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Abstract

In this paper certain inequalities for the polar derivative of a polynomial with
restricted zeros are given, which generalize and refine some well-known polynomial
inequalities due to Govil, Malik, Aziz and others.

1 Introduction

Let Pn denote the space of all complex polynomials P (z) of degree n. It was shown by
Turan [14] that if P ∈ Pn has all its zeros in |z| ≤ 1, then

nmax
|z|=1

|P (z)| ≤ 2 max
|z|=1

|P ′(z)| . (1)

Equality in (1) holds for P (z) = azn + b where |a| = |b|. For the class of polynomials
P ∈ Pn having all their zeros in |z| ≤ k where k ≤ 1, Mailk [9] proved that

nmax
|z|=1

|P (z)| ≤ (1 + k) max
|z|=1

|P ′(z)| . (2)

and where as Govil [4] showed that if P ∈ Pn has all its zeros in |z| ≤ k, k ≥ 1, then

nmax
|z|=1

|P (z)| ≤ (1 + kn) max
|z|=1

|P ′(z)| . (3)

Both the results are sharp and equalities in (2) and (3) hold for P (z) = (z + k)n and
P (z) = (zn+kn) respectively. Malik [10] obtained an extension of (1) in the sense that
the left hand side of (1) is replaced by a factor involving the integral mean of |P (z)|
on |z| = 1 by proving that if P ∈ Pn has all its zeros in |z| ≤ 1, then for each q > 0,

n

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + eiθ)
∣∣q dθ}1/q max

|z|=1
|P ′(z)| . (4)

Equality in (4) holds for P (z) = azn + b, |a| = |b|.
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232 Inequalities for the Polar Derivative

As generalizations of the inequalities (2)—(4), A. Aziz [1] considered the class of
polynomials P ∈ Pn having all their zeros in |z| ≤ k and proved for each q > 0,

n

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + keiθ)
∣∣q dθ}1/q max

|z|=1
|P ′(z)| , k ≤ 1 (5)

and

n

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + kneiθ)
∣∣q dθ}1/q max

|z|=1
|P ′(z)| , k ≥ 1. (6)

Equality in (6) holds for P (z) = zn + kn.
In the limiting case when q → ∞, the inequalities (5) and (6) reduce to (2) and

(3) respectively. Let DαP (z) denote the polar derivative of a polynomial P ∈ Pn with
respect to point α ∈ C, then

DαP (z) = nP (z) + (α− z)P ′(z)

(see [8]). The polynomial DαP (z) is of degree at most n − 1 and it generalizes the
ordinary P ′(z) of P (z) in the sense that

Limα→∞
DαP (z)

α
= P ′(z)

uniformly with respect z for |z| ≤ R,R > 0. Aziz and Rather [2] extended inequalities
(2) and (3) to the polar derivatives of polynomials and proved that if P ∈ Pn has all
its zeros in |z| ≤ k where k ≤ 1, then for every α ∈ C with |α| ≥ k,

n (|α| − k) max
|z|=1

|P (z)| ≤ (1 + k) max
|z|=1

|DαP (z)| ,

and if P ∈ Pn has all its zeros in |z| ≤ k where k ≥ 1, then for every α ∈ C with
|α| ≥ k,

n (|α| − k) max
|z|=1

|P (z)| ≤ (1 + kn) max
|z|=1

|DαP (z)| . (7)

Inequality (7) is sharp and equality holds for P (z) = (z − k)n where α is any real
number with α ≥ k.

Recently Rather et al. [13] extended inequality (3) to the polar derivative of poly-
nomials and proved that if P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≤ 1,
then for |γ| ≥ k and q > 0,

n (|γ| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + keiθ
∣∣q dθ}1/q max

|z|=1
|DγP (z)| (8)

and under the same hypothesis, Rather et al. [13] also showed that

n (|γ| − k)

{∫ 2π

0

∣∣P (eiθ) + βm/kn−1
∣∣q dθ}1/q
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≤
{∫ 2π

0

∣∣1 + keiθ
∣∣q dθ}1/q (max

|z|=1
|DγP (z)| −m/kn−1

)
(9)

where |β| ≤ 1 and m = min|z|=k |P (z)| .
The main aim of this paper is to extends the inequality (6) to the polar derivative

of a polynomial and obtain a generalization of (7) in the sense that the left hand side
of (7) is replaced by a factor involving the integral mean of |P (z)| on |z| = 1. More
precisely we prove:

THEOREM 1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≥ 1, then
for every α ∈ C with |α| ≥ k and for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1
|DαP (z)| . (10)

REMARK 1. If we divide the two sides of (10) by |α| and let |α| → ∞, we get
inequality (6). Further if make q →∞ in (10), we get inequality (7).

