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Abstract

Using a fixed point method, we prove the Mittag-Leffl er-Hyers-Ulam stability
for the differential equation of the form y′(x) = F (x, y(x)).

1 Introduction

Let Y be a normed space and let I be a bounded interval. Assume that for any function
f : I −→ Y satisfying the differential inequality∥∥∥an(x)y(n)(x) + an−1(x)y(n−1)(x) + ...+ a1(x)y′(x) + a0(x)y(x) + f(x)

∥∥∥ ≤ ε
for all x ∈ I and for some ε ≥ 0. In this case there exists a solution f0 : I −→ Y of the
differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + ...+ a1(x)y′(x) + a0(x)y(x) + f0(x) = 0

such that ‖f(x)− f0(x)‖ ≤ Kε for any x ∈ I. Then , we say that the above differential
equation has the Hyers-Ulam stability. For more study about functional equations the
readers can see [9].
If the above statement is also true when we replace ε and Kε by ϕ(x) and Φ(x),

where ϕ,Φ : I −→ [0,∞) are functions not depending on f and f0 explicitly, then we
say that the corresponding differential equation has the Hyers-Ulam-Rassias stability
(or the generalized Hyers-Ulam stability).
We may apply these terminologies for other differential equations. For more detailed

definitions of the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability, refer to
[4, 5]. It seems that Obloza is the first author who has investigated the Hyers-Ulam
stability of linear differential equations (see [13, 14]. Here, we will introduce a result
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of Alsina and Ger (see [2]): If a differentiable function f : I −→ R is a solution of
the differential inequality |y′(x)− y(x)| ≤ ε, where I is an open subinterval of R, then
there exists a solution f0 : I −→ R of the differential equation y′(x) = y(x) such that
|f(x)− f0(x)| ≤ 3ε for any x ∈ I.
This result of Alsina and Ger has been generalized by Takahasi, Miura and Miya-

jima. They proved in [15] that the Hyers-Ulam stability holds for the differential
equation y′(x) = λy(x) in Banach spaces (see also [10]).
Recently, Miura, Miyajima and Takahasi also proved the Hyers-Ulam stability of

linear differential equations of first order, y′(x) + g(x)y(x) = 0, where g(x) is a contin-
uous function, while the author proved the Hyers-Ulam stability of linear differential
equations of other type (see [1, 6, 7, 8, 11, 12]).
In this paper, for a bounded and continuous function F (x, y) we will adopt the idea

of [3] and prove the Hyers-Ulam-Rassias stability as well as the Hyers-Ulam stability
of the differential equations of the form

y′(x) = F (x, y(x)). (1)

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper.
For a nonempty set X, we introduce the definition of the generalized metric on X.

A function d : X ×X −→ [0,+∞] is called a generalized metric on X if and only if it
satisfies

(A1) d(x, y) = 0 if and only if x = y;

(A2) d(x, y) = d(y, x) for all x, y ∈ X;

(A3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The above concept differs from the usual concept of a complete metric space by the
fact that not every two points in X have necessarily a finite distance. One might call
such a space a generalized complete metric space.
We now introduce one of the fundamental results of Banach fixed point theorem in

a generalized complete metric space.

THEOREM 1. Let (X, d) be a generalized complete metric space. Assume that
Λ : X −→ X is a strictly contractive operator with the Lipschitz constant L < 1. If
there exists a nonnegative integer K such that d(Λk+1x,Λkx) < ∞ for some x ∈ X,
then the following are true:

(a) The sequence Λnx convergences to a fixed point x∗ of Λ;

(b) x∗ is the unique fixed point of Λ in

X∗ = {y ∈ X : d(Λkx, y) <∞}

(c) If y ∈ X∗, then d(y, x∗) ≤ 1
1−Ld(Λy, y).
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3 Mittag-Leffl er-Hyers-Ulam Stability

Here, we prove the Mittag-Leffl er-Hyers-Ulam Stability for the differential equation
y′(x) = F (x, y(x)).

THEOREM 2. Given c ∈ R and r > 0. Let I denote a closed ball of radius r and
center at c, that is,

I = {x ∈ R | c− r ≤ x ≤ c+ r}

and let F : I × R −→ R be a continuous function which satisfies a Lipschits condition

|F (x, y)− F (x, z)| ≤ L|y − z| (2)

for all x ∈ I and y, z ∈ R where L is a constant with 0 < Lr < 1. If a continuously
differentiable function y : I −→ R satisfies the differential inequality

|y′(x)− F (x, y(x))| ≤ εEq(xq) (3)

for all x ∈ I and for some ε ≥ 0, where Eq is a Mittag function, then there exists a
unique continuous function y0 : I −→ R such that

y0(x) = y(c) +

∫ x

c

F (τ , y0(τ))dτ. (4)

Furthermore, y0 is a solution of (1) and

|y(x)− y0(x)| ≤ εEq(x
q)

1− Lr (5)

for any x ∈ I.

