enough to know the iterates
xd and 23 generated by (2), which is equivalent to knowing z; = Py, Py, (70) and
9 = Ppr, Py, (1) generated by Algorithm 1. This result is obtained by using the
Gearhart and Koshy scheme given in [10].

The rest of this paper is organized as follows. In section 2 we describe the Gearhart
and Koshy scheme. In section 3 we give a closed formula depending of the two it-
erates from the Algorithm 1 to find the projection on the intersection of two closed
subspaces, then we apply this result to find the intersection of two hyperplanes in a
finite-dimensional Hilbert space.
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2 The Gearhart and Koshy Scheme

We will give a brief explanation of the Gearhart and Koshy scheme. Let us denote
xo the given starting point and by ) the composition of the projection operators, i.e,
Q= Py, Pr,_y -+ Pay, where Py, is the projection operator onto M; for all 7. Let
x) the k th iterate, and let Qz be the next iterate after applying a sweep of MAP.
The idea is to search along the line through the points x; and Qxj to obtain the point
closest to the solution 2* = Pr»_ 5, (70). Let us represent any point on this line as

xk(a) = aQzy + (1 — @)z =z + «(Quy, — xk),

for some real number «. Let oy be the value of « for which this point is closest to x*.
Then,
<xk(ak) — &%,z — Q) = 0. (3)

Now, since z* € NY_, M; and the projections Py, are self-adjoint, then
(z*, Quy) = (P, Pagy -+ Pagy ™, i) = (2%, ap)
Consequently, (z*, z — Qxk) = 0, and so * can be eliminated from (3) to obtain
<xk(ak),xk — ka> =0.

Solving for oy, gives

(Th, xp — Q)
ap = —————" 4
*= ok — Qual? @
Therefore
o + o (Qry — o), (5)

where « is given in (4), is the point in the line connecting Qxy and xj, closest to the
solution x*.

3 Projecting onto the Intersection of Two Subspaces

Let M7 and M be two closed subspaces in the Hilbert space H. In this section we will
always assume that Pug, Par, () # Paynn, (z) for all € H. As a consequence, the
iterates generated by (2) are all different.

THEOREM 3. Let M; and M be two closed subspaces in H, and xg € H. Let
21 = Py, (20), 23 = Pagy(21), 23 = Py, (23) and 23 = Py, (23) be generated by (2). If

1+ a(z? — 21) = 2 + a(z3 — 21) for some o € R, then

Parnng, (20) = 21 + a(af — 21) = 25 + a(ah — 23).
PROOF. Let o € R be such that

z:x}—ka(xf—xi) :xé—ka(m% —xé) (6)
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Therefore z € My N My. We will establish that z = Py, g, (o). For it is enough to
show that z — g is orthogonal to M; N M. We have that z} — xg = Pay, (20) — 0

is orthogonal to M, and so in particular x} — z is orthogonal to M; N M. Since

23 — 2l = Py, (z1) — 2} is orthogonal to Mo, then 3 — z} is orthogonal to M; N M.

Since z% — 23 = Py, (2)) — xd is orthogonal to M, then z? — zi is orthogonal to
My N Ms.
Therefore, for any w € My N M, we have that

(o] — a1 w) = (2] — 23, w) + (2 — 21, w) =0,
and hence 2 — z1 is orthogonal to M; N M. Now, using (6),
sl =alet o),
and so z — 1 is also orthogonal to M; N My . Finally, for any w € My N Mo,
(z — xg,w) = (z — x7,w) + (x] — 2o, w) =0,

and the result is established.

THEOREM 4. Let M; and M5 be two closed subspaces in H, and zg € H. Let
x1, 23, 2% and 23 be generated by (2). Then x1 +a(2? —21) = 23+ (23 — 21) for some
a € R, if and only if {z3 — 21,22 — 22} is a linearly dependent set of vectors.

PROOF. Let us consider the lines

Ih={zl +a(z?—z}):acR} and Iy = {2l + (22 —2)): a € R}.

Then
z} + a(x? — 1) = 23 + a3 — 2d) for some a € R <= 1, Ny # 0.
But
el al) =abta(d o)) < bl =a(d - o)) ofad o)

= my—a1 =@ -2 —23+x3). (7)

On the other hand, observe that

lh={2?+ Bz} —x7): BER} and Iy = {x3 + B(25 —z3) : B € R}.
Then

22+ B(2F —x7) = 23 + B(a3 — 2d) for some BER <= ;1 Ny # (.
But

i+ B2t —21) =25+ B(a3 — ;) = @y -1 = a2} —ai) - B2} — 23)
= aj—ai =00l -2 -ai+a). (8
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If 21 + a(2? — 21) = 21 + a(23 — 21) for some o € R, then [; Nl # ) and from (7)
and (8) it follows that {z3 — z{,23 — 2%} is a linearly dependent set of vectors. If
{2} — 2}, 2% — 23} is a linearly dependent set of vectors, then 21 — 2} = (23 — 2?), for
some A € R. We have that A # 0, otherwise Py, Py, (20) = Parynas, (To), and X # 1,
otherwise the lines [; and [ would be parallel and as a consequence the sequence {xé}

does not converge. Then

2 1 .2 1 1 1 2 2
T]—x — T3+ Ty = @y — 27 — (T3 —T7)

a5 —af) — (a3 — 2})

= (A=1)(a3 —=7).

