Existence Results For Weighted (p, q)-Laplacian Nonlinear System*

Salah A. Khafagy ${ }^{\dagger}$

Received 13 February 2017

Abstract

In this article, we study the existence of positive weak solutions for a class of weighted (p, q)-Laplacian nonlinear system $$
\begin{cases}-\Delta_{P, p} u=\lambda a(x) f(v) & \text { in } \Omega, \\ -\Delta_{Q, q} v=\lambda b(x) g(u) & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega,\end{cases}
$$ where $\Delta_{P, p}$ with $p>1$ and $P=P(x)$ is a weight function, denotes the weighted p-Laplacian defined by $\Delta_{P, p} u \equiv \operatorname{div}\left[P(x)|\nabla u|^{p-2} \nabla u\right], \lambda$ is a positive parameter, $a(x), b(x)$ are weight functions and $\Omega \subset \Re^{N}$ is a bounded domain with smooth boundary $\partial \Omega$. We prove the existence of a large positive weak solution for λ large when $\lim _{x \rightarrow+\infty} \frac{f^{\frac{1}{p^{p-1}}}\left(M(g(x))^{\frac{1}{q-1}}\right)}{x}=0$, for every $M>0$.

In particular, we do not assume any sign-changing conditions on $a(x)$ or $b(x)$. We use the method of sub-supersolutions to establish our results.

1 Introduction

Recently many results concerning the existence of positive weak solutions for the nonlinear systems involving Laplacian, p-Laplacian or weighted p-Laplacian operators were obtained by various authors with the help of the sub-supersolutions method (see [1,4,9,10,11,12,13,16,17]).

On the other hand, the existence of weak solutions for nonlinear systems involving p-Laplacian or weighted p-Laplacian operators have been studied by many authors using an approximation method (see $[2,14,20]$) and the theory of nonlinear monotone operators method (see $[15,18,19]$).

Dalmasso [5] studied the existence and uniqueness of positive solutions for the semilinear elliptic system with homogeneous Dirichlet data

$$
\begin{cases}-\Delta u=f(v) & \text { in } \Omega \tag{1}\\ -\Delta v=g(u) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

[^0]when $f(c g(x))$ is sublinear at 0 and ∞ for every $c>0$. Related results in the case $f(0)<0$ or $g(0)<0$ are obtained in [8] where the authors extended the study of [5] to the case when no sign conditions on $f(0)$ or $g(0)$ were required, and without assuming monotonicity conditions on f or g.

In [7], the authors considered the existence of positive solutions for the following p-Laplacian problem

$$
\begin{cases}-\Delta_{p} u=\lambda f(v) & \text { in } \Omega \tag{2}\\ -\Delta_{p} v=\lambda g(u) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

in the semiposotone case, i.e., $f(0)$ or $g(0)$ is negative. The first eigenfunction is used to construct the subsolution of p-Laplacian problem successfully. On the condition that λ is large enough and $\lim _{x \rightarrow+\infty} \frac{f\left[M(g(x))^{\frac{1}{p-1}}\right]}{x^{p-1}}=0$, for every $M>0$, the authors give the existence of positive solutions for problem (2).

In this paper, we study the existence of positive weak solutions for λ large for the following nonlinear system

$$
\begin{cases}-\Delta_{P, p} u=\lambda a(x) f(v) & \text { in } \Omega \tag{3}\\ -\Delta_{Q, q} v=\lambda b(x) g(u) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta_{R, r}$ with $r>1$ and $R=R(x)$ is a weight function, $R(x)=P(x)$ when $r=p$ and $R(x)=Q(x)$ when $r=q$, denotes the weighted r-Laplacian defined by $\Delta_{R, r} u \equiv \operatorname{div}\left[R(x)|\nabla u|^{r-2} \nabla u\right], \lambda$ is a positive parameter, $a(x)$ and $b(x)$ are weight functions and that there exist positive constants a_{0}, b_{0} such that $a(x) \geq a_{0}, b(x) \geq b_{0}$, f and g are given functions and $\Omega \subset \Re^{N}$ is a bounded domain with smooth boundary $\partial \Omega$. Our approach is based on the method of sub-supersolutions (see e.g. [3]).