Next we prove:

THEOREM 2. If P ∈ Pn, P (z) has all its zeros in |z| ≤ k where k ≥ 1 and
m = min|z|=k |P (z)|, then for every α, β ∈ C with |α| ≥ k, |β| ≤ 1 and for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ) + βm
∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1
|DαP (z)| − nm/kn−1

}
.

For β = 0, Theorem 2 yields the following refinement of Theorem 1.

COROLLARY 1. If P ∈ Pn, P (z) has all its zeros in |z| ≤ k where k ≥ 1 and
m = min|z|=k |P (z)|, then for every α, β ∈ C with |α| ≥ k, |β| ≤ 1 and for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1
|DαP (z)| − nm/kn−1

}
. (11)

Letting q → ∞ in (11) and choosing the argument of β with |β| = 1 suitably, we
obtain the following refinement of inequality (7).
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COROLLARY 2. If P ∈ Pn, P (z) has all its zeros in |z| ≤ k where k ≥ 1 and
m = min|z|=k |P (z)|, then for every α ∈ C with |α| ≥ k,

n (|α| − k) max
|z|=1

|P (z)|+ n
(
|α|+ 1/kn−1

)
m ≤ (1 + kn) max

|z|=1
|DαP (z)| .

Finally we use Holder’s inequality to establish a generalization of (10) in the sense
that maximum on in the right hand side of (10) is replaced by factor involving the
integral mean of |DαP (z)| on |z| = 1.

THEOREM 3. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≥ 1, then
for every α ∈ C with |α| ≥ k and for q > 0, r > 1, s > 1 with r−1 + s−1 = 1,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

≤ Bq
{∫ 2π

0

∣∣1 + eiθ
∣∣qr dθ}1/qr {∫ 2π

0

∣∣DαP (eiθ)
∣∣qs dθ}1/qs (12)

where

Bq =

{∫ 2π
0

∣∣1 + kneiθ
∣∣q dθ}1/q{∫ 2π

0
|1 + eiθ|q dθ

}1/q . (13)

REMARK 2. By letting s→∞ (so that r → 1) in (12), we get inequality (10).

The following result is an immediate consequence of Theorem 3.

COROLLARY 3. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≥ 1, then
for every α ∈ C with |α| ≥ k and for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ 2Bq

{∫ 2π

0

∣∣DαP (eiθ)
∣∣q dθ}1/q , (14)

where Bq is given by (13).

REMARK 3. Making q →∞ in (14), we get inequality (6).

2 Lemmas

For the proofs of these theorems we need the following lemmas. The first Lemma is a
simple deduction from Maximum Modulus Principle (see [5] or [11]).

LEMMA 1. If P ∈ Pn, then for R ≥ 1,

max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)| .
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The next lemma is a simple deduction from a well-known result of G. H. Hardy [6].

LEMMA 2. If P ∈ Pn, then for q > 0, R ≥ 1,{∫ 2π

0

∣∣P (Reiθ)
∣∣q dθ}1/q ≤ Rn{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q .

We also require the following result is due to Rahman and Schmeisser [12].

LEMMA 3. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for R ≥ 1 and q > 0,{∫ 2π

0

∣∣P (Reiθ)
∣∣q dθ}1/q ≤ Cq {∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

where

Cq =

{∫ 2π
0

∣∣1 +Rneiθ
∣∣q dθ}1/q{∫ 2π

0
|1 + eiθ|q dθ

}1/q .

3 Proofs of the Theorems

PROOF OF THEOREM 1. Since all the zeros of P (z) lie in |z| ≤ k, therefore, all
the zeros of F (z) = P (kz) lie in |z| ≤ 1. Applying inequality (8) with k = 1 to the
polynomial F (z), it follows for each q > 0 and |γ| ≥ 1,

n (|γ| − 1)

{∫ 2π

0

∣∣F (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q max

|z|=1
|DγF (z)| .

