A Note On k-Derangements*

Hossein Moshtagh ${ }^{\dagger}$

Received 26 July 2017

Abstract

Let $D_{k, n}$ denote the set of k-derangements in S_{n}. In this paper, we determine the maximum of $\Psi_{\pi}=\sum_{i=1}^{n}|\pi(i)-i|$, over all elements π of $D_{k, n}$. Moreover, the structure of $\pi \in D_{k, n}$ that maximizes Ψ_{π} is a particular bipartite graph.

1 Introduction

Suppose that S_{n} is the symmetric group on the set $[n]=\{1,2, \ldots, n\}$. Let $[n]^{k}(1 \leq$ $k \leq n$) denote the set of all subsets containing k distinct elements of [n]. The group S_{n} acts in the natural way on $[n]^{k}$. In other words, for each $\pi \in S_{n}$,

$$
\left\{i_{1}, \ldots, i_{k}\right\}^{\pi}=\left\{\pi\left(i_{1}\right), \ldots, \pi\left(i_{k}\right)\right\} .
$$

A k-derangement in S_{n} is a permutation π on [n] that leaves no k-subset of elements fixed. In other words, $x^{\pi} \neq x$ for all $x \in[n]^{k}$. Let $D_{k, n}$ denote the set of k-derangements of S_{n}. Specifically, if $k=1$, then $D_{n}=D_{1, n}$ is the set of derangements in S_{n}, that is, the set of permutations in S_{n} without fixed points. Suppose that $\pi \in S_{n}$. Construct a bipartite graph $\Gamma_{\pi}=(X \cup Y, E)$, corresponding to π, where $X=\left\{x_{i}: i \in[n]\right\}$, $Y=\left\{y_{i}: i \in[n]\right\}$ and $E=\left\{\left(x_{i}, y_{j}\right): i, j \in[n], \pi(i)=j\right\}$.
In the current paper, we measure how much derangement is actually disordered. For this, the following term is defined:

$$
\Psi_{\pi}=\sum_{i=1}^{n}|\pi(i)-i|
$$

Then, let Ψ denote the maximum of Ψ_{π} over all elements π of $D_{k, n}$. Ψ is determined and it is shown that Ψ is independent of k.

The following proposition determines all permutations that belong to $D_{k, n}$.

PROPOSITION 1 ([2]). A permutation $\sigma \in S_{n}$ is a k-derangement if and only if the cycle decomposition of σ does not contain a set of cycles whose lengths partition k.

[^0]
2 Computing Ψ for k-Derangements

The main result of this paper is the following theorem.
THEOREM 1. Suppose k and n are integers and $1 \leq k<n$. Then Ψ is independent of k and we have

$$
\Psi= \begin{cases}\frac{1}{2} n^{2} & \text { if } n \text { is even } \\ \frac{1}{2}\left(n^{2}-1\right) & \text { if } n \text { is odd }\end{cases}
$$

PROOF. Let us first prove a reduced form of the theorem for $k=1$. Consider the case that n is even, i.e., $n=2 m$ for an integer $m \geq 1$. Let $\pi \in D_{2 m}$ be a derangement such that $\pi(i)>m$ if and only if $i \leq m$. We claim that Ψ_{π} is maximized over all elements π of $D_{2 m}$ and its value is equal to Ψ. Suppose by the contrary that Ψ_{σ} is maximized for some $\sigma \in D_{2 m}$ such that Γ_{σ} contains the edge $\left(x_{i}, y_{\sigma(i)}\right)$ where $\sigma(i) \leq m$ for some $i \leq m$. Let $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$ be a partition of vertices of Γ_{σ} such that $X_{1}=\left\{x_{1}, \ldots, x_{m}\right\}, X_{2}=\left\{x_{m+1}, \ldots, x_{2 m}\right\}, Y_{1}=\left\{y_{1}, \ldots, y_{m}\right\}$ and $Y_{2}=\left\{y_{m+1}, \ldots, y_{2 m}\right\}$. So $x_{i} \in X_{1}$ and there exists $j \in[m]$ such that $y_{j} \in Y_{1}$ and $\sigma(i)=j$. Since each vertex of Γ_{σ} has degree 1 and $\left|X_{2}\right|=\left|Y_{1} \backslash\left\{y_{j}\right\}\right|+1$, by the pigeonhole principle, there exists an edge from a vertex x_{r} in X_{2} to a vertex y_{s} in Y_{2}. Now consider a new permutation π^{\prime} such that $\pi^{\prime}(i)=s, \pi^{\prime}(r)=j$ and $\pi^{\prime}(t)=\sigma(t)$ for other $t \neq i, r$. Since $1 \leq i, j \leq m$ and $m+1 \leq r, s \leq 2 m$, we have

$$
|i-j|+|r-s| \leq|i-s|+|r-j| .
$$

From the above inequality, it is easy to deduce that $\Psi_{\sigma}<\Psi_{\pi^{\prime}}$, which is a contradiction. Now we show that the value of Ψ_{π} is constant for each $\pi \in D_{2 m}$ such that $\pi(i)>m$ if and only if $i \leq m$. This condition implies that $\pi(i)-i$ is positive if $i \in[m]$, otherwise it is negative. Compute Ψ_{π} as

$$
\begin{aligned}
\Psi_{\pi} & =\sum_{i=1}^{m}|\pi(i)-i|+\sum_{i=m+1}^{2 m}|\pi(i)-i|=\sum_{i=1}^{m}(\pi(i)-i)+\sum_{i=m+1}^{2 m}(i-\pi(i)) \\
& =\sum_{i=1}^{m} \pi(i)+\sum_{i=m+1}^{2 m} i-\sum_{i=1}^{m} i-\sum_{i=m+1}^{2 m} \pi(i)
\end{aligned}
$$

