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Abstract

In this work, we present and analyze a new way for computing the orthogonal
projection onto the intersection of two hyperplanes in a finite-dimensional Hilbert
space via the method of alternating projections and a line search.

1 Introduction

Let H be a Hilbert space with inner product 〈 , 〉 and let M be a closed subspace of
H. The orthogonal projection onto M will be denoted by PM . In particular, PM is a
linear, self-adjoint, idempotent operator, and PM (x) is the best approximation or the
nearest point to x from M :

‖x− PM (x)‖ = d(x,M),

where d(x,M) = inf{‖x− y‖ : y ∈M}, ‖z‖2 = 〈z, z〉, for any z ∈ H. PM is called the
orthogonal projection onto M because of the characterising property

〈x− PM (x), y〉 = 0, for any y ∈M.

In other words, x− PM (x) is orthogonal to M . Using the notation

M⊥ = {y ∈ H : 〈y, x〉 = 0, for any x ∈M}, (1)

we see that x− PM (x) ∈M⊥. The set M⊥ defined in (1) is a subspace of H and it is
called the orthogonal complement of M .

LEMMA 1 (von Neumann [17]). Let M1 and M2 be two closed subspaces in H.
Then

PM2
PM1

= PM1
PM2

⇐⇒ PM2
PM1

= PM1∩M2
.

In words, PM1
and PM2

commute if and only if their composition is also an orthog-
onal projection. In particular, von Neumann was interested in the case in which PM1

and PM2
dit not commute, proving the following:
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THEOREM 1 (von Neumann [17]). If M1 and M2 are closed subspaces in H, then
for each x0 ∈ H,

lim
k→∞

(PM2
PM1

)k(x0) = PM1∩M2
(x0).

This result was later extended to more than 2 subspaces.

THEOREM 2 (I. Halperin [12]). If M1, . . . ,Mp are closed subspaces in H, then for
each x0 ∈ H,

lim
k→∞

(PMp
PMp−1 · · ·PM1

)k(x0) = P∩pi=1Mi
(x0).

Theorem 2 suggests an algorithm, called the method of alternating projections (or
MAP for short); see [7, 8], which can be described as follows: for any x0 ∈ H, set{

xk0 = xk−1p

xki = PMi
(xki−1) i = 1, 2, . . . , p,

(2)

for k ∈ Z+, with initial value x0p = x0. It follows from Theorem 2 that for any
i = 1, 2, . . . p, the sequence {xki } generated by (2) converges to PM (x0).

Algorithm 1 MAP
Require: x0 ∈ H
Ensure: P∩pi=1Mi

(x0)

for k = 0, 1, . . . do
xk+1 = PMp

PMp−1 · · ·PM1
(xk)

end for

The MAP has an r-linear rate of convergence that can be very slow when the
angles between the subspaces are small (see, e.g., [8]). In fact, for the case of two
subspaces, Franchetti and Light [9] and Bauschke, Borwein, and Lewis [1] gave examples
to illustrate the possible slowness of MAP. Consequently, several acceleration schemes
have been proposed (see, e.g. [15, 16, 2, 4, 5, 3, 10, 13]).

In Hilbert spaces of dimension n the hyperplanes are special cases of translated
closed subspaces of dimension n − 1. Thus, in this paper we proof that if M1 and
M2 are closed subspaces of the Hilbert space H, and if the dimension of M⊥2 is 1,
then in order to know the projection PM1∩M2

(x0) it is enough to know the iterates
x12 and x

2
2 generated by (2), which is equivalent to knowing x1 = PM2

PM1
(x0) and

x2 = PM2
PM1

(x1) generated by Algorithm 1. This result is obtained by using the
Gearhart and Koshy scheme given in [10].
The rest of this paper is organized as follows. In section 2 we describe the Gearhart

and Koshy scheme. In section 3 we give a closed formula depending of the two it-
erates from the Algorithm 1 to find the projection on the intersection of two closed
subspaces, then we apply this result to find the intersection of two hyperplanes in a
finite-dimensional Hilbert space.
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2 The Gearhart and Koshy Scheme

