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Abstract

Using a fixed point method, we prove the Mittag-Leffler-Hyers-Ulam stability
for the differential equation of the form y'(z) = F(x,y(x)).

1 Introduction

Let Y be a normed space and let I be a bounded interval. Assume that for any function
f 1 — Y satisfying the differential inequality

Jan 10 ) + 2y )+t ar () @)+ ap(eyta) + 1) < <

for all z € I and for some ¢ > 0. In this case there exists a solution fy : I — Y of the
differential equation

an(@)y™ (@) + an—1(2)y "V (@) + .+ ar(@)y (@) + ao(z)y(z) + fo(z) =0

such that || f(z) — fo(x)|| < Ke for any « € I. Then , we say that the above differential
equation has the Hyers-Ulam stability. For more study about functional equations the
readers can see [9)].

If the above statement is also true when we replace € and Ke by ¢(z) and ®(x),
where ¢, ® : I — [0, 00) are functions not depending on f and fy explicitly, then we
say that the corresponding differential equation has the Hyers-Ulam-Rassias stability
(or the generalized Hyers-Ulam stability).

We may apply these terminologies for other differential equations. For more detailed
definitions of the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability, refer to
[4, 5]. Tt seems that Obloza is the first author who has investigated the Hyers-Ulam
stability of linear differential equations (see [13, 14]. Here, we will introduce a result
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of Alsina and Ger (see [2]): If a differentiable function f : I — R is a solution of
the differential inequality |y'(z) — y(z)| < €, where I is an open subinterval of R, then
there exists a solution fy : I — R of the differential equation y'(x) = y(z) such that
|f(z) — fo(z)| < 3e for any = € I.

This result of Alsina and Ger has been generalized by Takahasi, Miura and Miya-
jima. They proved in [15] that the Hyers-Ulam stability holds for the differential
equation y'(z) = Ay(z) in Banach spaces (see also [10]).

Recently, Miura, Miyajima and Takahasi also proved the Hyers-Ulam stability of
linear differential equations of first order, y'(x) + g(z)y(z) = 0, where g(z) is a contin-
uous function, while the author proved the Hyers-Ulam stability of linear differential
equations of other type (see [1, 6, 7, 8, 11, 12]).

In this paper, for a bounded and continuous function F(z,y) we will adopt the idea
of [3] and prove the Hyers-Ulam-Rassias stability as well as the Hyers-Ulam stability
of the differential equations of the form

y'(x) = F(z,y(z)). (1)

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper.

For a nonempty set X, we introduce the definition of the generalized metric on X.
A function d : X x X — [0, +00] is called a generalized metric on X if and only if it
satisfies

(A1) d(z,y) =0 if and only if = y;
(A2) d(z,y) = d(y, ) for all z,y € X;
(A3) d(z,z) <d(z,y) +d(y, z) for all z,y,z € X.

The above concept differs from the usual concept of a complete metric space by the
fact that not every two points in X have necessarily a finite distance. One might call
such a space a generalized complete metric space.

We now introduce one of the fundamental results of Banach fixed point theorem in
a generalized complete metric space.

THEOREM 1. Let (X,d) be a generalized complete metric space. Assume that
A . X — X is a strictly contractive operator with the Lipschitz constant L < 1. If
there exists a nonnegative integer K such that d(A**'z, A¥z) < oo for some = € X,
then the following are true:

(a) The sequence A"z convergences to a fixed point z* of A;
(b) z* is the unique fixed point of A in
X*={ye X :dArzy) < oo}

(c) If y € X*, then d(y,z*) < 2rd(Ay,y).
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3 Mittag-Leffler-Hyers-Ulam Stability

Here, we prove the Mittag-Lefler-Hyers-Ulam Stability for the differential equation
y'(z) = F(z,y(x)).

THEOREM 2. Given ¢ € R and » > 0. Let I denote a closed ball of radius r» and
center at ¢, that is,
I={zeR|c—r<z<c+r}

and let F': I x R — R be a continuous function which satisfies a Lipschits condition
|F(z,y) — F(z,2)] < Lly — 2| (2)

for all x € I and y,2z € R where L is a constant with 0 < Lr < 1. If a continuously
differentiable function y : I — R satisfies the differential inequality

|y (z) = F(z,y(x))| < eEq(a?) (3)

for all x € I and for some € > 0, where E, is a Mittag function, then there exists a
unique continuous function gy : I — R such that

yo(z) = y(c) + /93 F(r,yo(7))dr. (4)

Furthermore, yo is a solution of (1) and

ly(x) —yo(e)| < —7=
for any = € I.

PROOF. First, we define a set X of all continuous functions f : I — R by
X ={f:I — R: fis a continuous function} (6)
and introduce a generalized metric on X as follows:
d(f,g) = inf{c € [0,00] : | f(z) — g(z)| < cfor all x € I}. (7)
It is obvious that (X, d) is a generalized complete metric space. We define an operator
A X — X by
(D)@ =y(e)+ [ Flr,fo)r, ®)
(&
for any x € I and f € X. (It is true that Af € X, because Af is continuously
differentiable in view of the Fundamental Theorem of calculus. We now assert that A
is strictly contractive on X.

