ISSN 1607-2510

A Note On k-Derangements^{*}

Hossein Moshtagh[†]

Received 26 July 2017

Abstract

Let $D_{k,n}$ denote the set of k-derangements in S_n . In this paper, we determine the maximum of $\Psi_{\pi} = \sum_{i=1}^{n} |\pi(i) - i|$, over all elements π of $D_{k,n}$. Moreover, the structure of $\pi \in D_{k,n}$ that maximizes Ψ_{π} is a particular bipartite graph.

1 Introduction

Suppose that S_n is the symmetric group on the set $[n] = \{1, 2, ..., n\}$. Let $[n]^k$ $(1 \le k \le n)$ denote the set of all subsets containing k distinct elements of [n]. The group S_n acts in the natural way on $[n]^k$. In other words, for each $\pi \in S_n$,

$${i_1,\ldots,i_k}^{\pi} = {\pi(i_1),\ldots,\pi(i_k)}.$$

A k-derangement in S_n is a permutation π on [n] that leaves no k-subset of elements fixed. In other words, $x^{\pi} \neq x$ for all $x \in [n]^k$. Let $D_{k,n}$ denote the set of k-derangements of S_n . Specifically, if k = 1, then $D_n = D_{1,n}$ is the set of derangements in S_n , that is, the set of permutations in S_n without fixed points. Suppose that $\pi \in S_n$. Construct a bipartite graph $\Gamma_{\pi} = (X \cup Y, E)$, corresponding to π , where $X = \{x_i : i \in [n]\}$, $Y = \{y_i : i \in [n]\}$ and $E = \{(x_i, y_j) : i, j \in [n], \pi(i) = j\}$.

In the current paper, we measure how much derangement is actually disordered. For this, the following term is defined:

$$\Psi_{\pi} = \sum_{i=1}^{n} |\pi(i) - i|.$$

Then, let Ψ denote the maximum of Ψ_{π} over all elements π of $D_{k,n}$. Ψ is determined and it is shown that Ψ is independent of k.

The following proposition determines all permutations that belong to $D_{k,n}$.

PROPOSITION 1 ([2]). A permutation $\sigma \in S_n$ is a k-derangement if and only if the cycle decomposition of σ does not contain a set of cycles whose lengths partition k.

^{*}Mathematics Subject Classifications: 05A05, 05C99.

[†]Department of Mathematics, University of Garmsar, P.O.Box 3588115589, Garmsar, Iran

2 Computing Ψ for k-Derangements

The main result of this paper is the following theorem.

THEOREM 1. Suppose k and n are integers and $1 \le k < n$. Then Ψ is independent of k and we have

$$\Psi = \begin{cases} \frac{1}{2}n^2 & \text{if } n \text{ is even,} \\ \frac{1}{2}(n^2 - 1) & \text{if } n \text{ is odd.} \end{cases}$$

PROOF. Let us first prove a reduced form of the theorem for k = 1. Consider the case that n is even, i.e., n = 2m for an integer $m \ge 1$. Let $\pi \in D_{2m}$ be a derangement such that $\pi(i) > m$ if and only if $i \le m$. We claim that Ψ_{π} is maximized over all elements π of D_{2m} and its value is equal to Ψ . Suppose by the contrary that Ψ_{σ} is maximized for some $\sigma \in D_{2m}$ such that Γ_{σ} contains the edge $(x_i, y_{\sigma(i)})$ where $\sigma(i) \le m$ for some $i \le m$. Let $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ be a partition of vertices of Γ_{σ} such that $X_1 = \{x_1, \ldots, x_m\}, X_2 = \{x_{m+1}, \ldots, x_{2m}\}, Y_1 = \{y_1, \ldots, y_m\}$ and $Y_2 = \{y_{m+1}, \ldots, y_{2m}\}$. So $x_i \in X_1$ and there exists $j \in [m]$ such that $y_j \in Y_1$ and $\sigma(i) = j$. Since each vertex of Γ_{σ} has degree 1 and $|X_2| = |Y_1 \setminus \{y_j\}| + 1$, by the pigeonhole principle, there exists an edge from a vertex x_r in X_2 to a vertex y_s in Y_2 . Now consider a new permutation π' such that $\pi'(i) = s, \pi'(r) = j$ and $\pi'(t) = \sigma(t)$ for other $t \neq i, r$. Since $1 \le i, j \le m$ and $m + 1 \le r, s \le 2m$, we have

$$|i - j| + |r - s| \le |i - s| + |r - j|.$$

From the above inequality, it is easy to deduce that $\Psi_{\sigma} < \Psi_{\pi'}$, which is a contradiction. Now we show that the value of Ψ_{π} is constant for each $\pi \in D_{2m}$ such that $\pi(i) > m$ if and only if $i \leq m$. This condition implies that $\pi(i) - i$ is positive if $i \in [m]$, otherwise it is negative. Compute Ψ_{π} as

$$\Psi_{\pi} = \sum_{i=1}^{m} |\pi(i) - i| + \sum_{i=m+1}^{2m} |\pi(i) - i| = \sum_{i=1}^{m} (\pi(i) - i) + \sum_{i=m+1}^{2m} (i - \pi(i))$$
$$= \sum_{i=1}^{m} \pi(i) + \sum_{i=m+1}^{2m} i - \sum_{i=1}^{m} i - \sum_{i=m+1}^{2m} \pi(i).$$