PROOF. First, we define a set X of all continuous functions f : I −→ R by

X = {f : I −→ R : f is a continuous function} (6)

and introduce a generalized metric on X as follows:

d(f, g) = inf{c ∈ [0,∞] : |f(x)− g(x)| ≤ c for all x ∈ I}. (7)

It is obvious that (X, d) is a generalized complete metric space. We define an operator
Λ : X −→ X by

(Λf)(x) = y(c) +

∫ x

c

F (τ , f(τ))dτ, (8)

for any x ∈ I and f ∈ X. (It is true that Λf ∈ X, because Λf is continuously
differentiable in view of the Fundamental Theorem of calculus. We now assert that Λ
is strictly contractive on X.
For f, g ∈ X, let cfg ∈ [0,∞] be an arbitrary constant with d(f, g) ≤ cfg, that is,

we assume that
|f(x)− g(x)| ≤ cfg (9)
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for all x ∈ I. Moreover, it follows from (2), (8) and (9) that

|(Λf)(x)− (Λg)(x)| =

∣∣∣∣∫ x

c

{F (τ , f(τ))− F (τ , g(τ))}dτ
∣∣∣∣

≤
∣∣∣∣∫ x

c

|F (τ , f(τ))− F (τ , g(τ))| dτ
∣∣∣∣

≤ L

∣∣∣∣∫ x

c

|f(τ)− g(τ)|dτ
∣∣∣∣ ≤ Lrcfg

for each x ∈ I, that is, d(Λf,Λg) ≤ Lrcfg. Thus, it follows that d(Λf,Λg) ≤ Lrd(f, g)
for all f, g ∈ X. We note that 0 < Lr < 1. It follows from (6) and (8) that for an
arbitrary g0 ∈ X, there exists a constant 0 < C <∞ with

|(Λg0)(x)− g0(x)| =
∣∣∣∣y(c) +

∫ x

c

F (τ , g0(τ))dτ − g0(x)

∣∣∣∣ ≤ C
for all x ∈ I since F (x, g0(x)) and g0(x) are bounded on I. Thus (7) implies that
d(Λg0, g0) <∞. Therefore, Theorem 1(a) implies that there exists a continuous func-
tion y0 : I −→ R such that Λng0 −→ y0 in (X, d) as n −→ ∞ and y0 = Λy0 where
y0 satisfies equation (8) for any x ∈ I. If g ∈ X, then g0 and g are continuous func-
tions defined on a compact interval I. Hence, there exists a constant C > 0 with
|g0(x)− g(x)| ≤ C for all x ∈ I.
This implies that d(g0, g) <∞ for every g ∈ X, or equivalently {g ∈ X : d(g0, g) <

∞} = X. Therefore, according to Theorem 1(b), y0 is a unique continuous function
with the property (8). Furthermore, it follows from (3) that

−εEq(xq) ≤ y′(x)− F (x, y(x)) ≤ εEq(xq)

for all x ∈ I. If we integrate each term of the above inequality from c to x, then we
have

|(Λy)(x)− y(x)| ≤
∫ x

c

εEq(τ
q)dτ =

∫ x

c

ε

∞∑
k=o

τkq

Γ(kq + 1)
dτ

= ε

∞∑
k=o

1

Γ(kq + 1)

∫ x

c

τkqdτ = ε

∞∑
k=o

xkq+1 − Ckq+1
Γ(kq + 2)

≤ ε

∞∑
k=o

xkq

Γ(kq + 1)
= εEq(x

q)

for any x ∈ I. That is, d(Λy, y) ≤ εEq holds. It now follows from Theorem 1(c) that

d(y, y0) ≤
1

1− Lrd(Λy, y) ≤ ε

1− LrEq(x
q),

which implies the validity of (5) for each x ∈ I.
In the following Theorem we have used the Bielecki norm

‖x‖B := max
t∈J

{
|x(t)|e−θt, : θ > 0, : J ⊂ R+

}
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to derive the similar Theorem 2 for the fundamental equation (1) via the Bielecki norm.

THEOREM 3. Given c ∈ R and r > 0. Let I denote a closed ball of radius r and
center at c, that is , I = {x ∈ R | c − r ≤ x ≤ c + r} and let F : I × R −→ R be a
continuous function which satisfies a Lipschits condition

|F (x, y)− F (x, z)| ≤ L|y − z|

for all x ∈ I and y, z ∈ R where L is a constant with 0 < L/θ < 1. If a continuously
differentiable function y : I −→ R satisfies the differential inequality

|y′(x)− F (x, y(x))| ≤ εEq(xq)

for all x ∈ I and some ε ≥ 0, where Eq is a Mittag function, then the equation (1) is
Mittag-Leffl er-Hyers-Ulam stable via the Bielecki norm.