For f,g € X, let cpy € [0,00] be an arbitrary constant with d(f,g) < ¢4, that is,
we assume that

[f(@) = g(x)] < cpq (9)
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for all z € I. Moreover, it follows from (2), (8) and (9) that

[(Af)(2) = (Ag)(2)|

/ (F(r, f(r) — F(r,g(r)}dr

IN

/ |G f(r)) = F(r.g(r))] dr

IN

T)|dr

< Lregy

for each z € I, that is, d(Af, Ag) < Lrcyq. Thus, it follows that d(Af, Ag) < Lrd(f, g)
for all f,g € X. We note that 0 < Lr < 1. It follows from (6) and (8) that for an
arbitrary go € X, there exists a constant 0 < C' < co with

(Ago)(2) — gola)] = \y@ + [ P g0 - )| <€

for all x € I since F(z,go(z)) and go(x) are bounded on I. Thus (7) implies that
d(Ago, go) < 0o. Therefore, Theorem 1(a) implies that there exists a continuous func-
tion yo : I — R such that A"gy — yo in (X,d) as n — oo and yg = Ayo where
yo satisfies equation (8) for any = € I. If g € X, then g9 and g are continuous func-
tions defined on a compact interval I. Hence, there exists a constant C' > 0 with
lgo(x) — g(z)| < C for all z € I.

This implies that d(go, g) < oo for every g € X, or equivalently {g € X : d(go,9) <
oo} = X. Therefore, according to Theorem 1(b), yo is a unique continuous function
with the property (8). Furthermore, it follows from (3) that

—eE,(27) < y'(z) — F(z,y(z)) < eE,(z9)

for all x € I. If we integrate each term of the above inequality from ¢ to z, then we

have
A : E (t7)d oy ™ d
_ < — o
o) ) < [ emear= [ <3
0 z X kgl _ kg1
= Z / hdr = ¢ r_-r ¢
kq+1 o F(kq+2)
[ee]
< =cFE,(x
- kz kq+1 = eBy ()

for any « € I. That is, d(Ay,y) < eE, holds. It now follows from Theorem 1(c) that

1 €
< Ay,y) < By (21
dy.y0) < 7= dAy,y) < 77 Eal@),

which implies the validity of (5) for each = € I.
In the following Theorem we have used the Bielecki norm

x|z = r£1€a}<{|m(t)\e_‘%,: 6>0,:JCR,}
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to derive the similar Theorem 2 for the fundamental equation (1) via the Bielecki norm.

THEOREM 3. Given ¢ € R and r > 0. Let I denote a closed ball of radius » and
center at ¢, that is , [ ={z e R|c—r<axz<c+r}andlet F: I xR — R bea
continuous function which satisfies a Lipschits condition

|F(z,y) — F(z,2)] < Lly — 2|

for all z € I and y,z € R where L is a constant with 0 < L/0 < 1. If a continuously
differentiable function y : I — R satisfies the differential inequality

1y (z) = F(z,y(x))| < eEq(a?)

for all x € I and some € > 0, where E, is a Mittag function, then the equation (1) is
Mittag-Leffler-Hyers-Ulam stable via the Bielecki norm.

PROOF. Just like the discussion in Theorem 2, we only prove that A defined in (6)
is a contraction mapping on X with respect to the Bielecki norm:

[(Af) (@) = (Ag)(2)] =

[ 16 - Fergonar

IN

[ 1# G 5) = R gl < 1 [ riste) - gy ar

C

IN

LIf = glls [ <dr <51 = gllse™

Then I
[(Af) (@) = (Ag)(x)]e™"" < gIlf —als

for each x € I, that is, d(Af, Ag) < £||f — g 5. Hence we can conclude that d(Af, Ag) <
%d(f, g) for any f,g € X. By letting 0 < L/6 < 1, the strictly continuous property is
verified. Now by a similar process with Theorem 1, we have

d(y:y0) < T d(Ay:y) < T
0

0

eEq(x),

which means that the equation (1) is Mittag-Leffler-Hyers-Ulam stable via the Bielecki
norm.

4 Mittag-LefHer-Hyers-Ulam-Rassias Stability

In this section we prove the Mittag-Leffler-Hyers-Ulam-Rassias Stability for the equa-
tion (1).

THEOREM 4. For given real numbers a and b with a < b, let I = [a, b] be a closed
interval and choose a ¢ € I. Let K, M and L be positive constants with 0 < KL < 1.
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Assume that F' : I x R — R is a continuous function which satisfies in a Lipschits
condition

|F(z,y) — F(z,2)] < Lly — 2| (10)

for all x € I and y, z € R. If a continuously differentiable function y : I — R satisfies
the differential inequality

' (z) = F(z,y(2))| < ep(x) Ey(?) (11)

for all = € I and some € > 0, where E, is a Mittag function, and ¢ : I — (0,00) is a
continuous function with )
| etnar
0

’( /Ox«om)livdﬂlp

for each = € I, then there exists a unique continuous function y : I — R such that

< Keo(z) (12)

and

< My(z) (13)

yola) = y(©) + / " F(r,yo(r))dr. (14)

Furthermore, g is a solution of (1) and

eEq(z9)
1-LK

ly(z) —yo(z)| < M(x) (15)

forall z € I.

