
Applied Mathematics E-Notes, 17(2017), 242-250 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Existence Results For Weighted (p, q)-Laplacian
Nonlinear System∗

Salah A. Khafagy†

Received 13 February 2017

Abstract

In this article, we study the existence of positive weak solutions for a class of
weighted (p, q)−Laplacian nonlinear system

−∆P,pu = λa(x)f(v) inΩ,
−∆Q,qv = λb(x)g(u) in Ω,
u = v = 0 on ∂Ω,

where ∆P,p with p > 1 and P = P (x) is a weight function, denotes the weighted
p-Laplacian defined by ∆P,pu ≡ div[P (x)|∇u|p−2∇u], λ is a positive parameter,
a(x), b(x) are weight functions and Ω ⊂ <N is a bounded domain with smooth
boundary ∂Ω.We prove the existence of a large positive weak solution for λ large

when lim
x→+∞

f
1

p−1 (M(g(x))
1

q−1 )
x

= 0, for every M > 0.

In particular, we do not assume any sign-changing conditions on a(x) or b(x).
We use the method of sub—supersolutions to establish our results.

1 Introduction

Recently many results concerning the existence of positive weak solutions for the
nonlinear systems involving Laplacian, p-Laplacian or weighted p-Laplacian operators
were obtained by various authors with the help of the sub-supersolutions method (see
[1,4,9,10,11,12,13,16,17]).
On the other hand, the existence of weak solutions for nonlinear systems involving

p-Laplacian or weighted p-Laplacian operators have been studied by many authors
using an approximation method (see [2,14,20]) and the theory of nonlinear monotone
operators method (see [15,18,19]).
Dalmasso [5] studied the existence and uniqueness of positive solutions for the

semilinear elliptic system with homogeneous Dirichlet data −∆u = f(v) in Ω,
−∆v = g(u) in Ω,
u = v = 0 on ∂Ω,

(1)
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when f(cg(x)) is sublinear at 0 and ∞ for every c > 0. Related results in the case
f(0) < 0 or g(0) < 0 are obtained in [8] where the authors extended the study of [5] to
the case when no sign conditions on f(0) or g(0) were required, and without assuming
monotonicity conditions on f or g.
In [7], the authors considered the existence of positive solutions for the following

p-Laplacian problem  −∆pu = λf(v) inΩ,
−∆pv = λg(u) in Ω,
u = v = 0 on ∂Ω,

(2)

in the semiposotone case, i.e., f(0) or g(0) is negative. The first eigenfunction is used
to construct the subsolution of p-Laplacian problem successfully. On the condition that

λ is large enough and lim
x→+∞

f [M(g(x))
1

p−1 ]
xp−1 = 0, for every M > 0, the authors give the

existence of positive solutions for problem (2).
In this paper, we study the existence of positive weak solutions for λ large for the

following nonlinear system −∆P,pu = λa(x)f(v) inΩ,
−∆Q,qv = λb(x)g(u) inΩ,
u = v = 0 on ∂Ω.

(3)

where ∆R,r with r > 1 and R = R(x) is a weight function, R(x) = P (x) when
r = p and R(x) = Q(x) when r = q, denotes the weighted r-Laplacian defined by
∆R,ru ≡ div[R(x)|∇u|r−2∇u], λ is a positive parameter, a(x) and b(x) are weight
functions and that there exist positive constants a0, b0 such that a(x) ≥ a0, b(x) ≥ b0,
f and g are given functions and Ω ⊂ <N is a bounded domain with smooth boundary
∂Ω. Our approach is based on the method of sub-supersolutions (see e.g. [3]).

This paper is organized as follows. In section 2, we introduce some technical results
and notations, which are established in [6]. In section 3, we give some assumptions on
the functions f, g to insure the validity of the existence of the positive weak solutions
for system (3) in a suitable weighted Sobolev space. Also, we prove the existence of
positive weak solutions for system (3) by using the method of sub—supersolutions. In
section 4, we give related result and example.

2 Technical Results

Now, we introduce some technical results of the weighted homogeneous eigenvalue
problem (see [6]){

−∆R,ru = div[R(x)|∇u|r−2∇u] = λS(x)|u|r−2u inΩ,
u = 0 on ∂Ω,

(4)

with r = p, q and R(x) = P (x) when r = p and R(x) = Q(x) when r = q. The function
R(x) is a weight function (measurable and positive a.e. in Ω), satisfying the conditions

R(x), (R(x))−
1

r−1 ∈ L1
Loc(Ω), with r > 1,
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(R(x))−s ∈ L1(Ω),with s ∈ (
N

r
,∞) ∩ [

1

r − 1
,∞), (5)

and S(x) is a measurable function which satisfies

S(x) ∈ L k
k−r (Ω), (6)

with some k satisfies r < k < r∗s where r
∗
s = Nrs

N−rs with rs = rs
s+1 < r < r∗s and meas

{x ∈ Ω : S(x) > 0} > 0. Examples of functions satisfying (5) are mentioned in [6].

LEMMA 1 ([6]). There exists the first eigenvalue λ1r > 0 and at least one corre-
sponding eigenfunction φ1r ≥ 0 a.e. in Ω of the eigenvalue problem (4).