By the structure of π , it is easy to see that

$$\sum_{i=1}^{m} \pi(i) = \sum_{i=m+1}^{2m} i \text{ and } \sum_{i=m+1}^{2m} \pi(i) = \sum_{i=1}^{m} i.$$

Hence

$$\Psi_{\pi} = 2\sum_{i=m+1}^{2m} i - 2\sum_{i=1}^{m} i = 2m^2 = \frac{n^2}{2}.$$

This completes the proof in the case that n is even.

168

H. Moshtagh

Consider the case that n is odd, i.e., n = 2m + 1 for an integer $m \ge 1$. Let $\pi \in D_{2m+1}$ be a derangement such that Γ_{π} has an edge (x_i, y_{2m+1}) . Let $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ be a partition of vertices of Γ_{π} such that $X_1 = \{x_1, \ldots, x_{m+1}\}$, $X_2 = \{x_{m+2}, \ldots, x_{2m+1}\}$, $Y_1 = \{y_1, \ldots, y_m\}$ and $Y_2 = \{y_{m+1}, \ldots, y_{2m+1}\}$. Then vertex x_i must belong to X_1 . Otherwise, by the pigeonhole principle, there exists an edge from a vertex x_r in X_1 to a vertex y_s in Y_1 . For the same reason as above, we can also get a contradiction. Let $\Gamma_{\pi'}$ be the graph obtained from Γ_{π} by deleting the two vertices x_i and y_{2m+1} . Then $\Gamma_{\pi'}$ is a bipartite graph such that it has an even number of vertices on both sides. Clearly, Ψ_{π} is maximized if and only if $\Psi_{\pi'}$ is also. As in the even case, $\Psi_{\pi'}$ is maximized exactly when π' is a derangement such that $\pi'(i) > m$ if and only if $i \le m + 1$. Obviously, $\Psi_{\pi} = \Psi_{\pi'} + 2m + 1 - i$. Moreover, the same of argument as in the even case we can show that $\Psi_{\pi'} = (n^2 - 1)/2 - n + i$. So $\Psi_{\pi} = (n^2 - 1)/2$ and its value is equal to Ψ . This completes the proof in the case that n is odd.

Now let k be an arbitrary positive integer. Let

$$\pi = (1 \ 2n \ 2 \ 2n - 1 \ \dots \ n - 1 \ n + 2 \ n \ n + 1)$$

be a cyclic permutation of length 2n. In other words, the permutation $\pi \in S_{2n}$ is representing the following mapping:

$$\pi(i) = \begin{cases} 2n+1-i & \text{for } 1 \le i \le n, \\ 1 & \text{for } i = n+1, \\ 2n+2-i & \text{for } n+1 < i \le 2n. \end{cases}$$

Since the cycle structure of the permutation π is one cycle of length 2n, so by Proposition 1, π is a k-derangement for $k \in [2n-1]$. It is easy to see that $\pi(i) > n$ if and only if $i \leq n$. Similarly, if

$$\pi(i) = \begin{cases} n+i & \text{for } 1 \le i \le n+1, \\ i-n-1 & \text{for } n+1 < i \le 2n+1. \end{cases}$$

then $\pi = (1 \ n+1 \ 2n+1 \ n \ \dots \ 3 \ n+3 \ 2 \ n+2)$ is a cyclic permutation of length 2n+1in S_{2n+1} . So by Proposition 1, π is a k-derangement permutation for $k \in [2n]$. Also, Ψ_{π} satisfies the maximum condition in the odd case. Hence, this completes the proof of the theorem.

Acknowledgment. I thank Professor M. Hassani for fruitful discussions, helpful suggestions and encouragement. Also, I deeply acknowledge the anonymous referees for their helpful comments and suggestions.

References

- R. L. Graham, M. Grötschel and L. Lovász, Handbook of Combinatorics, Vol. 1, 2, Elsevier Science B.V., Amsterdam, MIT Press, Cambridge, MA, 1995.
- [2] J. Hannah, N. Kathryn and R. Les, Properties of generalized derangement graphs, Involve, 6(2013), 25–33.