Setting γ = α
k in above inequality and noting that |γ| =

∣∣α
k

∣∣ ≥ 1, we get

n

(
|α|
k
− 1

){∫ 2π

0

∣∣F (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q max

|z|=1

∣∣Dα
k
F (z)

∣∣ . (15)

Let G(z) = znF (1/z̄). Then

|G(z)| = |F (z)| for |z| = 1

and G(z) does not vanish in |z| < 1. Therefore, by Lemma 3 applied to the polynomial
G(z) with R = k ≥ 1, it follows that for each q > 0,∫ 2π

0

∣∣G(keiθ)
∣∣q ≤ Bqq ∫ 2π

0

∣∣G(eiθ)
∣∣q dθ = Bqq

∫ 2π

0

∣∣F (eiθ)
∣∣q dθ. (16)

where Bq is given by (13).



236 Inequalities for the Polar Derivative

Combining (15)and (16), we get for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣G(keiθ)
∣∣q dθ}1/q

≤ kBq
{∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q max

|z|=1

∣∣Dα
k
F (z)

∣∣
= k

{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1

∣∣Dα
k
F (z)

∣∣ . (17)

Also since
G(z) = znF (1/z̄) = znP (k/z̄),

we see that for 0 ≤ θ < 2π,∣∣G(keiθ
∣∣ =

∣∣∣kneinθP (eiθ)
∣∣∣ = kn

∣∣P (eiθ)
∣∣ .

Using this in (17), we get

nkn (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

≤ k

{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1

∣∣Dα
k
F (z)

∣∣ . (18)

Again, since DαP (z) is a polynomial of degree at most n− 1 and

max
|z|=1

∣∣Dα
k
F (z)

∣∣ = max
|z|=1

∣∣∣nF (z) + (
α

k
− z)F ′(z)

∣∣∣
= max
|z|=1

∣∣∣nP (kz) + (
α

k
− z)kP ′(kz)

∣∣∣
= max
|z|=k

|nP (z) + (α− z)P ′(z)|

= max
|z|=k

|DαP (z)| ,

by Lemma 1 for R = k ≥ 1, we have

max
|z|=1

∣∣Dα
k
F (z)

∣∣ = max
|z|=k

|DαP (z)| ≤ kn−1 max
|z|=1

|DαP (z)| . (19)

This in conjunction with (18) gives

nkn (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ kn{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1
|DαP (z)|

so that

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q ≤ {∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q max

|z|=1
|DαP (z)| .
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This proves Theorem 1.

The proof of Theorem 2 follows on the lines of proof of Theorem 1. However, for
the sake of completeness we present a proof.

PROOF OF THEOREM 2. The polynomial F (z) = P (kz) has all its zeros in
|z| ≤ 1. By inequality (9) applied to the polynomial F (z) ( with k = 1), we get for
each q > 0, |β| ≤ 1 and |α| ≥ k,

n

(
|α|
k
− 1

){∫ 2π

0

∣∣∣∣F (eiθ) + β min
|z|=1

|F (z)|
∣∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q {max

|z|=1

∣∣Dα
k
F (z)

∣∣− n min
|z|=1

|F (z)|
}
. (20)

Since
m = min

|z|=k
|P (z)| = min

|z|=1
|P (kz)| = min

|z|=1
|F (z)| ,

from (20), we obtain for each q > 0, |β| ≤ 1 and |α| ≥ k,

n (|α| − k)

{∫ 2π

0

∣∣F (eiθ) + βm
∣∣q dθ}1/q

≤ k
{∫ 2π

0

∣∣1 + eiθ
∣∣q dθ}1/q {max

|z|=1

∣∣Dα
k
F (z)

∣∣− nm} . (21)

Further, since all the zeros of F (z) lie in |z| ≤ 1 and

m ≤ |F (z)| for |z| = 1,

by the maximum modulus theorem for m 6= 0,

m < |F (z)| for |z| > 1. (22)

