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Abstract

Let Dk,n denote the set of k-derangements in Sn. In this paper, we determine
the maximum of Ψπ =

∑n
i=1 |π(i)− i|, over all elements π of Dk,n. Moreover, the

structure of π ∈ Dk,n that maximizes Ψπ is a particular bipartite graph.

1 Introduction

Suppose that Sn is the symmetric group on the set [n] = {1, 2, . . . , n}. Let [n]k (1 ≤
k ≤ n) denote the set of all subsets containing k distinct elements of [n]. The group
Sn acts in the natural way on [n]k. In other words, for each π ∈ Sn,

{i1, . . . , ik}π = {π(i1), . . . , π(ik)}.

A k-derangement in Sn is a permutation π on [n] that leaves no k-subset of elements
fixed. In other words, xπ 6= x for all x ∈ [n]k. LetDk,n denote the set of k-derangements
of Sn. Specifically, if k = 1, then Dn = D1,n is the set of derangements in Sn, that is,
the set of permutations in Sn without fixed points. Suppose that π ∈ Sn. Construct
a bipartite graph Γπ = (X ∪ Y,E), corresponding to π, where X = {xi : i ∈ [n]},
Y = {yi : i ∈ [n]} and E = {(xi, yj) : i, j ∈ [n], π(i) = j}.
In the current paper, we measure how much derangement is actually disordered. For
this, the following term is defined:

Ψπ =

n∑
i=1

|π(i)− i|.

Then, let Ψ denote the maximum of Ψπ over all elements π of Dk,n. Ψ is determined
and it is shown that Ψ is independent of k.
The following proposition determines all permutations that belong to Dk,n.

PROPOSITION 1 ([2]). A permutation σ ∈ Sn is a k-derangement if and only if
the cycle decomposition of σ does not contain a set of cycles whose lengths partition
k.
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2 Computing Ψ for k-Derangements

The main result of this paper is the following theorem.

THEOREM 1. Suppose k and n are integers and 1 ≤ k < n. Then Ψ is independent
of k and we have

Ψ =

{
1
2n

2 if n is even,
1
2 (n2 − 1) if n is odd.

PROOF. Let us first prove a reduced form of the theorem for k = 1. Consider
the case that n is even, i.e., n = 2m for an integer m ≥ 1. Let π ∈ D2m be a
derangement such that π(i) > m if and only if i ≤ m. We claim that Ψπ is maximized
over all elements π of D2m and its value is equal to Ψ. Suppose by the contrary that
Ψσ is maximized for some σ ∈ D2m such that Γσ contains the edge (xi, yσ(i)) where
σ(i) ≤ m for some i ≤ m. Let X = X1 ∪ X2 and Y = Y1 ∪ Y2 be a partition of
vertices of Γσ such that X1 = {x1, . . . , xm}, X2 = {xm+1, . . . , x2m}, Y1 = {y1, . . . , ym}
and Y2 = {ym+1, . . . , y2m}. So xi ∈ X1 and there exists j ∈ [m] such that yj ∈ Y1
and σ(i) = j. Since each vertex of Γσ has degree 1 and |X2| = |Y1\{yj}| + 1, by the
pigeonhole principle, there exists an edge from a vertex xr in X2 to a vertex ys in Y2.
Now consider a new permutation π′ such that π′(i) = s, π′(r) = j and π′(t) = σ(t) for
other t 6= i, r. Since 1 ≤ i, j ≤ m and m+ 1 ≤ r, s ≤ 2m, we have

|i− j|+ |r − s| ≤ |i− s|+ |r − j|.

From the above inequality, it is easy to deduce that Ψσ < Ψπ′ , which is a contradiction.
Now we show that the value of Ψπ is constant for each π ∈ D2m such that π(i) > m if
and only if i ≤ m. This condition implies that π(i)− i is positive if i ∈ [m], otherwise
it is negative. Compute Ψπ as

Ψπ =

m∑
i=1

|π(i)− i|+
2m∑

i=m+1

|π(i)− i| =
m∑
i=1

(π(i)− i) +

2m∑
i=m+1

(i− π(i))

=

m∑
i=1

π(i) +

2m∑
i=m+1

i−
m∑
i=1

i−
2m∑

i=m+1

π(i).

By the structure of π, it is easy to see that

m∑
i=1

π(i) =

2m∑
i=m+1

i and
2m∑

i=m+1

π(i) =

m∑
i=1

i.

Hence

Ψπ = 2

2m∑
i=m+1

i− 2

m∑
i=1

i = 2m2 =
n2

2
.

This completes the proof in the case that n is even.



H. Moshtagh 169

Consider the case that n is odd, i.e., n = 2m + 1 for an integer m ≥ 1. Let
π ∈ D2m+1 be a derangement such that Γπ has an edge (xi, y2m+1). Let X = X1 ∪X2

and Y = Y1 ∪ Y2 be a partition of vertices of Γπ such that X1 = {x1, . . . , xm+1},
X2 = {xm+2, . . . , x2m+1}, Y1 = {y1, . . . , ym} and Y2 = {ym+1, . . . , y2m+1}. Then
vertex xi must belong to X1. Otherwise, by the pigeonhole principle, there exists an
edge from a vertex xr in X1 to a vertex ys in Y1. For the same reason as above, we
can also get a contradiction. Let Γπ′ be the graph obtained from Γπ by deleting the
two vertices xi and y2m+1. Then Γπ′ is a bipartite graph such that it has an even
number of vertices on both sides. Clearly, Ψπ is maximized if and only if Ψπ′ is also.
As in the even case, Ψπ′ is maximized exactly when π′ is a derangement such that
π′(i) > m if and only if i ≤ m+ 1. Obviously, Ψπ = Ψπ′ + 2m+ 1− i. Moreover, the
same of argument as in the even case we can show that Ψπ′ = (n2 − 1)/2− n + i. So
Ψπ = (n2 − 1)/2 and its value is equal to Ψ. This completes the proof in the case that
n is odd.
Now let k be an arbitrary positive integer. Let

π = (1 2n 2 2n− 1 . . . n− 1 n+ 2 n n+ 1)

be a cyclic permutation of length 2n. In other words, the permutation π ∈ S2n is
representing the following mapping:

π(i) =


2n+ 1− i for 1 ≤ i ≤ n,
1 for i = n+ 1,

2n+ 2− i for n+ 1 < i ≤ 2n.

Since the cycle structure of the permutation π is one cycle of length 2n, so by Propo-
sition 1, π is a k-derangement for k ∈ [2n − 1]. It is easy to see that π(i) > n if and
only if i ≤ n. Similarly, if

π(i) =

{
n+ i for 1 ≤ i ≤ n+ 1,

i− n− 1 for n+ 1 < i ≤ 2n+ 1,

then π = (1 n+ 1 2n+ 1 n . . . 3 n+ 3 2 n+ 2) is a cyclic permutation of length 2n+ 1
in S2n+1. So by Proposition 1, π is a k-derangement permutation for k ∈ [2n]. Also,
Ψπ satisfies the maximum condition in the odd case. Hence, this completes the proof
of the theorem.
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