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Abstract

Let K be a polygonal knot in general position with vertex set V . A generic
quadrisecant of K is a line that is disjoint from the set V and intersects K in
exactly four distinct points. We give an upper bound for the number of generic
quadrisecants of a polygonal knot K in general position. This upper bound is in
terms of the number of edges of K.

1 Introduction

In this article, we study polygonal knots in three dimensional space that are in general
position. Given such a knot K, we define a quadrisecant of K as an unoriented line
that intersects K in exactly four distinct points. We require that these points are not
vertices of the knot, in which case we say that the quadrisecant is generic.

Using geometric and combinatorial arguments, we give an upper bound for the
number of generic quadrisecants of a polygonal knot K in general position. This bound
is in terms of the number n ≥ 3 of edges of K. More precisely, we prove the following.

THEOREM 1. Let K be a polygonal knot in general position, with exactly n edges.
Then K has at most Un =

n

12
(n− 3)(n− 4)(n− 5) generic quadrisecants.

Applying Theorem 1 to polygonal knots with few edges, we obtain the following.

1. If n ≤ 5, then K has no generic quadrisecant.

2. If n = 6, then K has at most three generic quadrisecants.

3. If n = 7, then K has at most 14 generic quadrisecants.

Using a result of G. Jin and S. Park ([3]), we can prove that the above bound is sharp
for n = 6. In other words, a hexagonal trefoil knot has exactly three quadrisecants, all
of which are generic.
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Quadrisecants of polygonal knots in R3 have been studied by many people, such
as E. Pannwitz, H. Morton, D. Mond, G. Kuperberg and E. Denne. The study of
quadrisecants started in 1933 with E. Pannwitz’s doctoral dissertation ([7]). There, she
found a lower bound for the number of quadrisecants of non-trivial generic polygonal
knots. This bound is in terms of the minimal number of boundary singularities for
a disk bounded by K. Later, H. Morton and D. Mond ([5]) proved that every non-
trivial generic knot has a quadrisecant, and G. Kuperberg extended their result to non-
trivial tame knots and links ([4]). More recently, E. Denne ([1]) proved that essential
alternating quadrisecants exist for all non-trivial tame knots.

Notation

Unless otherwise stated, all polygonal knots studied in this article are embedded in
the three-dimensional Euclidean space R3. Such a knot will be denoted by K. The
cardinality of a set A is denoted by |A|. Given a set A, with |A| = n,

(
n
k

)
denotes the

number of subsets of A of cardinality k. The symbol t denotes the disjoint union of
sets.

2 Preliminaries

It is well-known that a triple of pairwise skew lines E1, E2, E3 determines a unique
quadric. This quadric is a doubly-ruled surface S that is either a hyperbolic paraboloid,
if the three lines are parallel to one plane, or a hyperboloid of one sheet, otherwise (see
for example [2]). The lines E1, E2, E3 belong to one of the rulings of S, and every line
intersecting all those three lines belongs to the other ruling of S. Further, every point
in S lies on a unique line from each ruling (see [1], [6] and [8]).
We now define the type of polygonal knots that we will consider in this article.

DEFINITION 1. We say that the polygonal knot K in R3 is in general position if
the following conditions are satisfied:

(i) No four vertices of K are coplanar.

(ii) Given three edges e1, e2, e3 of K that are pairwise skew, no other edge of K is
contained in the quadric generated by e1, e2, e3.

The quadrisecants of knots that we will study are defined as follows.

DEFINITION 2. Let K be a polygonal knot in general position with vertex set V .
A generic quadrisecant of K is an unoriented line that is disjoint from the set V and
intersects K in exactly four distinct points.

In this paper we are interested in giving an upper bound for the number of generic
quadrisecants of a polygonal knotK in general position. This upper bound is in terms of
the number of edges of K. We start by estimating the number of generic quadrisecants
that intersect a given collection of four edges of K that are pairwise skew.
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PROPOSITION 1. Let K be a knot in general position. Let E4 be a collection of
four distinct edges of K that are pairwise skew. Then there are at most two generic
quadrisecants of K that intersect all edges in E4.

PROOF. Let e1, e2, e3, e4 be the four edges in the collection E4. Each edge ei
generates a line Ei (i = 1, 2, 3, 4). Let S be the doubly-ruled quadric generated by
E1, E2, E3. Since K is in general position, the edge e4 is not contained in S. Therefore,
e4 intersects the quadric S in at most two points.
Let QE4 be the set of all generic quadrisecants of K that intersect all edges in E4.