PROOF. First, we define a set X of all continuous functions f : I — R by
X ={f:I— R: fis a continuous function}. (16)
and introduce a generalized metric on X as follows:
d(f,g) =inf{c € [0,00] : | f(z) — g(x)| < Cop(x) for all x € I}. (17)

It is obvious that (X, d) is a generalized complete metric space. We define an operator
A: X — X by

(AN)@) = () + [ Flr,fr)r, (1)

0
for any © € I and f € X. (It is true that Af € X, because Af is continuously
differentiable in view of the Fundamental Theorem of calculus. We now assert that A

is strictly contractive on X. For f,g € X, let Cy, € [0,00] be an arbitrary constant
with d(f, g) < Cyg(x), that is, we assume that

|f(z) = g(2)] < Crgp(x) (19)
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for all z € I. Moreover, it follows from (10), (17),(12) and (18) that

[(Af)(2) — (Ag) ()|

/ (F(r, f(7)) - F(r.g(r)}dr

IN

/Om|F(T,f(T)) — F(7,9(r))|dr| < L'/oz F(r) — g(r)|dr

/Ol o(T)dr

for each x € I, that is, d(Af, Ag) < LKCyy0(x).

Thus, it follows that d(Af,Ag) < LKd(f,g) for all f,g € X. We note that 0 <
LK < 1. It follows from (16) and (18) that for an arbitrary go € X, there exists a
constant 0 < C' < oo with

IA

LCrq < LKCygp(x)

[(Ago)(x) — go(x)| = ‘:1/(0) + /z F(7,90(7))d7 — go(x)| < Cp(x)

for all « € I since F(x,go(z)) and go(z) are bounded on I and min,cs ¢(z) > 0. Thus
(17) implies that d(Ago, go) < oo. Therefore, Theorem 1(a) implies that there exists a
continuous function gy : I — R such that A"gy — yo in (X, d) as n — oo and such
that yo = Ayo that is yo satisfies equation (14) for any = € I. If g € X, then g and ¢
are continuous functions defined on a compact interval I and minge; ¢(x) > 0. Hence,
there exists a constant Cy > 0 with |go(z) — g(z)| < Cyp(x) for all x € I.

This implies that d(go, g) < oo for every g € X, or equivalently

{9 € X :d(g0,9) < 0} =X.

Therefore, according to Theorem 1(b), yo is a unique continuous function with the
property (14). Furthermore, it follows from (11) that

—ep(2) B (29) <y (z) — F(,y(x)) < ep(x) Ey(a?)

for all x € I. If we integrate each term of the above inequality from 0 to z, then we
have

(@ -l < | () Ey(r9)dr

/0 Ew(T)Zif(qur 1)dT = Ekzir(qur 0 /0 @(T)qudﬂ'

k=o c=0

8kiF(kqu) (/0z 90(7))147617)1? (/ow(qu)‘l“dTY

o] 1 ka p
TP
- M =
T (i)

IN

IN

P
kq

IN

EZ m]\ﬁp(x) <eMo(x)E,(z)

k=o
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for any = € I. That is, d(Ay, y) < eM(z)E,(z?) holds. It now follows from Theorem
1(c) that

1 €
< < — q
d(yayO) =1_ LKd(Ay,y) = I_LKMSD(:L')EQ(:B )7

which implies the validity of (14) for each x € I.

EXAMPLE 1. We choose positives K and L with KL < 1. For a positive number
e < 2K,let I =[0,2K — ] be a closed interval. Given a polynomial p(z), we assume
that a continuously differentiable function y : I — R satisfies

y'(z) = Ly(z) — p(x)| < (2 + &) By(a)

for all z € I. If we set F(z,y) = Ly+p(z) and ¢(z) = x + ¢, then the above inequality
has the identical form with (11). Moreover, we obtain

/OI p(r)dr
‘ ([ onear)

for each x € I, since Ky(z)E,(z7) — I—; —xe > 0. According to Theorem 4, there exists

a unique continuous function yg : I — R such that

1
= 50 +2¢ < Kp(#) By(e")

and

< Mp(x)

vole) = y(0) + / “(Lyo(r) + p(r)}dr

and
M(z+e¢) B, (2

ly(z) — yo(z)] < T_IK

for any = € I.

EXAMPLE 2. Let r and L be positive constants with 0 < Lr < 1 and define a
closed interval I = {z € R: c—r < z < ¢+ r} for some real number ¢. Assume that
a continuously differentiable function y : I — R satisfies |y'(z) — Ly(x) — p(z)| <
eEq(x?) for all z € I and some € > 0, where p(z) is a polynomial. If we set F(z,y) =
Ly(x)+p(x), then by Theorem 3.1 there exists a unique continuous function yy : I — R
such that

i) =(0)+ [ (Lyor) + p(r)}dr

and
€

forall z € I.
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