PROOF. Just like the discussion in Theorem 2, we only prove that Λ defined in (6)
is a contraction mapping on X with respect to the Bielecki norm:

|(Λf)(x)− (Λg)(x)| =

∣∣∣∣∫ x

c

{F (τ , f(τ))− F (τ , g(τ))}dτ
∣∣∣∣

≤
∫ x

c

|F (τ , f(τ))− F (τ , g(τ))|dτ ≤ L
∫ x

c

eθτ |f(τ)− g(τ)|e−θτdτ

≤ L‖f − g‖B
∫ x

c

eθτdτ ≤ L

θ
‖f − g‖Be

θx.

Then

|(Λf)(x)− (Λg)(x)|e−θx ≤ L

θ
‖f − g‖B

for each x ∈ I, that is, d(Λf,Λg) ≤ L
θ ‖f − g‖B .Hence we can conclude that d(Λf,Λg) ≤

L
θ d(f, g) for any f, g ∈ X. By letting 0 < L/θ < 1, the strictly continuous property is
verified. Now by a similar process with Theorem 1, we have

d(y, y0) ≤
1

1− L
θ

d(Λy, y) ≤ 1

1− L
θ

εEq(x
q),

which means that the equation (1) is Mittag-Leffl er-Hyers-Ulam stable via the Bielecki
norm.

4 Mittag-Leffl er-Hyers-Ulam-Rassias Stability

In this section we prove the Mittag-Leffl er-Hyers-Ulam-Rassias Stability for the equa-
tion (1).

THEOREM 4. For given real numbers a and b with a < b, let I = [a, b] be a closed
interval and choose a c ∈ I. Let K,M and L be positive constants with 0 < KL < 1.
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Assume that F : I × R −→ R is a continuous function which satisfies in a Lipschits
condition

|F (x, y)− F (x, z)| ≤ L|y − z| (10)

for all x ∈ I and y, z ∈ R. If a continuously differentiable function y : I −→ R satisfies
the differential inequality

|y′(x)− F (x, y(x))| ≤ εϕ(x)Eq(x
q) (11)

for all x ∈ I and some ε ≥ 0, where Eq is a Mittag function, and ϕ : I −→ (0,∞) is a
continuous function with ∣∣∣∣∫ x

0

ϕ(τ)dτ

∣∣∣∣ ≤ Kϕ(x) (12)

and ∣∣∣∣(∫ x

0

(ϕ(τ))
1

1−p dτ)1−p
∣∣∣∣ ≤Mϕ(x) (13)

for each x ∈ I, then there exists a unique continuous function y0 : I −→ R such that

y0(x) = y(c) +

∫ x

0

F (τ , y0(τ))dτ. (14)

Furthermore, y0 is a solution of (1) and

|y(x)− y0(x)| ≤ εEq(x
q)

1− LKMϕ(x) (15)

for all x ∈ I.

PROOF. First, we define a set X of all continuous functions f : I −→ R by

X = {f : I −→ R : f is a continuous function}. (16)

and introduce a generalized metric on X as follows:

d(f, g) = inf{c ∈ [0,∞] : |f(x)− g(x)| ≤ Cϕ(x) for all x ∈ I}. (17)

It is obvious that (X, d) is a generalized complete metric space. We define an operator
Λ : X −→ X by

(Λf)(x) = y(c) +

∫ x

0

F (τ , f(τ))dτ, (18)

for any x ∈ I and f ∈ X. (It is true that Λf ∈ X, because Λf is continuously
differentiable in view of the Fundamental Theorem of calculus. We now assert that Λ
is strictly contractive on X. For f, g ∈ X, let Cfg ∈ [0,∞] be an arbitrary constant
with d(f, g) ≤ Cfgϕ(x), that is, we assume that

|f(x)− g(x)| ≤ Cfgϕ(x) (19)
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for all x ∈ I. Moreover, it follows from (10), (17),(12) and (18) that

|(Λf)(x)− (Λg)(x)| =

∣∣∣∣∫ x

0

{F (τ , f(τ))− F (τ , g(τ))}dτ
∣∣∣∣

≤
∣∣∣∣∫ x

0

|F (τ , f(τ))− F (τ , g(τ))|dτ
∣∣∣∣ ≤ L ∣∣∣∣∫ x

0

|f(τ)− g(τ)|dτ
∣∣∣∣

≤ LCfg

∣∣∣∣∫ x

0

ϕ(τ)dτ

∣∣∣∣ ≤ LKCfgϕ(x)

for each x ∈ I, that is, d(Λf,Λg) ≤ LKCfgϕ(x).
Thus, it follows that d(Λf,Λg) ≤ LKd(f, g) for all f, g ∈ X. We note that 0 <

