Inequalities For The Polar Derivative Of A Polynomial*

Nisar Ahmed Rather ${ }^{\dagger}$, Faroz Ahmad Bhat ${ }^{\ddagger}$

Received 20 December 2016

Abstract

In this paper certain inequalities for the polar derivative of a polynomial with restricted zeros are given, which generalize and refine some well-known polynomial inequalities due to Govil, Malik, Aziz and others.

1 Introduction

Let \mathcal{P}_{n} denote the space of all complex polynomials $P(z)$ of degree n. It was shown by Turan [14] that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
n \max _{|z|=1}|P(z)| \leq 2 \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{1}
\end{equation*}
$$

Equality in (1) holds for $P(z)=a z^{n}+b$ where $|a|=|b|$. For the class of polynomials $P \in \mathcal{P}_{n}$ having all their zeros in $|z| \leq k$ where $k \leq 1$, Mailk [9] proved that

$$
\begin{equation*}
n \max _{|z|=1}|P(z)| \leq(1+k) \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{2}
\end{equation*}
$$

and where as Govil [4] showed that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k, k \geq 1$, then

$$
\begin{equation*}
n \max _{|z|=1}|P(z)| \leq\left(1+k^{n}\right) \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{3}
\end{equation*}
$$

Both the results are sharp and equalities in (2) and (3) hold for $P(z)=(z+k)^{n}$ and $P(z)=\left(z^{n}+k^{n}\right)$ respectively. Malik [10] obtained an extension of (1) in the sense that the left hand side of (1) is replaced by a factor involving the integral mean of $|P(z)|$ on $|z|=1$ by proving that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq 1$, then for each $q>0$,

$$
\begin{equation*}
\left.n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left.\left\{\int_{0}^{2 \pi} \mid 1+e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{4}
\end{equation*}
$$

Equality in (4) holds for $P(z)=a z^{n}+b,|a|=|b|$.

[^0]As generalizations of the inequalities (2)-(4), A. Aziz [1] considered the class of polynomials $P \in \mathcal{P}_{n}$ having all their zeros in $|z| \leq k$ and proved for each $q>0$,

$$
\begin{equation*}
\left.n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left.\left\{\int_{0}^{2 \pi} \mid 1+k e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right|, k \leq 1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left.\left\{\int_{0}^{2 \pi} \mid 1+k^{n} e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right|, k \geq 1 \tag{6}
\end{equation*}
$$

Equality in (6) holds for $P(z)=z^{n}+k^{n}$.
In the limiting case when $q \rightarrow \infty$, the inequalities (5) and (6) reduce to (2) and (3) respectively. Let $D_{\alpha} P(z)$ denote the polar derivative of a polynomial $P \in \mathcal{P}_{n}$ with respect to point $\alpha \in \mathbb{C}$, then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

(see [8]). The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary $P^{\prime}(z)$ of $P(z)$ in the sense that

$$
\operatorname{Lim}_{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

uniformly with respect z for $|z| \leq R, R>0$. Aziz and Rather [2] extended inequalities (2) and (3) to the polar derivatives of polynomials and proved that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k$ where $k \leq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$,

$$
n(|\alpha|-k) \max _{|z|=1}|P(z)| \leq(1+k) \max _{|z|=1}\left|D_{\alpha} P(z)\right|
$$

and if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$,

$$
\begin{equation*}
n(|\alpha|-k) \max _{|z|=1}|P(z)| \leq\left(1+k^{n}\right) \max _{|z|=1}\left|D_{\alpha} P(z)\right| \tag{7}
\end{equation*}
$$

Inequality (7) is sharp and equality holds for $P(z)=(z-k)^{n}$ where α is any real number with $\alpha \geq k$.

Recently Rather et al. [13] extended inequality (3) to the polar derivative of polynomials and proved that if $P \in \mathcal{P}_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \leq 1$, then for $|\gamma| \geq k$ and $q>0$,

$$
\begin{equation*}
n(|\gamma|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\gamma} P(z)\right| \tag{8}
\end{equation*}
$$

and under the same hypothesis, Rather et al. [13] also showed that

$$
n(|\gamma|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m / k^{n-1}\right|^{q} d \theta\right\}^{1 / q}
$$

$$
\begin{equation*}
\leq\left\{\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left(\max _{|z|=1}\left|D_{\gamma} P(z)\right|-m / k^{n-1}\right) \tag{9}
\end{equation*}
$$

where $|\beta| \leq 1$ and $m=\min _{|z|=k}|P(z)|$.
The main aim of this paper is to extends the inequality (6) to the polar derivative of a polynomial and obtain a generalization of (7) in the sense that the left hand side of (7) is replaced by a factor involving the integral mean of $|P(z)|$ on $|z|=1$. More precisely we prove:

THEOREM 1. If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in C$ with $|\alpha| \geq k$ and for each $q>0$,

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\alpha} P(z)\right| \tag{10}
\end{equation*}
$$

REMARK 1. If we divide the two sides of (10) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get inequality (6). Further if make $q \rightarrow \infty$ in (10), we get inequality (7).