We will give a brief explanation of the Gearhart and Koshy scheme. Let us denote
x0 the given starting point and by Q the composition of the projection operators, i.e,
Q = PMpPMp−1 · · ·PM1 , where PMi is the projection operator onto Mi for all i. Let
xk the k th iterate, and let Qxk be the next iterate after applying a sweep of MAP.
The idea is to search along the line through the points xk and Qxk to obtain the point
closest to the solution x∗ = P∩pi=1Mi

(x0). Let us represent any point on this line as

xk(α) = αQxk + (1− α)xk = xk + α(Qxk − xk),

for some real number α. Let αk be the value of α for which this point is closest to x∗.
Then, 〈

xk(αk)− x∗, xk −Qxk
〉
= 0. (3)

Now, since x∗ ∈ ∩pi=1Mi and the projections PMi
are self-adjoint, then

〈x∗, Qxk〉 =
〈
PM1

PM2
· · ·PMp

x∗, xk
〉
= 〈x∗, xk〉 .

Consequently, 〈x∗, xk −Qxk〉 = 0, and so x∗ can be eliminated from (3) to obtain〈
xk(αk), xk −Qxk

〉
= 0.

Solving for αk gives

αk =
〈xk, xk −Qxk〉
‖xk −Qxk‖2

. (4)

Therefore
xk + αk(Qxk − xk), (5)

where αk is given in (4), is the point in the line connecting Qxk and xk closest to the
solution x∗.

3 Projecting onto the Intersection of Two Subspaces

Let M1 and M2 be two closed subspaces in the Hilbert space H. In this section we will
always assume that PM2

PM1
(x) 6= PM1∩M2

(x) for all x ∈ H. As a consequence, the
iterates generated by (2) are all different.

THEOREM 3. Let M1 and M2 be two closed subspaces in H, and x0 ∈ H. Let
x11 = PM1

(x0), x
1
2 = PM2

(x11), x
2
1 = PM1

(x12) and x
2
2 = PM2

(x21) be generated by (2). If
x11 + α(x

2
1 − x11) = x12 + α(x

2
2 − x12) for some α ∈ R, then

PM1∩M2
(x0) = x11 + α(x

2
1 − x11) = x12 + α(x

2
2 − x12).

PROOF. Let α ∈ R be such that

z = x11 + α(x
2
1 − x11) = x12 + α(x

2
2 − x12). (6)
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Therefore z ∈ M1 ∩M2. We will establish that z = PM1∩M2(x0). For it is enough to
show that z − x0 is orthogonal to M1 ∩M2. We have that x11 − x0 = PM1(x0) − x0
is orthogonal to M1, and so in particular x11 − x0 is orthogonal to M1 ∩M2. Since
x12 − x11 = PM2

(x11)− x11 is orthogonal to M2, then x12 − x11 is orthogonal to M1 ∩M2.
Since x21 − x12 = PM1

(x12) − x12 is orthogonal to M1, then x21 − x12 is orthogonal to
M1 ∩M2.
Therefore, for any w ∈M1 ∩M2, we have that

〈x21 − x11, w〉 = 〈x21 − x12, w〉+ 〈x12 − x11, w〉 = 0,

and hence x21 − x11 is orthogonal to M1 ∩M2. Now, using (6),

z − x11 = α(x21 − x11),

and so z − x11 is also orthogonal to M1 ∩M2 . Finally, for any w ∈M1 ∩M2,

〈z − x0, w〉 = 〈z − x11, w〉+ 〈x11 − x0, w〉 = 0,

and the result is established.

THEOREM 4. Let M1 and M2 be two closed subspaces in H, and x0 ∈ H. Let
x11, x

1
2, x

2
1 and x

2
2 be generated by (2). Then x

1
1+α(x

2
1−x11) = x12+α(x

2
2−x12) for some

α ∈ R, if and only if {x12 − x11, x22 − x21} is a linearly dependent set of vectors.

PROOF. Let us consider the lines

l1 = {x11 + α(x21 − x11) : α ∈ R} and l2 = {x12 + α(x22 − x12) : α ∈ R}.

