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Abstract

Let Dy, denote the set of k-derangements in S,. In this paper, we determine
the maximum of U = 3" |7(¢) — 4|, over all elements 7 of Dy ». Moreover, the
structure of m € Dy, that maximizes ¥ is a particular bipartite graph.

1 Introduction

Suppose that S,, is the symmetric group on the set [n] = {1,2,...,n}. Let [n]* (1 <
k < n) denote the set of all subsets containing k distinct elements of [n]. The group
S, acts in the natural way on [n]*. In other words, for each m € S,,,

{ih ey ik}ﬂ = {ﬂ-(il)a cee 77T(ik)}'

A k-derangement in S,, is a permutation 7 on [n] that leaves no k-subset of elements
fixed. In other words, ™ # = for all z € [n]*. Let Dy, denote the set of k-derangements
of Sy,. Specifically, if £ =1, then D,, = D, is the set of derangements in S,,, that is,
the set of permutations in S,, without fixed points. Suppose that 7 € S,,. Construct
a bipartite graph I'; = (X UY, E), corresponding to 7, where X = {x; : i € [n]},
Y ={y;:i€[n]} and E = {(z;,y;) : i, 7 € [n],7(i) = j}.

In the current paper, we measure how much derangement is actually disordered. For
this, the following term is defined:

n

V=" |m(i) il

i=1

Then, let U denote the maximum of ¥, over all elements 7 of Dy ,,. ¥ is determined
and it is shown that ¥ is independent of k.
The following proposition determines all permutations that belong to Dy, .

PROPOSITION 1 (]2]). A permutation o € S, is a k-derangement if and only if
the cycle decomposition of o does not contain a set of cycles whose lengths partition

k.
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2 Computing ¥V for k-Derangements

The main result of this paper is the following theorem.

THEOREM 1. Suppose k and n are integers and 1 < k < n. Then V¥ is independent
of k and we have
. {

PROOF. Let us first prove a reduced form of the theorem for & = 1. Consider
the case that n is even, i.e., n = 2m for an integer m > 1. Let m € Dy, be a
derangement such that ﬂ'( ) > m if and only if i < m. We claim that ¥, is maximized
over all elements 7 of Dy, and its value is equal to ¥. Suppose by the contrary that
¥, is maximized for some o € Ds,, such that I', contains the edge (xi,yg(i)) where
o(i) < m for some i < m. Let X = X; UXs and Y = Y5 UY> be a partition of
vertices of I', such that X1 = {x1,...,2n}, Xo = {Zm+1,-- s Tom}, Y1 = {¥1,-- -, Ym }
and Yo = {ym+1,...,Y2m}. So z; € Xy and there exists j € [m] such that y; € Y3
and o(i) = j. Since each vertex of I'; has degree 1 and | Xs| = |Y1\{y;}| + 1, by the
pigeonhole principle, there exists an edge from a vertex xz, in X5 to a vertex y, in Ys.
Now consider a new permutation 7’ such that 7’(¢) = s,#'(r) = j and 7’'(t) = o(t) for
other t # i,r. Since 1 < 4,57 <m and m+ 1 <r, s < 2m, we have

n? if n is even,

(n? —1) ifn is odd.

NN

i—jl+r—s| <|i—s|+|r—jl|

From the above inequality, it is easy to deduce that ¥, < W, which is a contradiction.
Now we show that the value of ¥, is constant for each m € Dy, such that w(i) > m if
and only if ¢ < m. This condition implies that 7(¢) — ¢ is positive if ¢ € [m], otherwise
it is negative. Compute ¥, as

U= |w(i) =i+ > |w(i) =il =Y _(x(i) i)+ > (i—n(i))
=1 1=m-+1 =1 i=m-+1
IR S S S
=1 i=m-+1 =1 i=m-+1

By the structure of 7, it is easy to see that

m 2m 2m m
Zﬂ'(l) = Z i and Z (i) = Zz
=1 1=m-+1 1=m-+1 1=1

Hence
m

=2 Z 1—221—2771

1=m-+1

This completes the proof in the case that n is even.
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Consider the case that n is odd, i.e., n = 2m + 1 for an integer m > 1. Let
7 € Doy be a derangement such that I'; has an edge (z;, yom+1). Let X = X7 U Xo
and Y = Y7 UY; be a partition of vertices of I'; such that X; = {z1,...,2m41},
Xo = {Tmi2,-- - T2ami1 ), Y1 = {y1,-- - Ym} and Yo = {Ymi1,.- -, ¥2my1}. Then
vertex x; must belong to X;. Otherwise, by the pigeonhole principle, there exists an
edge from a vertex z, in X; to a vertex y, in Y;. For the same reason as above, we
can also get a contradiction. Let I';/ be the graph obtained from I'; by deleting the
two vertices x; and y2;,+1. Then 'y is a bipartite graph such that it has an even
number of vertices on both sides. Clearly, ¥, is maximized if and only if ¥, is also.
As in the even case, ¥,/ is maximized exactly when 7’ is a derangement such that
7'(1) > m if and only if ¢ < m + 1. Obviously, ¥, = U,s 4+ 2m + 1 — i. Moreover, the
same of argument as in the even case we can show that U, = (n? —1)/2 —n +1i. So
U, = (n? —1)/2 and its value is equal to ¥. This completes the proof in the case that
n is odd.

Now let k£ be an arbitrary positive integer. Let

7=(12n22n-1...n—1n+2nn+1)

be a cyclic permutation of length 2n. In other words, the permutation 7 € Sy, is
representing the following mapping:

2n+1—14 for1<i<mn,

m(1) =41 fori=n-+1,

2n+2—14 forn+1<i<2n.
Since the cycle structure of the permutation 7 is one cycle of length 2n, so by Propo-
sition 1, 7 is a k-derangement for k € [2n — 1]. It is easy to see that 7(i) > n if and
only if ¢ < n. Similarly, if

. n+1 for1 <i<n+1,
m(i) = 1 . .
t—n—1 forn+1<i<2n+1,

thenmt=(1n+12n+1n ... 3n+32n+2)is a cyclic permutation of length 2n + 1
in So,41. So by Proposition 1, 7 is a k-derangement permutation for k € [2n]. Also,

U satisfies the maximum condition in the odd case. Hence, this completes the proof
of the theorem.
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