Next we prove:

THEOREM 2. If $P \in P_{n}, P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for every $\alpha, \beta \in C$ with $|\alpha| \geq k,|\beta| \leq 1$ and for each $q>0$,

$$
\begin{aligned}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\}
\end{aligned}
$$

For $\beta=0$, Theorem 2 yields the following refinement of Theorem 1 .

COROLLARY 1. If $P \in P_{n}, P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for every $\alpha, \beta \in C$ with $|\alpha| \geq k,|\beta| \leq 1$ and for each $q>0$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\} \tag{11}
\end{align*}
$$

Letting $q \rightarrow \infty$ in (11) and choosing the argument of β with $|\beta|=1$ suitably, we obtain the following refinement of inequality (7).

COROLLARY 2. If $P \in P_{n}, P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for every $\alpha \in C$ with $|\alpha| \geq k$,

$$
n(|\alpha|-k) \max _{|z|=1}|P(z)|+n\left(|\alpha|+1 / k^{n-1}\right) m \leq\left(1+k^{n}\right) \max _{|z|=1}\left|D_{\alpha} P(z)\right| .
$$

Finally we use Holder's inequality to establish a generalization of (10) in the sense that maximum on in the right hand side of (10) is replaced by factor involving the integral mean of $\left|D_{\alpha} P(z)\right|$ on $|z|=1$.

THEOREM 3. If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in C$ with $|\alpha| \geq k$ and for $q>0, r>1, s>1$ with $r^{-1}+s^{-1}=1$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq B_{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q r} d \theta\right\}^{1 / q r}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / q s} \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
B_{q}=\frac{\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}} \tag{13}
\end{equation*}
$$

REMARK 2. By letting $s \rightarrow \infty$ (so that $r \rightarrow 1$) in (12), we get inequality (10).
The following result is an immediate consequence of Theorem 3 .
COROLLARY 3. If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in C$ with $|\alpha| \geq k$ and for each $q>0$,

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq 2 B_{q}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \tag{14}
\end{equation*}
$$

where B_{q} is given by (13).
REMARK 3. Making $q \rightarrow \infty$ in (14), we get inequality (6).

2 Lemmas

For the proofs of these theorems we need the following lemmas. The first Lemma is a simple deduction from Maximum Modulus Principle (see [5] or [11]).

LEMMA 1. If $P \in P_{n}$, then for $R \geq 1$,

$$
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)|
$$

The next lemma is a simple deduction from a well-known result of G. H. Hardy [6].
LEMMA 2. If $P \in P_{n}$, then for $q>0, R \geq 1$,

$$
\left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq R^{n}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q}
$$

We also require the following result is due to Rahman and Schmeisser [12].
LEMMA 3. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for $R \geq 1$ and $q>0$,

$$
\left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq C_{q}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q}
$$

where

$$
C_{q}=\frac{\left\{\int_{0}^{2 \pi}\left|1+R^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}}
$$

3 Proofs of the Theorems

PROOF OF THEOREM 1. Since all the zeros of $P(z)$ lie in $|z| \leq k$, therefore, all the zeros of $F(z)=P(k z)$ lie in $|z| \leq 1$. Applying inequality (8) with $k=1$ to the polynomial $F(z)$, it follows for each $q>0$ and $|\gamma| \geq 1$,

$$
n(|\gamma|-1)\left\{\int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\gamma} F(z)\right|
$$

Setting $\gamma=\frac{\alpha}{k}$ in above inequality and noting that $|\gamma|=\left|\frac{\alpha}{k}\right| \geq 1$, we get

$$
\begin{equation*}
n\left(\frac{|\alpha|}{k}-1\right)\left\{\int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right| \tag{15}
\end{equation*}
$$

Let $G(z)=z^{n} \overline{F(1 / \bar{z})}$. Then

$$
|G(z)|=|F(z)| \text { for }|z|=1
$$

and $G(z)$ does not vanish in $|z|<1$. Therefore, by Lemma 3 applied to the polynomial $G(z)$ with $R=k \geq 1$, it follows that for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|G\left(k e^{i \theta}\right)\right|^{q} \leq B_{q}^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta=B_{q}^{q} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{q} d \theta \tag{16}
\end{equation*}
$$

where B_{q} is given by (13).