For l ∈ QE4 , we define the point pl as the point of intersection between the edge e4
and the line l. Since l intersects all lines E1, E2, E3, then it belongs to a ruling R of
S. Also, pl ∈ e4 ∩ S, and so the cardinality of the set {pl : l ∈ QE4} is at most two.
To complete the proof, we show that the function l 7→ pl is one-to-one. Suppose that
pl = pl′ , where l ∈ QE4 and l′ ∈ QE4 . Then the point pl = pl′ lies in two lines, l and l′,
that belong to the ruling R of S. Since every point in S lies on a unique line from R,
then l = l′.

Our next result complements Proposition 1.

PROPOSITION 2. Let K be a knot in general position. Let E4 be a collection of
four distinct edges of K, two of which are coplanar. Then there is at most one generic
quadrisecant of K that intersects all edges in E4.

PROOF. Let e1, e2, e3, e4 be the four edges in the collection E4, and suppose that
e1 and e2 lie in a plane P . By general position, e1 and e2 are adjacent edges. Arguing
toward a contradiction, suppose that l1 and l2 are two distinct generic quadrisecants
of K that intersect all edges in E4.
Since e1 and e2 lie in P , then the same is true for l1 and l2. Since both l1 and

l2 intersect the edge ei, then so does P (i = 3, 4). By general position, the edge ei
intersects P in a single point pi, which is a point of intersection between the lines l1
and l2 (i = 3, 4). Thus, p3 = p4, and so the edge e3 intersects the edge e4. This means
that the point p3 = p4 is a vertex of both e3 and e4, and this vertex is different from
those of edges e1 and e2 (because K is a knot). This contradicts general position.

3 Quadrisecants Intersecting Consecutive Edges of
the Knot

To prove some of the results in the next section, we will need to analyze collections of
edges of a polygonal knot that have the property defined below.

DEFINITION 3. Let E ′ be a collection of distinct edges of a polygonal knot K. We
will say that the edges in E ′ are consecutive if their union (with the subspace topology
induced from K) is connected.

Since two consecutive edges of a polygonal knot are always coplanar, then Propo-
sition 2 implies the following.
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PROPOSITION 3. Let K be a knot in general position. Let E4 be a collection of
four distinct edges of K that contains a pair of consecutive edges. Then there is at
most one generic quadrisecant of K that intersects all edges in E4.

We now investigate the existence of generic quadrisecants intersecting two or three
consecutive edges of a polygonal knot.

PROPOSITION 4. There are no generic quadrisecants of K intersecting three
distinct consecutive edges of K.

PROOF. Let n be the number of edges of K. If n = 3, then the result is clear.
Suppose that n > 3 and that l is a generic quadrisecant that intersects three distinct
consecutive edges of K. Then the plane P that contains l and one of the three con-
secutive edges also contains the other two edges. Since n > 3, then the endpoints of
the three consecutive edges are four distinct vertices of K, and these vertices lie in the
plane P . This contradicts that K is in general position.

Proposition 4 has the following immediate corollary.

COROLLARY 1. There are no generic quadrisecants of K intersecting four distinct
consecutive edges of K.

The following proposition complements Proposition 3.

PROPOSITION 5. Let E4 be a collection of four distinct edges of K that contains
no pair of consecutive edges. Then there are at most two generic quadrisecants of K
that intersect all edges in E4.

PROOF. If all edges in E4 are pairwise skew, then Proposition 1 implies that there
are at most two generic quadrisecants of K intersecting all edges in E4. If the collection
E4 contains a pair of coplanar edges, then Proposition 2 implies that there is at most
one generic quadrisecant of K intersecting all edges in E4.

4 Combinatorial Results

For a collection E4 of four distinct edges of the knot K, the following theorem gives an
upper bound for the number of generic quadrisecants of K that intersect all edges in
E4.

THEOREM 2. Let K be a polygonal knot in general position. Given a collection
E4 of four distinct edges of K, consider the union XE4 of the edges in E4 (with the
subspace topology induced from K). Let c be the number of connected components of
the space XE4 .

(i) If c = 1, then there are no generic quadrisecants intersecting all edges in E4.
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(ii) If c = 2, and one of the connected components of XE4 consists of a single edge of
K, then there are no generic quadrisecants intersecting all edges in E4.