LK < 1. It follows from (16) and (18) that for an arbitrary g0 ∈ X, there exists a
constant 0 < C <∞ with

|(Λg0)(x)− g0(x)| =
∣∣∣∣y(c) +

∫ x

c

F (τ , g0(τ))dτ − g0(x)

∣∣∣∣ ≤ Cϕ(x)

for all x ∈ I since F (x, g0(x)) and g0(x) are bounded on I and minx∈I ϕ(x) > 0. Thus
(17) implies that d(Λg0, g0) <∞. Therefore, Theorem 1(a) implies that there exists a
continuous function y0 : I −→ R such that Λng0 −→ y0 in (X, d) as n −→∞ and such
that y0 = Λy0 that is y0 satisfies equation (14) for any x ∈ I. If g ∈ X, then g0 and g
are continuous functions defined on a compact interval I and minx∈I ϕ(x) > 0. Hence,
there exists a constant Cg > 0 with |g0(x)− g(x)| ≤ Cgϕ(x) for all x ∈ I.
This implies that d(g0, g) <∞ for every g ∈ X, or equivalently

{g ∈ X : d(g0, g) <∞} = X.

Therefore, according to Theorem 1(b), y0 is a unique continuous function with the
property (14). Furthermore, it follows from (11) that

−εϕ(x)Eq(x
q) ≤ y′(x)− F (x, y(x)) ≤ εϕ(x)Eq(x

q)

for all x ∈ I. If we integrate each term of the above inequality from 0 to x, then we
have

|(Λy)(x)− y(x)| ≤
∫ x

0

εϕ(τ)Eq(τ
q)dτ

=

∫ x

0

εϕ(τ)

∞∑
k=o

τkq

Γ(kq + 1)
dτ = ε

∞∑
k=o

1

Γ(kq + 1)

∫ x

0

ϕ(τ)τkqdτ

≤ ε

∞∑
k=o

1

Γ(kq + 1)

(∫ x

0

ϕ(τ))
1

1−p dτ

)1−p(∫ x

0

(τkq)
1
p dτ

)p

≤ ε

∞∑
k=o

1

Γ(kq + 1)
Mϕ(x)

(
x
kq
p

kq+p
p

)p

≤ ε

∞∑
k=o

xkq

Γ(kq + 1)
Mϕ(x) ≤ εMϕ(x)Eq(x

q)
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for any x ∈ I. That is, d(Λy, y) ≤ εMϕ(x)Eq(x
q) holds. It now follows from Theorem

1(c) that

d(y, y0) ≤
1

1− LKd(Λy, y) ≤ ε

1− LKMϕ(x)Eq(x
q),

which implies the validity of (14) for each x ∈ I.

EXAMPLE 1. We choose positives K and L with KL < 1. For a positive number
ε < 2K, let I = [0, 2K − ε] be a closed interval. Given a polynomial p(x), we assume
that a continuously differentiable function y : I −→ R satisfies

|y′(x)− Ly(x)− p(x)| ≤ (x+ ε)Eq(x
q)

for all x ∈ I. If we set F (x, y) = Ly+ p(x) and ϕ(x) = x+ ε, then the above inequality
has the identical form with (11). Moreover, we obtain∣∣∣∣∫ x

0

ϕ(τ)dτ

∣∣∣∣ =
1

2
x2 + xε ≤ Kϕ(x)Eq(x

q)

and ∣∣∣∣∣
(∫ x

0

(ϕ(τ))
1

1−p dτ

)1−p∣∣∣∣∣ ≤Mϕ(x)

for each x ∈ I, since Kϕ(x)Eq(x
q)− x2

2 −xε ≥ 0. According to Theorem 4, there exists
a unique continuous function y0 : I −→ R such that

y0(x) = y(0) +

∫ x

0

{Ly0(τ) + p(τ)}dτ

and

|y(x)− y0(x)| ≤ M(x+ ε)

1− LK Eq(x
q)

for any x ∈ I.

EXAMPLE 2. Let r and L be positive constants with 0 < Lr < 1 and define a
closed interval I = {x ∈ R : c − r ≤ x ≤ c + r} for some real number c. Assume that
a continuously differentiable function y : I −→ R satisfies |y′(x)− Ly(x)− p(x)| ≤
εEq(x

q) for all x ∈ I and some ε ≥ 0, where p(x) is a polynomial. If we set F (x, y) =
Ly(x)+p(x), then by Theorem 3.1 there exists a unique continuous function y0 : I −→ R
such that

y0(x) = y(c) +

∫ x

c

{Ly0(τ) + p(τ)}dτ

and
|y(x)− y0(x)| ≤ ε

1− LrEq(x
q)

for all x ∈ I.
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