We show all the zeros of polynomial G(z) = F (z) + βm lie in |z| ≤ 1 for every β with
|β| ≤ 1. This is obvious if m = 0. For m 6= 0, if there is a point z = z0 with |z0| > 1
such that G(z0) = F (z0) + βm = 0, then we have

|F (z0)| = |β|m ≤ m, |z0| > 1,

a contradiction to (22). Therefore, the polynomial G(z) has all its zeros in |z| ≤ 1 and
hence the polynomial H(z) = znG(1/z̄) does not vanish in |z| < 1. Applying Lemma
3 to the polynomial H(z) with R = k ≥ 1, it follows that for each q > 0,∫ 2π

0

∣∣H(keiθ)
∣∣q dθ ≤ Bqq ∫ 2π

0

∣∣H(eiθ)
∣∣q dθ = Bqq

∫ 2π

0

∣∣G(eiθ)
∣∣q dθ

= Bqq

∫ 2π

0

∣∣F (eiθ) + βm
∣∣q dθ,
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where Bq is the same as given by (13). By this in (21), we obtain for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣H(keiθ)
∣∣q dθ}1/q

≤ k
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1

∣∣Dα
k
F (z)

∣∣− nm} . (23)

But,
H(z) = znG(1/z̄) = znF (1/z̄) + β̄znm,

therefore, for |z| = 1, we get

|H(kz)| =
∣∣∣knznF (1/kz̄) + β̄znmkn

∣∣∣ = kn |F (z/k) + βm| = kn |P (z) + βm| . (24)

Further by inequality (19), we have

max
|z|=1

∣∣Dα
k
F (z)

∣∣ ≤ kn−1 max
|z|=k

|DαP (z)| for |z| = 1. (25)

From (23)—(25), we deduce for each q > 0, |β| ≤ 1 and |α| ≥ k,

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ) + βm
∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣1 + kneiθ
∣∣q dθ}1/q {max

|z|=1
|DαP (z)| − nm/kn−1

}
.

This completes the proof of Theorem 2.

PROOF OF THEOREM 3. Let F (z) = P (kz). Since all the zeros of P (z) lie
in |z| ≤ k, therefore, all the zeros of F (z) lie in |z| ≤ 1. Hence the polynomial
G(z) = znF (1/z̄) has all its zeros in |z| ≥ 1 and

|G(z)| = |F (z)| for |z| = 1.

By a result of De Bruijn (see [3, Theorem 1, p. 1265]), if follows that

|G′(z)| ≤ |F ′(z)| for |z| = 1. (26)

Since G(z) = znF (1/z̄), we see that F (z) = znG(1/z̄) and it can be easily seen that

|G′(z)| = |nF (z)− zF ′(z)| and |F ′(z)| = |nG(z)− zG′(z)| for |z| = 1. (27)

Combining (26) and (27), we get

|nF (z)− zF ′(z)| ≤ |F ′(z)| for |z| = 1. (28)

Also since F (z) has all its zeros in |z| ≤ 1, by Gauss-Lucas theorem all the zeros of
F ′(z) also lie in |z| ≤ 1. This implies that the polynomial

zn−1F ′(1/z̄) ≡ nG(z)− zG′(z)
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does not vanish in |z| < 1. Therefore, it follows from (28) that the function

w(z) =
zG′(z)

nG(z)− zG′(z)

is analytic for |z| ≤ 1 and |w(z)| ≤ 1 for |z| ≤ 1. Furthermore, w(0) = 0. Thus the
function 1+w(z) is subordinate to the function 1+z. Hence by a well-known property
of subordination[7, p. 422], we have for each q > 0,∫ 2π

0

∣∣1 + w(eiθ)
∣∣q dθ ≤ ∫ 2π

0

∣∣1 + eiθ
∣∣q dθ.

Now

1 + w(z) =
nG(z)

nG(z)− zG′(z) ,

which gives with the help of (27),

n |G(z)| = |1 + w(z)| |nG(z)− zG′(z)| = |1 + w(z)| |F ′(z)| for |z| = 1.