Then

x11 + α(x
2
1 − x11) = x12 + α(x

2
2 − x12) for some α ∈ R ⇐⇒ l1 ∩ l2 6= ∅.

But

x11 + α(x
2
1 − x11) = x12 + α(x

2
2 − x12) ⇐⇒ x12 − x11 = α(x21 − x11)− α(x22 − x12)

⇐⇒ x12 − x11 = α(x21 − x11 − x22 + x12). (7)

On the other hand, observe that

l1 = {x21 + β(x21 − x11) : β ∈ R} and l2 = {x22 + β(x22 − x12) : β ∈ R}.

Then

x21 + β(x
2
1 − x11) = x22 + β(x

2
2 − x12) for some β ∈ R ⇐⇒ l1 ∩ l2 6= ∅.

But

x21 + β(x
2
1 − x11) = x22 + β(x

2
2 − x12) ⇐⇒ x12 − x11 = α(x22 − x21)− β(x22 − x12)

⇐⇒ x22 − x21 = β(x21 − x11 − x22 + x12). (8)
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If x11 + α(x21 − x11) = x12 + α(x22 − x12) for some α ∈ R, then l1 ∩ l2 6= ∅ and from (7)
and (8) it follows that {x12 − x11, x

2
2 − x21} is a linearly dependent set of vectors. If

{x12−x11, x22−x21} is a linearly dependent set of vectors, then x12−x11 = λ(x22−x21), for
some λ ∈ R. We have that λ 6= 0, otherwise PM2

PM1
(x0) = PM1∩M2

(x0), and λ 6= 1,
otherwise the lines l1 and l2 would be parallel and as a consequence the sequence {xk2}
does not converge. Then

x21 − x11 − x22 + x12 = x12 − x11 − (x22 − x21)
= λ(x22 − x21)− (x22 − x21)
= (λ− 1)(x22 − x21).

Hence x22 − x21 = 1/(λ− 1)(x21 − x11 − x22 + x12) and from (8) the result is established.

COROLLARY 1. Let M1 and M2 be two closed subspaces in H, and x0 ∈ H.
Suppose that M⊥2 is a one-dimensional subspace. Let x12 and x

2
2 be generated by (2).

Then
PM1∩M2(x0) = x12 + α(x

2
2 − x12) for some α ∈ R.

PROOF. We have that x12 − x11 = PM2
(x11) − x11 ∈ M⊥2 and x22 − x21 = PM2

(x21) −
x21 ∈ M⊥2 . Since M

⊥
2 is a one-dimensional subspace, then {x12 − x11, x

2
2 − x21} is a

linearly dependent set of vectors. From Theorem 4 and Theorem 3 it follows that
PM1∩M2(x0) = x12 + α(x

2
2 − x12), for some α ∈ R.

THEOREM 5. LetM1 andM2 be two closed subspaces in H, and x0 ∈ H. Suppose
that M⊥2 is a one-dimensional subspace. Let x12 and x

2
2 be generated by (2). Then

PM1∩M2(x0) = x12 +
(〈
x12, x

1
2 − x22

〉
/‖x12 − x22‖2

)
(x22 − x12).

PROOF. From Corollary 1 it follows that PM1∩M2(x0) ∈ {x12+α(x22−x12) : α ∈ R}.
From (4) and (5) it follows that x12+

(〈
x12, x

1
2 − x22

〉
/‖x12 − x22‖2

)
(x22− x12) is the point

in the line {x12 + α(x22 − x12) : α ∈ R} closest to PM1∩M2
(x0). Therefore

PM1∩M2(x0) = x12 +
(〈
x12, x

1
2 − x22

〉
/‖x12 − x22‖2

)
(x22 − x12).

EXAMPLE 1. We consider the following two closed subspaces in the space of square
real matrices R2×2, with the Frobenius norm ‖A‖2F = 〈A,A〉 = trace(ATA):

M1 =
{
A = (Aij) ∈ R2×2 : AT = A

}
and M2 =

{
A = (Aij) ∈ R2×2 : A12 = 0

}
.