THEOREM 1 ([6]). Let R(x) satisfies (5) and S(x) satisfies (6), then (4) admits a
positive eigenvalue λ1r. Moreover, it is characterized by

λ1r

∫
Ω

S(x)|φ1r|r ≤
∫
Ω

R(x)|∇φ1r|r. (7)

Moreover, let us consider the weighted Sobolev space W 1,r(R,Ω) which is the set of all
real valued functions u defined in Ω with the norm

‖u‖W 1,r(R,Ω) =

∫
Ω

|u|r +

∫
Ω

R(x)|∇u|r
 1

r

<∞, (8)

and the space W 1,r
0 (R,Ω) which is the closure of C∞0 (Ω) in W 1,r(R,Ω) with respect to

the norm

‖u‖W 1,r
0 (R,Ω) =

∫
Ω

R(x)|∇u|r
 1

r

<∞, (9)

which is equivalent to the norm given by (8). The two spacesW 1,r(R,Ω) andW 1,r
0 (R,Ω)

are well defined in reflexive Banach spaces.

3 Existence Results

In this section, we prove the existence of positive weak solutions (u, v) for system (3)
via the method of sub-supersolutions. We shall establish our results by construct-
ing a subsolution (ψ1, ψ2) ∈ W 1,p

0 (P,Ω) ×W 1,q
0 (Q,Ω) and a supersolution (z1, z2) ∈

W 1,p
0 (P,Ω) ×W 1,q

0 (Q,Ω) of (3) such that ψi ≤ zi for i = 1, 2. That is, ψi, i = 1, 2,
satisfy ∫

Ω

P (x)|∇ψ1|p−2∇ψ1∇ζdx ≤ λ
∫
Ω

a(x)f(ψ2)ζdx,

∫
Ω

Q(x)|∇ψ2|q−2∇ψ2∇ηdx ≤ λ
∫
Ω

b(x)g(ψ1)ηdx,
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and zi, i = 1, 2, satisfy∫
Ω

P (x)|∇z1|p−2∇z1∇ζdx ≥ λ
∫
Ω

a(x)f(z2)ζdx,

∫
Ω

Q(x)|∇z2|q−2∇z2∇ηdx ≥ λ
∫
Ω

b(x)g(z1)ηdx,

for all test functions ζ ∈ W 1,p
0 (P,Ω) and η ∈ W 1,q

0 (Q,Ω) with ζ, η ≥ 0. Then the
following result holds:

LEMMA 2 ([3]). Suppose there exist sub and supersolutions (ψ1, ψ2) and (z1, z2)
respectively of system (3) such that (ψ1, ψ2) ≤ (z1, z2). Then system (3) has a solution
(u, v) such that (u, v) ∈ [(ψ1, ψ2), (z1, z2)].

We give the following hypotheses:

(H1) f, g : [0,∞) −→ [0,∞) are C1 nondecreasing functions such that f(s), g(s) > 0
for s > 0.

(H2) For all M > 0, lim
x→+∞

f
1

p−1 (M(g(x))
1

q−1 )
x = 0.

THEOREM 2. Let (H1), (H2) hold. Then system (3) has a positive weak solution
(u, v) ∈W 1,p

0 (P,Ω)×W 1,q
0 (Q,Ω) for λ large.

PROOF. Let λ1r be the first eigenvalue of the eigenvalue problem (4) and φ1r the
corresponding positive eigenfunction with ‖φ1r‖∞ = 1 for r = p, q. Let k0, m, δ > 0
be such that f(x), g(x) ≥ −k0 for all x ≥ 0,

P (x)|∇φ1p|p − λ1pa(x)φp1p ≥ m

and

Q(x)|∇φ1q|q − λ1qb(x)φq1q ≥ m

on Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}. We shall verify that

(ψ1, ψ2) = (
p− 1

p
(
λa0k0

m
)

1
p−1φ

p
p−1
1p ,

q − 1

q
(
λb0k0

m
)

1
q−1φ

q
q−1
1q )

is a subsolution of (3) for λ large. Let ζ ∈W 1,p
0 (P,Ω) with ζ ≥ 0. A calculation shows
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that ∫
Ω

P (x)|∇ψ1|p−2∇ψ1 · ∇ζdx =
λa0k0

m

∫
Ω

P (x)φ1p|∇φ1p|p−2∇φ1p · ∇ζdx

=
λa0k0

m

∫
Ω

P (x)|∇φ1p|p−2∇φ1p∇(φ1pζ)dx

−λa0k0

m

∫
Ω

P (x)|∇φ1p|pζdx

=
λa0k0

m

∫
Ω

(λ1pa(x)φp1p − P (x)|∇φ1p|p)ζdx.

Similarly, for η ∈W 1,q
0 (Q,Ω) with η ≥ 0, we have∫

Ω

Q(x)|∇ψ2|q−2∇ψ2 · ∇ηdx =
λb0k0

m

∫
Ω

(λ1qb(x)φq1q −Q(x)|∇φ1q|q)ηdx.