This paper is organized as follows. In section 2, we introduce some technical results and notations, which are established in [6]. In section 3, we give some assumptions on the functions f, g to insure the validity of the existence of the positive weak solutions for system (3) in a suitable weighted Sobolev space. Also, we prove the existence of positive weak solutions for system (3) by using the method of sub-supersolutions. In section 4 , we give related result and example.

2 Technical Results

Now, we introduce some technical results of the weighted homogeneous eigenvalue problem (see [6])

$$
\begin{cases}-\Delta_{R, r} u=\operatorname{div}\left[R(x)|\nabla u|^{r-2} \nabla u\right]=\lambda S(x)|u|^{r-2} u & \text { in } \Omega \tag{4}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $r=p, q$ and $R(x)=P(x)$ when $r=p$ and $R(x)=Q(x)$ when $r=q$. The function $R(x)$ is a weight function (measurable and positive a.e. in Ω), satisfying the conditions

$$
R(x),(R(x))^{-\frac{1}{r-1}} \in L_{L o c}^{1}(\Omega), \text { with } r>1
$$

$$
\begin{equation*}
(R(x))^{-s} \in L^{1}(\Omega), \text { with } s \in\left(\frac{N}{r}, \infty\right) \cap\left[\frac{1}{r-1}, \infty\right) \tag{5}
\end{equation*}
$$

and $S(x)$ is a measurable function which satisfies

$$
\begin{equation*}
S(x) \in L^{\frac{k}{k-r}}(\Omega) \tag{6}
\end{equation*}
$$

with some k satisfies $r<k<r_{s}^{*}$ where $r_{s}^{*}=\frac{N r_{s}}{N-r_{s}}$ with $r_{s}=\frac{r s}{s+1}<r<r_{s}^{*}$ and meas $\{x \in \Omega: S(x)>0\}>0$. Examples of functions satisfying (5) are mentioned in [6].

LEMMA 1 ([6]). There exists the first eigenvalue $\lambda_{1 r}>0$ and at least one corresponding eigenfunction $\phi_{1 r} \geq 0$ a.e. in Ω of the eigenvalue problem (4).

THEOREM 1 ([6]). Let $R(x)$ satisfies (5) and $S(x)$ satisfies (6), then (4) admits a positive eigenvalue $\lambda_{1 r}$. Moreover, it is characterized by

$$
\begin{equation*}
\lambda_{1 r} \int_{\Omega} S(x)\left|\phi_{1 r}\right|^{r} \leq \int_{\Omega} R(x)\left|\nabla \phi_{1 r}\right|^{r} \tag{7}
\end{equation*}
$$

Moreover, let us consider the weighted Sobolev space $W^{1, r}(R, \Omega)$ which is the set of all real valued functions u defined in Ω with the norm

$$
\begin{equation*}
\|u\|_{W^{1, r}(R, \Omega)}=\left(\int_{\Omega}|u|^{r}+\int_{\Omega} R(x)|\nabla u|^{r}\right)^{\frac{1}{r}}<\infty \tag{8}
\end{equation*}
$$

and the space $W_{0}^{1, r}(R, \Omega)$ which is the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, r}(R, \Omega)$ with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{0}^{1, r}(R, \Omega)}=\left(\int_{\Omega} R(x)|\nabla u|^{r}\right)^{\frac{1}{r}}<\infty \tag{9}
\end{equation*}
$$

which is equivalent to the norm given by (8). The two spaces $W^{1, r}(R, \Omega)$ and $W_{0}^{1, r}(R, \Omega)$ are well defined in reflexive Banach spaces.

3 Existence Results

In this section, we prove the existence of positive weak solutions (u, v) for system (3) via the method of sub-supersolutions. We shall establish our results by constructing a subsolution $\left(\psi_{1}, \psi_{2}\right) \in W_{0}^{1, p}(P, \Omega) \times W_{0}^{1, q}(Q, \Omega)$ and a supersolution $\left(z_{1}, z_{2}\right) \in$ $W_{0}^{1, p}(P, \Omega) \times W_{0}^{1, q}(Q, \Omega)$ of (3) such that $\psi_{i} \leq z_{i}$ for $i=1,2$. That is, $\psi_{i}, i=1,2$, satisfy

$$
\begin{aligned}
& \int_{\Omega} P(x)\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \nabla \zeta d x \leq \lambda \int_{\Omega} a(x) f\left(\psi_{2}\right) \zeta d x \\
& \int_{\Omega} Q(x)\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \nabla \eta d x \leq \lambda \int_{\Omega} b(x) g\left(\psi_{1}\right) \eta d x
\end{aligned}
$$