Hence 23 — 22 = 1/(A — 1)(2? — 21 — 22 + 21) and from (8) the result is established.

COROLLARY 1. Let M; and Ms be two closed subspaces in H, and xg € H.
Suppose that M3 is a one-dimensional subspace. Let z} and z3 be generated by (2).
Then

Parans, (20) = o3 + oz — x3) for some o € R.

PROOF. We have that 3 — 21 = Py, (z}) — 21 € M3 and 23 — 22 = Py, (22) —
2?2 € M. Since Mj- is a one-dimensional subspace, then {x} — 2} 22 — 22} is a
linearly dependent set of vectors. From Theorem 4 and Theorem 3 it follows that

Par, o, (o) = 2 + (23 — 21), for some a € R.

THEOREM 5. Let M; and Ms be two closed subspaces in H, and o € H. Suppose
that Mj- is a one-dimensional subspace. Let z} and x3 be generated by (2). Then

Purosy (w0) = @3 + ({23, 25 — a3) /||y — 23°) (23 — 23).

PROOF. From Corollary 1 it follows that Py, naz, (7o) € {73 + (23 — 1) : @ € R}.
From (4) and (5) it follows that 2} + ({(x3, 2} — 23) /|23 — #3||?) (23 — x3) is the point

in the line {z3 + a(23 — 23) : @ € R} closest to Py, A, (z0). Therefore

Py, (20) = 23 + ({23, 3 — 23) /ll2g — 23]1%) (23 — 23).

EXAMPLE 1. We consider the following two closed subspaces in the space of square
real matrices R?*2, with the Frobenius norm ||A]|% = (A, A) = trace(AT A):

M, = {A = <A1j> S R2X2. AT = A} and My = {A = (AZJ) € R2%2 . Ap = 0} .

Clearly Mi- and Mj" are one-dimensional closed subspaces. In that case the projections
onto each of the individual subspaces M; are simple to compute. If A = (4;;) € R2%2
then

Py, (A) = (AT + A)/2 and P, (A) = < ﬁi A(lz ) ’
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We will use the Theorem 5 for finding the projection of

3 5
AOZ<4 6>

onto My N M. After the first cycle of MAP, we have that

35 3 45 3 0
Aé_PM‘A‘PMl(AO)_PMzPMl(zL 6)_PM2<4.5 6 )_<4.5 6)’

and after the second cycle we obtain

30 3 225 3 0

From Theorem 5 it follows that

Paryonsy(Ao) = Ay + ((Ag, Ay — A3) /143 — A3|?) (A3 - A3)
30 30 30
<4.5 6)+2(<2.25 6‘)_(4.5 6))
30
06 )

3.1 Projecting onto the Intersection of Two Hyperplanes

Let H be a n-dimensional Hilbert space with inner product (, ). For each a € H,
a # 0, and b (scalar), let M be the subset of H defined by

M ={x € H: {(a,z) = b}. (9)

The closet and convex set M is called hyperplane in H. For each x € H, the projection
onto M is given by

Py (z) =2 — Wu.

If b= 0 in (9) then M is a closed subspace of dimension n — 1 and M is a one-
dimensional closed subspace. In that case, we can use the Theorem 5 for finding the
best approximation to x onto the intersection of two hyperplanes.

COROLLARY 2. Let M; and M, be two hyperplanes in H, and =g € H. Let
Q = Py, Py, be the composition of the Pyy,, ¢ = 1,2. Then

Parynars (0) = Q(x0)+((Q(20), Q(z0) — Q(w0)) /1Q(z0) — Q*(x0)|*) (Q*(z0)—Q(x0))-

PROOF. This is a consequence of Theorem 5.
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EXAMPLE 2. We consider the following two hyperplanes in R3:
M1 = {(xl,’l,’Q,J}g) . $1+2.’E274£E3 = O} and Mg = {(%1,1‘2,%3) . 5$1+115E2721l’3 = 0}

We will use the Corollary 2 for finding the projection of xg = (1,1,1) onto M; N M.
After the first cycle of MAP, we have that

<(1’ 2, —4)7$0>
((1,2,-4),(1,2,—-4))

PMl(.’I,'O) = X9 — (1,2,—4)

= 1/21(20, 19, 25),

and
Q(zo) = P, Pu, (7o)
= Panleo) - <(<5(,51,11,1,;12)17)(,51’31;111’(:502)3» (5,11, ~21)
= 1/12327(12820, 13529, 10139).
After the second cycle we obtain
Pur, (Q(w0)) = Par,(23)
oy~ L2=.0G0)

<(132,74)3(1,2774)>
= 1/86289(89966, 95155, 70069),

and

Q* (o)

P, Prr, (Q(20))

_ <(57117—21)’P 1(@(33 ))>
= P Qo)) = <<5,11,—21)7<5A,{11,—201>>

(5,11, —21)

= 1/50651643(52684612, 55580039, 41657309).
Then by Corollary 2 we have that
Pasonsy (m0) = Q(20) + ((Q(20), Qo) — Q*(20)) /Q(x0) — Q*(20)[I*) (Q%(x0) — Q(w))
= (4/3, 2/3, 2/3).
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