Now, on Ωδ, we have P (x)|∇φ1p|p − λ1pa(x)φp1p ≥ m. Hence,

λa0k0

m
(λ1pa(x)φp1p − P (x)|∇φ1p|p) ≤ −λa0k0 ≤ λa(x)f(ψ2).

A similar argument shows that

λb0k0

m
(λ1qb(x)φq1q −Q(x)|∇φ1q|q) ≤ −λb0k0 ≤ λb(x)g(ψ1).

Next, on Ω− Ωδ, we have φ1p ≥ µ, φ1q ≥ µ for some µ > 0. Also f(ψ2) and g(ψ1) are
depending on λ and nondecreasing functions and therefore for λ large we have, using
(7),

f(ψ2) ≥ k0

m
λ1p ≥

k0

m
(λ1pa(x)φp1p − P (x)|∇φ1p|p),

g(ψ1) ≥ k0

m
λ1q ≥

k0

m
(λ1qb(x)φq1q −Q(x)|∇φ1q|q).

Hence ∫
Ω

P (x)|∇ψ1|p−2∇ψ1 · ∇ζdx ≤ λ
∫
Ω

a(x)f(ψ2)ζdx.

Similarly, for η ∈W 1,q
0 (Q,Ω) with η ≥ 0, we have∫

Ω

Q(x)|∇ψ2|q−2∇ψ2 · ∇ηdx ≤ λ
∫
Ω

b(x)g(ψ1)ηdx,

i.e. (ψ1, ψ2) is a subsolution of (3) for λ large. Next, let er be the solution of (see [20])

−∆R,rer = 1 in Ω, er = 0 on ∂Ω for r = p, q.
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Let

(z1, z2) =

(
C

µp
λ

1
p−1 ep, (lbλ)

1
q−1 [g(Cλ

1
p−1 )]

1
q−1 eq

)
where µr = ‖er‖∞ , r = p, q, lb = ‖b(x)‖∞and C > 0 is a large number to be chosen
later. We shall verify that (z1, z2) is a supersolution of (3) for λ large. To this end, let
ζ ∈W 1,p

0 (P,Ω) with ζ ≥ 0. Then we have

∫
Ω

P (x)|∇z1|p−2∇z1 · ∇ζdx = λ

(
C

µp

)p−1 ∫
Ω

P (x)|∇ep|p−2∇ep · ∇ζdx

=
1

µp−1
p

(
Cλ

1
p−1

)p−1
∫
Ω

ζdx.

By (H2), we can choose C large enough so that

(Cλ
1

p−1 )p−1 ≥ (µp−1
p laλ)f([(lbλ)

1
q−1µq][g(Cλ

1
p−1 )]

1
q−1 ),

where la = ‖a(x)‖∞ , and therefore,∫
Ω

P (x)|∇z1|p−2∇z1 · ∇ζdx ≥ λla

∫
Ω

f([(lbλ)
1

q−1µq][g(Cλ
1

p−1 )]
1

q−1 )ζdx

≥ λ

∫
Ω

a(x)f(z2)ζdx.

Next, for η ∈W 1,q
0 (Q,Ω) with η ≥ 0, we have∫

Ω

Q(x)|∇z2|q−2∇z2 · ∇ηdx = λlbg(Cλ
1

p−1 )

∫
Ω

Q(x)|∇eq|q−2∇eq · ∇ηdx

= λlbg(Cλ
1

p−1 )

∫
Ω

ηdx

≥ λlb

∫
Ω

g(Cµ−1
p λ

1
p−1 ep)ηdx

≥ λ

∫
Ω

b(x)g(z1)ηdx,

i.e. (z1, z2) is a supersolution of (3) with zi ≥ ψi for C large, i = 1, 2. Thus, there
exists a positive weak solution (u, v) of (3) with ψ1 ≤ u ≤ z1 and ψ2 ≤ v ≤ z2. This
completes the proof.
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4 Example and Related Result

4.1 Example

Many illustrative examples for the results obtained in this paper can be easily con-
structed. We just give one below. Let

f(x) =

m∑
i=1

aix
pi + C1, g(x) =

n∑
j=1

bjx
qj + C2,

where, ai, bj , pi, qj , C1, C2 > 0 and piqj > (p − 1)(q − 1). Then it is easy to see that
f, g satisfy (H1), (H2).

4.2 Related Result

Existence results obtained in this article can be established in a similar way for the
following nonlinear system −∆P,pu = λa(x)vβ inΩ,

−∆Q,qv = λb(x)uα inΩ,
u = v = 0 on ∂Ω,

under the assumptions that

(a2) a(x) and b(x) are weight functions such that a(x) ≥ a0 > 0, b(x) ≥ b0 > 0;

(a2) 0 < α < p− 1 and 0 < β < q − 1.

REMRARK 1. Existence results obtained in this article still hold if we replace the

condition lim
x→+∞

f
1

p−1 (M(g(x))
1

q−1 )
x = 0, for everyM > 0, given in (H2), by the condition

lim
x→+∞

f [M(g(x))
1

q−1 ]
xp−1 = 0, for every M > 0.
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