and $z_{i}, i=1,2$, satisfy

$$
\begin{aligned}
& \int_{\Omega} P(x)\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \nabla \zeta d x \geq \lambda \int_{\Omega} a(x) f\left(z_{2}\right) \zeta d x \\
& \int_{\Omega} Q(x)\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \nabla \eta d x \geq \lambda \int_{\Omega} b(x) g\left(z_{1}\right) \eta d x
\end{aligned}
$$

for all test functions $\zeta \in W_{0}^{1, p}(P, \Omega)$ and $\eta \in W_{0}^{1, q}(Q, \Omega)$ with $\zeta, \eta \geq 0$. Then the following result holds:

LEMMA 2 ([3]). Suppose there exist sub and supersolutions $\left(\psi_{1}, \psi_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ respectively of system (3) such that $\left(\psi_{1}, \psi_{2}\right) \leq\left(z_{1}, z_{2}\right)$. Then system (3) has a solution (u, v) such that $(u, v) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)\right]$.

We give the following hypotheses:
$\left(\mathbf{H}_{1}\right) f, g:[0, \infty) \longrightarrow[0, \infty)$ are C^{1} nondecreasing functions such that $f(s), g(s)>0$ for $s>0$.
$\left(\mathbf{H}_{2}\right)$ For all $M>0, \lim _{x \rightarrow+\infty} \frac{f^{\frac{1}{p-1}}\left(M(g(x))^{\frac{1}{q-1}}\right)}{x}=0$.

THEOREM 2. Let $\left(\mathbf{H}_{1}\right),\left(\mathbf{H}_{2}\right)$ hold. Then system (3) has a positive weak solution $(u, v) \in W_{0}^{1, p}(P, \Omega) \times W_{0}^{1, q}(Q, \Omega)$ for λ large.

PROOF. Let $\lambda_{1 r}$ be the first eigenvalue of the eigenvalue problem (4) and $\phi_{1 r}$ the corresponding positive eigenfunction with $\left\|\phi_{1 r}\right\|_{\infty}=1$ for $r=p, q$. Let $k_{0}, m, \delta>0$ be such that $f(x), g(x) \geq-k_{0}$ for all $x \geq 0$,

$$
P(x)\left|\nabla \phi_{1 p}\right|^{p}-\lambda_{1 p} a(x) \phi_{1 p}^{p} \geq m
$$

and

$$
Q(x)\left|\nabla \phi_{1 q}\right|^{q}-\lambda_{1 q} b(x) \phi_{1 q}^{q} \geq m
$$

on $\bar{\Omega}_{\delta}=\{x \in \Omega: d(x, \partial \Omega) \leq \delta\}$. We shall verify that

$$
\left(\psi_{1}, \psi_{2}\right)=\left(\frac{p-1}{p}\left(\frac{\lambda a_{0} k_{0}}{m}\right)^{\frac{1}{p-1}} \phi_{1 p}^{\frac{p}{p-1}}, \frac{q-1}{q}\left(\frac{\lambda b_{0} k_{0}}{m}\right)^{\frac{1}{q-1}} \phi_{1 q}^{\frac{q}{q-1}}\right)
$$

is a subsolution of (3) for λ large. Let $\zeta \in W_{0}^{1, p}(P, \Omega)$ with $\zeta \geq 0$. A calculation shows
that

$$
\begin{aligned}
\int_{\Omega} P(x)\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla \zeta d x= & \frac{\lambda a_{0} k_{0}}{m} \int_{\Omega} P(x) \phi_{1 p}\left|\nabla \phi_{1 p}\right|^{p-2} \nabla \phi_{1 p} \cdot \nabla \zeta d x \\
= & \frac{\lambda a_{0} k_{0}}{m} \int_{\Omega} P(x)\left|\nabla \phi_{1 p}\right|^{p-2} \nabla \phi_{1 p} \nabla\left(\phi_{1 p} \zeta\right) d x \\
& -\frac{\lambda a_{0} k_{0}}{m} \int_{\Omega} P(x)\left|\nabla \phi_{1 p}\right|^{p} \zeta d x \\
= & \frac{\lambda a_{0} k_{0}}{m} \int_{\Omega}\left(\lambda_{1 p} a(x) \phi_{1 p}^{p}-P(x)\left|\nabla \phi_{1 p}\right|^{p}\right) \zeta d x
\end{aligned}
$$