By the structure of π, it is easy to see that

$$
\sum_{i=1}^{m} \pi(i)=\sum_{i=m+1}^{2 m} i \text { and } \sum_{i=m+1}^{2 m} \pi(i)=\sum_{i=1}^{m} i
$$

Hence

$$
\Psi_{\pi}=2 \sum_{i=m+1}^{2 m} i-2 \sum_{i=1}^{m} i=2 m^{2}=\frac{n^{2}}{2} .
$$

This completes the proof in the case that n is even.

Consider the case that n is odd, i.e., $n=2 m+1$ for an integer $m \geq 1$. Let $\pi \in D_{2 m+1}$ be a derangement such that Γ_{π} has an edge $\left(x_{i}, y_{2 m+1}\right)$. Let $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$ be a partition of vertices of Γ_{π} such that $X_{1}=\left\{x_{1}, \ldots, x_{m+1}\right\}$, $X_{2}=\left\{x_{m+2}, \ldots, x_{2 m+1}\right\}, Y_{1}=\left\{y_{1}, \ldots, y_{m}\right\}$ and $Y_{2}=\left\{y_{m+1}, \ldots, y_{2 m+1}\right\}$. Then vertex x_{i} must belong to X_{1}. Otherwise, by the pigeonhole principle, there exists an edge from a vertex x_{r} in X_{1} to a vertex y_{s} in Y_{1}. For the same reason as above, we can also get a contradiction. Let $\Gamma_{\pi^{\prime}}$ be the graph obtained from Γ_{π} by deleting the two vertices x_{i} and $y_{2 m+1}$. Then $\Gamma_{\pi^{\prime}}$ is a bipartite graph such that it has an even number of vertices on both sides. Clearly, Ψ_{π} is maximized if and only if $\Psi_{\pi^{\prime}}$ is also. As in the even case, $\Psi_{\pi^{\prime}}$ is maximized exactly when π^{\prime} is a derangement such that $\pi^{\prime}(i)>m$ if and only if $i \leq m+1$. Obviously, $\Psi_{\pi}=\Psi_{\pi^{\prime}}+2 m+1-i$. Moreover, the same of argument as in the even case we can show that $\Psi_{\pi^{\prime}}=\left(n^{2}-1\right) / 2-n+i$. So $\Psi_{\pi}=\left(n^{2}-1\right) / 2$ and its value is equal to Ψ. This completes the proof in the case that n is odd.

Now let k be an arbitrary positive integer. Let

$$
\pi=(12 n 22 n-1 \ldots n-1 n+2 n n+1)
$$

be a cyclic permutation of length $2 n$. In other words, the permutation $\pi \in S_{2 n}$ is representing the following mapping:

$$
\pi(i)= \begin{cases}2 n+1-i & \text { for } 1 \leq i \leq n \\ 1 & \text { for } i=n+1 \\ 2 n+2-i & \text { for } n+1<i \leq 2 n\end{cases}
$$

Since the cycle structure of the permutation π is one cycle of length $2 n$, so by Proposition $1, \pi$ is a k-derangement for $k \in[2 n-1]$. It is easy to see that $\pi(i)>n$ if and only if $i \leq n$. Similarly, if

$$
\pi(i)= \begin{cases}n+i & \text { for } 1 \leq i \leq n+1 \\ i-n-1 & \text { for } n+1<i \leq 2 n+1\end{cases}
$$

then $\pi=(1 n+12 n+1 n \ldots 3 n+32 n+2)$ is a cyclic permutation of length $2 n+1$ in $S_{2 n+1}$. So by Proposition $1, \pi$ is a k-derangement permutation for $k \in[2 n]$. Also, Ψ_{π} satisfies the maximum condition in the odd case. Hence, this completes the proof of the theorem.

Acknowledgment. I thank Professor M. Hassani for fruitful discussions, helpful suggestions and encouragement. Also, I deeply acknowledge the anonymous referees for their helpful comments and suggestions.

References

[1] R. L. Graham, M. Grötschel and L. Lovász, Handbook of Combinatorics, Vol. 1, 2, Elsevier Science B.V., Amsterdam, MIT Press, Cambridge, MA, 1995.
[2] J. Hannah, N. Kathryn and R. Les, Properties of generalized derangement graphs, Involve, 6(2013), 25-33.

[^0]: *Mathematics Subject Classifications: 05A05, 05C99.
 ${ }^{\dagger}$ Department of Mathematics, University of Garmsar, P.O.Box 3588115589, Garmsar, Iran