Combining (15) and (16), we get for each $q>0$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|G\left(k e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq k B_{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right| \\
& =k\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right| . \tag{17}
\end{align*}
$$

Also since

$$
G(z)=z^{n} \overline{F(1 / \bar{z})}=z^{n} \overline{P(k / \bar{z})}
$$

we see that for $0 \leq \theta<2 \pi$,

$$
\mid G\left(k e^{i \theta}\left|=\left|k^{n} e^{i n \theta} \overline{P\left(e^{i \theta}\right)}\right|=k^{n}\right| P\left(e^{i \theta}\right) \mid .\right.
$$

Using this in (17), we get

$$
\begin{align*}
& n k^{n}(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
\leq & k\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right| . \tag{18}
\end{align*}
$$

Again, since $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$ and

$$
\begin{aligned}
\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right| & =\max _{|z|=1}\left|n F(z)+\left(\frac{\alpha}{k}-z\right) F^{\prime}(z)\right| \\
& =\max _{|z|=1}\left|n P(k z)+\left(\frac{\alpha}{k}-z\right) k P^{\prime}(k z)\right| \\
& =\max _{|z|=k}\left|n P(z)+(\alpha-z) P^{\prime}(z)\right| \\
& =\max _{|z|=k}\left|D_{\alpha} P(z)\right|
\end{aligned}
$$

by Lemma 1 for $R=k \geq 1$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|=\max _{|z|=k}\left|D_{\alpha} P(z)\right| \leq k^{n-1} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \tag{19}
\end{equation*}
$$

This in conjunction with (18) gives

$$
n k^{n}(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq k^{n}\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\alpha} P(z)\right|
$$

so that

$$
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\alpha} P(z)\right|
$$

This proves Theorem 1.
The proof of Theorem 2 follows on the lines of proof of Theorem 1. However, for the sake of completeness we present a proof.

PROOF OF THEOREM 2. The polynomial $F(z)=P(k z)$ has all its zeros in $|z| \leq 1$. By inequality (9) applied to the polynomial $F(z)$ (with $k=1$), we get for each $q>0,|\beta| \leq 1$ and $|\alpha| \geq k$,

$$
\begin{align*}
n\left(\frac{|\alpha|}{k}-1\right) & \left\{\int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)+\beta \min _{|z|=1}\right| F(z)| |^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|-n \min _{|z|=1}|F(z)|\right\} \tag{20}
\end{align*}
$$

Since

$$
m=\min _{|z|=k}|P(z)|=\min _{|z|=1}|P(k z)|=\min _{|z|=1}|F(z)|,
$$

from (20), we obtain for each $q>0,|\beta| \leq 1$ and $|\alpha| \geq k$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
& \leq k\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|-n m\right\} \tag{21}
\end{align*}
$$

Further, since all the zeros of $F(z)$ lie in $|z| \leq 1$ and

$$
m \leq|F(z)| \text { for }|z|=1
$$

by the maximum modulus theorem for $m \neq 0$,

$$
\begin{equation*}
m<|F(z)| \text { for }|z|>1 \tag{22}
\end{equation*}
$$

We show all the zeros of polynomial $G(z)=F(z)+\beta m$ lie in $|z| \leq 1$ for every β with $|\beta| \leq 1$. This is obvious if $m=0$. For $m \neq 0$, if there is a point $z=z_{0}$ with $\left|z_{0}\right|>1$ such that $G\left(z_{0}\right)=F\left(z_{0}\right)+\beta m=0$, then we have

$$
\left|F\left(z_{0}\right)\right|=|\beta| m \leq m, \quad\left|z_{0}\right|>1
$$

a contradiction to (22). Therefore, the polynomial $G(z)$ has all its zeros in $|z| \leq 1$ and hence the polynomial $H(z)=z^{n} \overline{G(1 / \bar{z})}$ does not vanish in $|z|<1$. Applying Lemma 3 to the polynomial $H(z)$ with $R=k \geq 1$, it follows that for each $q>0$,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|H\left(k e^{i \theta}\right)\right|^{q} d \theta & \leq B_{q}^{q} \int_{0}^{2 \pi}\left|H\left(e^{i \theta}\right)\right|^{q} d \theta=B_{q}^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta \\
& =B_{q}^{q} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta
\end{aligned}
$$

where B_{q} is the same as given by (13). By this in (21), we obtain for each $q>0$,

$$
\begin{align*}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|H\left(k e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq k\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|-n m\right\} \tag{23}
\end{align*}
$$