Similarly, for $\eta \in W_{0}^{1, q}(Q, \Omega)$ with $\eta \geq 0$, we have

$$
\int_{\Omega} Q(x)\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla \eta d x=\frac{\lambda b_{0} k_{0}}{m} \int_{\Omega}\left(\lambda_{1 q} b(x) \phi_{1 q}^{q}-Q(x)\left|\nabla \phi_{1 q}\right|^{q}\right) \eta d x
$$

Now, on $\bar{\Omega}_{\delta}$, we have $P(x)\left|\nabla \phi_{1 p}\right|^{p}-\lambda_{1 p} a(x) \phi_{1 p}^{p} \geq m$. Hence,

$$
\frac{\lambda a_{0} k_{0}}{m}\left(\lambda_{1 p} a(x) \phi_{1 p}^{p}-P(x)\left|\nabla \phi_{1 p}\right|^{p}\right) \leq-\lambda a_{0} k_{0} \leq \lambda a(x) f\left(\psi_{2}\right)
$$

A similar argument shows that

$$
\frac{\lambda b_{0} k_{0}}{m}\left(\lambda_{1 q} b(x) \phi_{1 q}^{q}-Q(x)\left|\nabla \phi_{1 q}\right|^{q}\right) \leq-\lambda b_{0} k_{0} \leq \lambda b(x) g\left(\psi_{1}\right)
$$

Next, on $\Omega-\bar{\Omega}_{\delta}$, we have $\phi_{1 p} \geq \mu, \phi_{1 q} \geq \mu$ for some $\mu>0$. Also $f\left(\psi_{2}\right)$ and $g\left(\psi_{1}\right)$ are depending on λ and nondecreasing functions and therefore for λ large we have, using (7),

$$
\begin{aligned}
& f\left(\psi_{2}\right) \geq \frac{k_{0}}{m} \lambda_{1 p} \geq \frac{k_{0}}{m}\left(\lambda_{1 p} a(x) \phi_{1 p}^{p}-P(x)\left|\nabla \phi_{1 p}\right|^{p}\right) \\
& g\left(\psi_{1}\right) \geq \frac{k_{0}}{m} \lambda_{1 q} \geq \frac{k_{0}}{m}\left(\lambda_{1 q} b(x) \phi_{1 q}^{q}-Q(x)\left|\nabla \phi_{1 q}\right|^{q}\right)
\end{aligned}
$$

Hence

$$
\int_{\Omega} P(x)\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla \zeta d x \leq \lambda \int_{\Omega} a(x) f\left(\psi_{2}\right) \zeta d x
$$

Similarly, for $\eta \in W_{0}^{1, q}(Q, \Omega)$ with $\eta \geq 0$, we have

$$
\int_{\Omega} Q(x)\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla \eta d x \leq \lambda \int_{\Omega} b(x) g\left(\psi_{1}\right) \eta d x
$$

i.e. $\left(\psi_{1}, \psi_{2}\right)$ is a subsolution of (3) for λ large. Next, let e_{r} be the solution of (see [20])

$$
-\Delta_{R, r} e_{r}=1 \text { in } \Omega, \quad e_{r}=0 \text { on } \partial \Omega \text { for } r=p, q
$$

Let

$$
\left(z_{1}, z_{2}\right)=\left(\frac{C}{\mu_{p}} \lambda^{\frac{1}{p-1}} e_{p},\left(l_{b} \lambda\right)^{\frac{1}{q-1}}\left[g\left(C \lambda^{\frac{1}{p-1}}\right)\right]^{\frac{1}{q-1}} e_{q}\right)
$$

where $\mu_{r}=\left\|e_{r}\right\|_{\infty}, r=p, q, l_{b}=\|b(x)\|_{\infty}$ and $C>0$ is a large number to be chosen later. We shall verify that $\left(z_{1}, z_{2}\right)$ is a supersolution of (3) for λ large. To this end, let $\zeta \in W_{0}^{1, p}(P, \Omega)$ with $\zeta \geq 0$. Then we have

$$
\begin{aligned}
\int_{\Omega} P(x)\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \nabla \zeta d x & =\lambda\left(\frac{C}{\mu_{p}}\right)^{p-1} \int_{\Omega} P(x)\left|\nabla e_{p}\right|^{p-2} \nabla e_{p} \cdot \nabla \zeta d x \\
& =\frac{1}{\mu_{p}^{p-1}}\left(C \lambda^{\frac{1}{p-1}}\right)^{p-1} \int_{\Omega} \zeta d x
\end{aligned}
$$