(iii) If c = 2, and each of the connected components of XE4 is the union of exactly two
consecutive edges ofK, then there is at most one generic quadrisecant intersecting
all edges in E4.

(iv) If c = 3, then there is at most one generic quadrisecant intersecting all edges in
E4.

(v) If c = 4, then there are at most two generic quadrisecants intersecting all edges
in E4.

PROOF. We divide the proof into four cases.

Case 1: c = 1. In this case Corollary 1 implies the result.

Case 2: c = 2. If one of the connected components of XE4 consists of a single edge,
then the result follows from Proposition 4. Otherwise, the result follows from
Proposition 3.

Case 3: c = 3. Since the collection E4 contains a pair of consecutive edges, then
Proposition 3 implies the result.

Case 4: c = 4. Since E4 contains no pair of consecutive edges, then the result follows
from Proposition 5.

To obtain an upper bound for the number of generic quadrisecants of a knot, we
need to consider the number of collections of four distinct edges of the knot for each of
the cases stated in Theorem 2. These numbers are defined as follows.

DEFINITION 4. Let K be a polygonal knot in general position with exactly n
edges. For a collection E4 of four distinct edges of K, consider the union XE4 of the
edges in E4 (with the subspace topology induced from K).

(i) For c = 1, 2, 3, 4, let S(n)c (K) be the number of collections E4 of four distinct edges
of K such that XE4 has exactly c connected components.

(ii) For c = 2 we also define the following.

(a) Let S(n)2,1 (K) be the number of collections E4 of four distinct edges of K
such that XE4 has exactly two connected components, and one of these
components consists of a single edge.

(b) Let S(n)2,2 (K) be the number of collections E4 of four distinct edges of K
such that XE4 has exactly two connected components, and each of these
components is the union of exactly two consecutive edges.
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By definition,
S
(n)
2 (K) = S

(n)
2,1 (K) + S

(n)
2,2 (K); (1)

S
(n)
1 (K) + S

(n)
2,1 (K) + S

(n)
2,2 (K) + S

(n)
3 (K) + S

(n)
4 (K) =

(
n

4

)
. (2)

Combining Theorem 2 with Definition 4, we obtain an upper bound for the number of
generic quadrisecants of a polygonal knot in general position.

COROLLARY 2. Let K be a polygonal knot in general position with exactly n
edges. Then the number Un = S

(n)
2,2 (K) + S

(n)
3 (K) + 2S

(n)
4 (K) is an upper bound for

the number of generic quadrisecants of K.

In our next result we find explicit formulas for the numbers S(n)c (K)’s.

THEOREM 3. Let K be a polygonal knot in general position with exactly n edges.
Then

S
(n)
1 (K) =


0 if n = 3

1 if n = 4

n if n ≥ 5;
(3)

S
(n)
2,1 (K) =

{
0 if n ≤ 5
n(n− 5) if n ≥ 6;

(4)

S
(n)
2,2 (K) =

{
0 if n ≤ 5
n(n−5)

2 if n ≥ 6;
(5)

S
(n)
3 (K) =

{
0 if n ≤ 6
n(n−5)(n−6)

2 if n ≥ 7;
(6)

S
(n)
4 (K) =

{
0 if n ≤ 7(
n
4

)
− n(n−5)(n−6)

2 − n(n−5)
2 − n(n− 5)− n if n ≥ 8.

(7)

PROOF. Fix an orientation of K and an edge e1 of K. Suppose that e1, e2, · · · , en
(in that order) are all the distinct edges of K that we encounter when we follow the
orientation of K, starting and ending at the initial point of e1. For the rest of the
proof, the subindices of the edges ej’s are understood modulo n.

Proof of equation 3. Clearly, S(n)1 (K) = 0 for n = 3 and S(n)1 (K) = 1 for n = 4.
Suppose that n ≥ 5. Let E4 be a collection of four distinct edges of K such that
XE4 is connected. The collection E4 is completely determined by the only integer
i ∈ {1, 2, · · · , n} such that E4 = {ei, ei+1, ei+2, ei+3}. Since this number i can be
chosen in n different ways, then S(n)1 (K) = n.
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Proof of equation 4. If n ≤ 5, then clearly S(n)2,1 (K) = 0 and S
(n)
2,2 (K) = 0. For the

proof of equations 4 and 5, we will assume that n ≥ 6.
Let E4 be a collection of four distinct edges of K such that XE4 has exactly
two connected components, X1 and X2, with X1 consisting of a single edge of
K. Let E3 be the collection of the three consecutive edges in X2. There are
n different ways to choose the collection E3. Once we have chosen the three
edges ei, ei+1, ei+2 in X2, the edge in X1 has to be different from the edges
ei−1, ei, ei+1, ei+2, ei+3. Thus, given the edges in X2, the edge in X1 can be
chosen in n− 5 different ways. Hence, the number S(n)2,1 (K) is equal to n(n− 5).