This implies for each q > 0,

nq
∫ 2π

0

∣∣G(eiθ)
∣∣q dθ =

∫ 2π

0

∣∣1 + w(eiθ)
∣∣q ∣∣F ′(eiθ)∣∣q dθ. (29)

Also, by using (26) and (27), we have for every α ∈ C with |α| ≥ k and for |z| = 1,∣∣Dα/kF (z)
∣∣ =

∣∣∣nF (z) +
(α
k
− z
)
F ′(z)

∣∣∣
≥ |α|

k
|F ′(z)| − |nF (z)− zF ′(z)|

=
|α|
k
|F ′(z)| − |G′(z)|

≥ |α|
k
|F ′(z)| − |F ′(z)| =

(
|α|
k
− 1

)
|F ′(z)| . (30)

Combining (29) and (30), we have for each q > 0,

nq (|α| − k)
q
∫ 2π

0

∣∣G(eiθ)
∣∣q dθ ≤ ∫ 2π

0

∣∣1 + w(eiθ)
∣∣q kq ∣∣Dα

k
F (eiθ)

∣∣q dθ.
This gives with the help of Holder’s inequality for r > 1, s > 1 with r−1 + s−1 = 1,

nq (|α| − k)
q
∫ 2π

0

∣∣G(eiθ)
∣∣q dθ

≤ kq
{∫ 2π

0

∣∣1 + w(eiθ)
∣∣qr dθ}1/r {∫ 2π

0

∣∣Dα
k
F (eiθ)

∣∣qs dθ}1/s . (31)
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Further, since G(z) 6= 0 in |z| < 1 and k ≥ 1, by taking R = k ≥ 1 in Lemma 3, we
have for each q > 0, ∫ 2π

0

∣∣G(keiθ)
∣∣q ≤ Bqq ∫ 2π

0

∣∣G(eiθ)
∣∣q dθ (32)

where Bq is given by (13). Using (32) in (31) and noting that
∣∣G(keiθ)

∣∣ = kn|P (eiθ),
we get

nqknq (|α| − k)
q
∫ 2π

0

∣∣P (eiθ)
∣∣q dθ

≤ Bqqnq (|α| − k)
q
∫ 2π

0

∣∣G(eiθ)
∣∣q dθ

≤ Bqq
{∫ 2π

0

∣∣1 + eiθ
∣∣qr dθ}1/r {∫ 2π

0

∣∣Dα
k
F (eiθ)

∣∣qs dθ}1/s . (33)

Further since DαP (z) is a polynomial of degree at most n− 1, it follows from Lemma
2 for q > 0 and s > 0 that∫ 2π

0

∣∣Dα
k
F (eiθ)

∣∣qs dθ =

∫ 2π

0

∣∣nP (keiθ) + (α− keiθ)P ′(keiθ)
∣∣qs dθ

≤ k(n−1)qs
∫ 2π

0

∣∣nP (eiθ) + (α− keiθP ′(keiθ)
∣∣qs dθ.

= k(n−1)qs
∫ 2π

0

∣∣DαP (eiθ)
∣∣qs dθ. (34)

From (33) and (34), we deduce

n (|α| − k)

{∫ 2π

0

∣∣P (eiθ)
∣∣q dθ}1/q

≤ Bq
{∫ 2π

0

∣∣1 + eiθ
∣∣qr dθ}1/qr {∫ 2π

0

∣∣DαP (eiθ)
∣∣qs dθ}1/qs .

This proves Theorem 3.
Acknowledgment. The authors are highly grateful to the referee for his useful
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[5] G. Pólya and G. Szegö, Problems and Theorems in Analysis, II, Springer- Verlag,
Berlin, New York, 1976.

[6] G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London
Math. Soc., 14(1915), 319—330.

[7] E. Hille, Analytic Function Theory, Vol.II, Ginn and Company, New York,
Toronto, 1962.

[8] M. Marden, Geometry of Polynomial, Math. Survey No. 3, Amer./ Math. Soc.,
Providence, RI, 1966.

[9] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1(1969),
57—60.

[10] M. A. Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc.,
91(1984), 281—284.

[11] G. V. Milvanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials: Ex-
tremal properties, inequalities, zeros, World Scientific Publishing Co., Singapore,
1994.

[12] Q. I. Rahman and G. Schmeisser, Lp inequalities for polynomials, J. Approx.
Theory, 53(1988), 26—32.

[13] N. A. Rather, S, Gulzar and S. H. Ahanger, Inequalities involving the integrals of
polynomials and their polar derivatives, J. Classical Analysis, 1(2016), 59—64.

[14] P. Turán, Über die ableitung von polynomen, Compositio Math., 7(1939), 89—95.