ClearlyM⊥1 andM
⊥
2 are one-dimensional closed subspaces. In that case the projections

onto each of the individual subspaces Mi are simple to compute. If A = (Aij) ∈ R2×2
then

PM1(A) = (A
T +A)/2 and PM2(A) =

(
A11 0
A21 A22

)
.
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We will use the Theorem 5 for finding the projection of

A0 =

(
3 5
4 6

)
onto M1 ∩M2. After the first cycle of MAP, we have that

A12 = PM2PM1(A0) = PM2PM1

(
3 5
4 6

)
= PM2

(
3 4.5
4.5 6

)
=

(
3 0
4.5 6

)
,

and after the second cycle we obtain

A22 = PM2
PM1

(A12) = PM2
PM1

(
3 0
4.5 6

)
= PM2

(
3 2.25
2.25 6

)
=

(
3 0
2.25 6

)
.

From Theorem 5 it follows that

PM1∩M2
(A0) = A12 +

(〈
A12, A

1
2 −A22

〉
/‖A12 −A22‖2

) (
A22 −A12

)
=

(
3 0
4.5 6

)
+ 2

((
3 0
2.25 6

)
−
(

3 0
4.5 6

))

=

(
3 0
0 6

)
.

3.1 Projecting onto the Intersection of Two Hyperplanes

Let H be a n-dimensional Hilbert space with inner product 〈 , 〉. For each a ∈ H,
a 6= 0, and b (scalar), let M be the subset of H defined by

M = {x ∈ H : 〈a, x〉 = b}. (9)

The closet and convex setM is called hyperplane in H. For each x ∈ H, the projection
onto M is given by

PM (x) = x− b− 〈a, x〉
〈a, a〉 a.

If b = 0 in (9) then M is a closed subspace of dimension n − 1 and M⊥ is a one-
dimensional closed subspace. In that case, we can use the Theorem 5 for finding the
best approximation to x onto the intersection of two hyperplanes.

COROLLARY 2. Let M1 and M2 be two hyperplanes in H, and x0 ∈ H. Let
Q = PM2

PM1
be the composition of the PMi

, i = 1, 2. Then

PM1∩M2
(x0) = Q(x0)+

(〈
Q(x0), Q(x0)−Q2(x0)

〉
/‖Q(x0)−Q2(x0)‖2

)
(Q2(x0)−Q(x0)).

PROOF. This is a consequence of Theorem 5.
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EXAMPLE 2. We consider the following two hyperplanes in R3:

M1 = {(x1, x2, x3) : x1+2x2−4x3 = 0} and M2 = {(x1, x2, x3) : 5x1+11x2−21x3 = 0}.

We will use the Corollary 2 for finding the projection of x0 = (1, 1, 1) onto M1 ∩M2.
After the first cycle of MAP, we have that

PM1
(x0) = x0 −

〈(1, 2,−4), x0〉
〈(1, 2,−4), (1, 2,−4)〉 (1, 2,−4)

= 1/21(20, 19, 25),

and

Q(x0) = PM2
PM1

(x0)

= PM1(x0)−
〈(5, 11,−21), PM1

(x0)〉
〈(5, 11,−21), (5, 11,−21)〉 (5, 11,−21)

= 1/12327(12820, 13529, 10139).

After the second cycle we obtain

PM1(Q(x0)) = PM1(x
1
2)

= Q(x0)−
〈(1, 2,−4), Q(x0)〉
〈(1, 2,−4), (1, 2,−4)〉 (1, 2,−4)

= 1/86289(89966, 95155, 70069),

and

Q2(x0) = PM2
PM1

(Q(x0))

= PM1(Q(x0))−
〈(5, 11,−21), PM1

(Q(x0))〉
〈(5, 11,−21), (5, 11,−21)〉 (5, 11,−21)

= 1/50651643(52684612, 55580039, 41657309).

Then by Corollary 2 we have that

PM1∩M2(x0) = Q(x0) +
(〈
Q(x0), Q(x0)−Q2(x0)

〉
/‖Q(x0)−Q2(x0)‖2

)
(Q2(x0)−Q(x0))

= (4/3, 2/3, 2/3).
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