But,

$$
H(z)=z^{n} \overline{G(1 / \bar{z})}=z^{n} \overline{F(1 / \bar{z})}+\bar{\beta} z^{n} m
$$

therefore, for $|z|=1$, we get

$$
\begin{equation*}
|H(k z)|=\left|k^{n} z^{n} \overline{F(1 / k \bar{z})}+\bar{\beta} z^{n} m k^{n}\right|=k^{n}|F(z / k)+\beta m|=k^{n}|P(z)+\beta m| \tag{24}
\end{equation*}
$$

Further by inequality (19), we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right| \leq k^{n-1} \max _{|z|=k}\left|D_{\alpha} P(z)\right| \text { for }|z|=1 \tag{25}
\end{equation*}
$$

From (23)-(25), we deduce for each $q>0,|\beta| \leq 1$ and $|\alpha| \geq k$,

$$
\begin{aligned}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\}
\end{aligned}
$$

This completes the proof of Theorem 2.
PROOF OF THEOREM 3. Let $F(z)=P(k z)$. Since all the zeros of $P(z)$ lie in $|z| \leq k$, therefore, all the zeros of $F(z)$ lie in $|z| \leq 1$. Hence the polynomial $G(z)=z^{n} \overline{F(1 / \bar{z})}$ has all its zeros in $|z| \geq 1$ and

$$
|G(z)|=|F(z)| \text { for }|z|=1
$$

By a result of De Bruijn (see [3, Theorem 1, p. 1265]), if follows that

$$
\begin{equation*}
\left|G^{\prime}(z)\right| \leq\left|F^{\prime}(z)\right| \text { for }|z|=1 \tag{26}
\end{equation*}
$$

Since $G(z)=z^{n} \overline{F(1 / \bar{z})}$, we see that $F(z)=z^{n} \overline{G(1 / \bar{z})}$ and it can be easily seen that

$$
\begin{equation*}
\left|G^{\prime}(z)\right|=\left|n F(z)-z F^{\prime}(z)\right| \text { and }\left|F^{\prime}(z)\right|=\left|n G(z)-z G^{\prime}(z)\right| \text { for }|z|=1 \tag{27}
\end{equation*}
$$

Combining (26) and (27), we get

$$
\begin{equation*}
\left|n F(z)-z F^{\prime}(z)\right| \leq\left|F^{\prime}(z)\right| \text { for }|z|=1 \tag{28}
\end{equation*}
$$

Also since $F(z)$ has all its zeros in $|z| \leq 1$, by Gauss-Lucas theorem all the zeros of $F^{\prime}(z)$ also lie in $|z| \leq 1$. This implies that the polynomial

$$
z^{n-1} \overline{F^{\prime}(1 / \bar{z})} \equiv n G(z)-z G^{\prime}(z)
$$

does not vanish in $|z|<1$. Therefore, it follows from (28) that the function

$$
w(z)=\frac{z G^{\prime}(z)}{n G(z)-z G^{\prime}(z)}
$$

is analytic for $|z| \leq 1$ and $|w(z)| \leq 1$ for $|z| \leq 1$. Furthermore, $w(0)=0$. Thus the function $1+w(z)$ is subordinate to the function $1+z$. Hence by a well-known property of subordination[7, p. 422], we have for each $q>0$,

$$
\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} d \theta \leq \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta
$$

Now

$$
1+w(z)=\frac{n G(z)}{n G(z)-z G^{\prime}(z)}
$$

which gives with the help of (27),

$$
n|G(z)|=|1+w(z)|\left|n G(z)-z G^{\prime}(z)\right|=|1+w(z)|\left|F^{\prime}(z)\right| \text { for }|z|=1
$$

This implies for each $q>0$,

$$
\begin{equation*}
n^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta=\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q}\left|F^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta \tag{29}
\end{equation*}
$$