Proof of equation 5. We may assume that n ≥ 6. Let E4 be a collection of four
distinct edges of K such that XE4 has exactly two connected components, X1
and X2, with each Xi being the union of exactly two consecutive edges of K.
There are n different ways to choose the collection of edges in X1. Once we have
chosen the two edges in X1, the edges in X2 can be chosen in n − 5 different
ways. However we are double-counting, as interchanging the collections X1 and
X2 produces the same collection XE4 . Therefore, S

(n)
2,2 (K) =

n(n−5)
2 .

Proof of equation 6. We may assume that n ≥ 7. Let E4 be a collection of four
distinct edges of K such that XE4 has exactly three connected components, X1,
X2 and X3, with X1 being the union of exactly two edges of K. There are n
different ways to choose the collection of edges in X1. Once we have chosen the
two edges inX1, the two edges inX2tX3 can be chosen in

(
n−4
2

)
−k different ways,

where k is the number of different ways to choose a collection of two consecutive
edges out of n− 4 edges. Since k = n− 5, then the collection of edges in X2 tX3
can be chosen in

(
n−4
2

)
− (n− 5) = (n−5)(n−6)

2 different ways. Hence, the number

S
(n)
3 (K) is equal to n(n−5)(n−6)

2 .

Proof of equation 7. We may assume that n ≥ 8. By equation 2,

S
(n)
4 (K) =

(
n

4

)
− S(n)1 (K)− S(n)2,1 (K)− S

(n)
2,2 (K)− S

(n)
3 (K).

Thus, equation 7 follows from equations 3 to 6.

5 The Main Result

Combining Corollary 2 with Theorem 3, we obtain an explicit upper bound for the
number of generic quadrisecants of a polygonal knot in general position.

COROLLARY 3. Let K be a polygonal knot in general position with exactly n
edges.

1. If n ≤ 5, then K has no generic quadrisecant.

2. If n = 6, then K has at most three generic quadrisecants.
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3. If n = 7, then K has at most 14 generic quadrisecants.

4. If n ≥ 8, then K has at most
n

12
(n− 3)(n− 4)(n− 5) generic quadrisecants.

PROOF. By Corollary 2, the knot K has at most Un = S
(n)
2,2 (K) + S

(n)
3 (K) +

2S
(n)
4 (K) generic quadrisecants.

1. Suppose that n ≤ 5. Then S(n)2,2 (K) = 0 = S
(n)
3 (K) = S

(n)
4 (K), and so Un = 0.

2. Suppose that n = 6. Then S(6)2,2(K) = 3, S
(6)
3 (K) = 0 and S(6)4 (K) = 0, so Un = 3.

3. Suppose that n = 7. Then S(7)2,2(K) = 7, S(7)3 (K) = 7 and S(7)4 (K) = 0, so
Un = 14.

4. Suppose that n ≥ 8. By equation 2,

S
(n)
4 (K) =

(
n

4

)
− S(n)1 (K)− S(n)2,1 (K)− S

(n)
2,2 (K)− S

(n)
3 (K).

Thus,

Un = 2

(
n

4

)
− 2S(n)1 (K)− 2S(n)2,1 (K)− S

(n)
2,2 (K)− S

(n)
3 (K). (8)

By Theorem 3, equation 8 becomes:

Un =
1

12
n(n−1)(n−2)(n−3)−2n−2n(n−5)− n(n− 5)

2
− n(n− 5)(n− 6)

2
. (9)

Equation 9 can be written as n
12 (n− 3)(n− 4)(n− 5).

Notice that the expression
n

12
(n−3)(n−4)(n−5) from Corollary 3 is equal to zero

for n = 3, 4, 5; it is equal to three for n = 6, and it is equal to 14 for n = 7. This means
that Corollary 3 can be reformulates as follows.

THEOREM 4. Let K be a polygonal knot in general position with exactly n edges.
Then K has at most Un =

n

12
(n− 3)(n− 4)(n− 5) generic quadrisecants.
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