By $\left(\mathbf{H}_{2}\right)$, we can choose C large enough so that

$$
\left(C \lambda^{\frac{1}{p-1}}\right)^{p-1} \geq\left(\mu_{p}^{p-1} l_{a} \lambda\right) f\left(\left[\left(l_{b} \lambda\right)^{\frac{1}{q-1}} \mu_{q}\right]\left[g\left(C \lambda^{\frac{1}{p-1}}\right)\right]^{\frac{1}{q-1}}\right)
$$

where $l_{a}=\|a(x)\|_{\infty}$, and therefore,

$$
\begin{aligned}
\int_{\Omega} P(x)\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \nabla \zeta d x & \geq \lambda l_{a} \int_{\Omega} f\left(\left[\left(l_{b} \lambda\right)^{\frac{1}{q-1}} \mu_{q}\right]\left[g\left(C \lambda^{\frac{1}{p-1}}\right)\right]^{\frac{1}{q-1}}\right) \zeta d x \\
& \geq \lambda \int_{\Omega} a(x) f\left(z_{2}\right) \zeta d x
\end{aligned}
$$

Next, for $\eta \in W_{0}^{1, q}(Q, \Omega)$ with $\eta \geq 0$, we have

$$
\begin{aligned}
\int_{\Omega} Q(x)\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \cdot \nabla \eta d x & =\lambda l_{b} g\left(C \lambda^{\frac{1}{p-1}}\right) \int_{\Omega} Q(x)\left|\nabla e_{q}\right|^{q-2} \nabla e_{q} \cdot \nabla \eta d x \\
& =\lambda l_{b} g\left(C \lambda^{\frac{1}{p-1}}\right) \int_{\Omega} \eta d x \\
& \geq \lambda l_{b} \int_{\Omega} g\left(C \mu_{p}^{-1} \lambda^{\frac{1}{p-1}} e_{p}\right) \eta d x \\
& \geq \lambda \int_{\Omega} b(x) g\left(z_{1}\right) \eta d x
\end{aligned}
$$

i.e. $\left(z_{1}, z_{2}\right)$ is a supersolution of (3) with $z_{i} \geq \psi_{i}$ for C large, $i=1,2$. Thus, there exists a positive weak solution (u, v) of (3) with $\psi_{1} \leq u \leq z_{1}$ and $\psi_{2} \leq v \leq z_{2}$. This completes the proof.

4 Example and Related Result

4.1 Example

Many illustrative examples for the results obtained in this paper can be easily constructed. We just give one below. Let

$$
f(x)=\sum_{i=1}^{m} a_{i} x^{p_{i}}+C_{1}, g(x)=\sum_{j=1}^{n} b_{j} x^{q_{j}}+C_{2},
$$

where, $a_{i}, b_{j}, p_{i}, q_{j}, C_{1}, C_{2}>0$ and $p_{i} q_{j}>(p-1)(q-1)$. Then it is easy to see that f, g satisfy $\left(\mathbf{H}_{1}\right),\left(\mathbf{H}_{2}\right)$.

4.2 Related Result

Existence results obtained in this article can be established in a similar way for the following nonlinear system

$$
\begin{cases}-\Delta_{P, p} u=\lambda a(x) v^{\beta} & \text { in } \Omega \\ -\Delta_{Q, q} v=\lambda b(x) u^{\alpha} & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

under the assumptions that
$\left(\mathbf{a}_{2}\right) a(x)$ and $b(x)$ are weight functions such that $a(x) \geq a_{0}>0, b(x) \geq b_{0}>0$;
(\mathbf{a}_{2}) $0<\alpha<p-1$ and $0<\beta<q-1$.