Also, by using (26) and (27), we have for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for $|z|=1$,

$$
\begin{align*}
\left|D_{\alpha / k} F(z)\right| & =\left|n F(z)+\left(\frac{\alpha}{k}-z\right) F^{\prime}(z)\right| \\
& \geq \frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|n F(z)-z F^{\prime}(z)\right| \\
& =\frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|G^{\prime}(z)\right| \\
& \geq \frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|F^{\prime}(z)\right|=\left(\frac{|\alpha|}{k}-1\right)\left|F^{\prime}(z)\right| \tag{30}
\end{align*}
$$

Combining (29) and (30), we have for each $q>0$,

$$
n^{q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta \leq \int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} k^{q}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q} d \theta
$$

This gives with the help of Holder's inequality for $r>1, s>1$ with $r^{-1}+s^{-1}=1$,

$$
\begin{align*}
n^{q}(|\alpha|-k)^{q} & \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta \\
& \leq k^{q}\left\{\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{1 / r}\left\{\int_{0}^{2 \pi}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / s} \tag{31}
\end{align*}
$$

Further, since $G(z) \neq 0$ in $|z|<1$ and $k \geq 1$, by taking $R=k \geq 1$ in Lemma 3, we have for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|G\left(k e^{i \theta}\right)\right|^{q} \leq B_{q}^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta \tag{32}
\end{equation*}
$$

where B_{q} is given by (13). Using (32) in (31) and noting that $\left|G\left(k e^{i \theta}\right)\right|=k^{n} \mid P\left(e^{i \theta}\right)$, we get

$$
\begin{align*}
n^{q} k^{n q}(|\alpha|-k)^{q} & \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \\
& \leq B_{q}^{q} n^{q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta \\
& \leq B_{q}^{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q r} d \theta\right\}^{1 / r}\left\{\int_{0}^{2 \pi}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / s} \tag{33}
\end{align*}
$$

Further since $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$, it follows from Lemma 2 for $q>0$ and $s>0$ that

$$
\begin{align*}
\int_{0}^{2 \pi}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q s} d \theta & =\int_{0}^{2 \pi}\left|n P\left(k e^{i \theta}\right)+\left(\alpha-k e^{i \theta}\right) P^{\prime}\left(k e^{i \theta}\right)\right|^{q s} d \theta \\
& \leq k^{(n-1) q s} \int_{0}^{2 \pi} \mid n P\left(e^{i \theta}\right)+\left(\alpha-\left.k e^{i \theta} P^{\prime}\left(k e^{i \theta}\right)\right|^{q s} d \theta\right. \\
& =k^{(n-1) q s} \int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q s} d \theta \tag{34}
\end{align*}
$$

From (33) and (34), we deduce

$$
\begin{aligned}
n(|\alpha|-k) & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq B_{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q r} d \theta\right\}^{1 / q r}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / q s}
\end{aligned}
$$

This proves Theorem 3.
Acknowledgment. The authors are highly grateful to the referee for his useful suggestions.

References

[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx., 55(1988), 232-238.
[2] A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turan concerning polynomials, Math. Inequal. Appl., 1(1998), 231-238.
[3] N. G. De Bruijn, Inequalities concerning the polynomials in the complex domain, Nederal. Akad. Wetensch, Proc., 50(1947), 1265-1272.
[4] N. K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41(1973), 543-546.
[5] G. Pólya and G. Szegö, Problems and Theorems in Analysis, II, Springer- Verlag, Berlin, New York, 1976.
[6] G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14(1915), 319-330.
[7] E. Hille, Analytic Function Theory, Vol.II, Ginn and Company, New York, Toronto, 1962.
[8] M. Marden, Geometry of Polynomial, Math. Survey No. 3, Amer./ Math. Soc., Providence, RI, 1966.
[9] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1(1969), 57-60.
[10] M. A. Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91(1984), 281-284.
[11] G. V. Milvanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials: Extremal properties, inequalities, zeros, World Scientific Publishing Co., Singapore, 1994.
[12] Q. I. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory, 53(1988), 26-32.
[13] N. A. Rather, S, Gulzar and S. H. Ahanger, Inequalities involving the integrals of polynomials and their polar derivatives, J. Classical Analysis, 1(2016), 59-64.
[14] P. Turán, Über die ableitung von polynomen, Compositio Math., 7(1939), 89-95.

[^0]: *Mathematics Subject Classifications: 30C10, 26D10, 41A17.
 ${ }^{\dagger}$ Department of Mathematics, Kashmir University, Hazratbal, Srinagar, 190006, India
 ${ }^{\ddagger}$ Department of Mathematics, South Campus Kashmir University, Anantnag 192122, India