REMRARK 1. Existence results obtained in this article still hold if we replace the condition $\lim _{x \rightarrow+\infty} \frac{f^{\frac{1}{p-1}}\left(M(g(x))^{\frac{1}{q-1}}\right)}{x}=0$, for every $M>0$, given in $\left(H_{2}\right)$, by the condition $\lim _{x \rightarrow+\infty} \frac{f\left[M(g(x))^{\frac{1}{q-1}}\right]}{x^{p-1}}=0$, for every $M>0$.

Acknowledgment. The author would like to express his gratitude to Professor H. M. Serag (Mathematics Department, Faculty of Science, AL-Azhar University) for continuous encouragement during the development of this work.

References

[1] G. Afrouzi and S. Ala, An existence result of positive solutions for a class of Laplacian system, Int. Journal of Math. Analysis, 4(2010), 2075-2078.
[2] M. Bouchekif, H. Serag and F. de Th'elin, On Maximum Principle and Existence of Solutions for Some Nonlinear Elliptic Systems, Rev. Mat. Apl.,16(1995), 1-16.
[3] A. Canada, P. Drabek and J. Games, Existence of Positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc., 349(1997), 42314249.
[4] M. Chhetri, D. Hai and R. Shivaji, On positive solutions for classes of p-Laplacian semipositone system, Discrete and Dynamical Systems, 9(2003), 1063-1071.
[5] R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal., 39(2000), 559-568.
[6] P. Drabek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equation with Degenerations and Singularities, Walter de Gruyter, Bertin, New York, 1997.
[7] D. Hai and R. Shivaji, An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal., 56(2004), 1007-1010.
[8] D. Hai and R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh Sect. A, 134(2004), 137141.
[9] S. Khafagy, Non-existence of positive weak solutions for some weighted p-Laplacian system, Journal of Advanced Research in Dynamical and Control Systems, 7(2015), 71-77.
[10] S. Khafagy, On the stabiblity of positive weak solution for weighted p-Laplacian nonlinear system, New Zealand Journal of Mathematics, 45(2015), 39-43.
[11] S. Khafagy, Maximum Principle and Existence of Weak Solutions for Nonlinear System Involving Singular p-Laplacian Operator. J. Part. Diff. Eq., 29(2016), 89101.
[12] S. Khafagy, Maximum Principle and Existence of Weak Solutions for Nonlinear System Involving Weighted (p, q)-Laplacian. Southeast Asian Bulletin of Mathematics, 40(2016), 353-364.
[13] S. Khafagy, On positive weak solutions for nonlinear elliptic system involving singular p-Laplacian operator, Journal of Mathematical Analysis, 7(2016), 10-17.
[14] S. Khafagy and H. Serag, Maximum Principle and Existence of Positive Solutions for Nonlinear Systems Involving Degenerated p-Laplacian Operators, Electron. J. Diff. Eqns., 2007(66),1-14.
[15] S. Khafagy and H. Serag, Existence of Weak Solutions for $n \times n$ Nonlinear Systems Involving Different p-Laplacian Operators, Electron. J. Diff. Eqns., 2009(2009), 114.
[16] E. Lee, R. Shivaji and J. Ye, Positive solutions for elliptic equations involving nonlinearities with falling zeroes, Applied Mathematics Letters, 22(2009), 846851.
[17] S. Rasouli, Z. Halimi and Z. Mashhadban, A note on the existence of positive solution for a class of Laplacian nonlinear system with sign-changing weight, The Journal of Mathematics and Computer Science, 3(2011), 339-354.
[18] H. Serag and E. El-Zahrani. Existence of Weak Solutions for Nonlinear Elliptic Systems \Re^{N}, Electron. J. Diff. Eqns., 2006(2006), 1-10.
[19] H. Serag and S. Khafagy, Existence of Weak Solutions for $n \times n$ Nonlinear Systems Involving Different Degenerated p-Laplacian Operators, New Zealand Journal of Mathematics, 38(2008), 75-86.
[20] H. Serag and S. Khafagy, On Maximum Principle and Existence of Positive Weak Solutions for $n \times n$ Nonlinear Systems Involving Degenerated p-Laplacian Operator, Turkish J. Math., 34(2010), 59-71.

[^0]: *Mathematics Subject Classifications: 35J60,35B40.
 ${ }^{\dagger}$ Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt. Current Address: Mathematics Department, Faculty of Science in Zulfi, Majmaah University, Zulfi 11932, P.O. Box 1712, Saudi Arabia.

