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Abstract

A graph structure is a generalization of undirected graph which is quite use-

ful in studying some structures, including graphs and signed graphs. In this

research paper, we apply the concept of single-valued neutrosophic sets to graph

structures, and explore some interesting properties of single-valued neutrosophic

graph structure. We also discuss the concept of φ-complement of single-valued

neutrosophic graph structure.

1 Introduction

Fuzzy set theory was introduced by Zadeh [15] to solve problems with uncertainties.
At present, in modeling and controlling unsure systems in industry, society and nature,
fuzzy sets and fuzzy logic are playing a vital role. In decision making, they can be used
as powerfull mathematical tools for approximate reasoning. They play a significant
role in complex phenomena which is not easily described by classical mathematics.
Atanassov [4] illustrated the extension of fuzzy sets by adding a new component, called
intuitionistic fuzzy sets. The intuitionistic fuzzy sets have essentially higher describing
possibilities than fuzzy sets. The idea of intuitionistic fuzzy set is more meaningful
as well as inventive due to the presence of degree of truth, degree of falsity and the
hesitation margin. The hesitation margin of intuitionistic fuzzy set is its indeterminacy
value by default. Smarandache [11] submitted the idea of neutrosophic set by combining
the non-standard analysis, a tricomponent logic/set/probability theory and philosophy.
“It is a branch of philosophy which studies the origin, nature and scope of neutralities
as well as their interactions with different ideational spectra” [12]. A neutrosophic
set has three components: truth membership, indeterminacy membership and falsity
membership, in which each membership value is a real standard or non-standard subset
of the nonstandard unit interval ]0−, 1+ [ ([11]). To apply neutrosophic sets in real-life
problems more conveniently, Smarandache [11] and Wang et al. [13] defined single-
valued neutrosophic sets (SVNSs). Actually, the single valued neutrosophic set was
introduced for the first time by Smarandache in 1998 in his book: F. Smarandache,
Neutrosophy, Neutrosophic probability, set, and logic, American Res. Press. A SVNS
is a generalization of intuitionistic fuzzy sets [4]. In SVNS three components are not
dependent and their values are contained in the standard unit interval [0, 1].
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Fuzzy graphs were narrated by Rosenfeld [9] in 1975. Dinesh and Ramakrishnan
[6] introduced the notion of a fuzzy graph structure and discussed some related prop-
erties. Akram and Akmal [1] introduced the concept of bipolar fuzzy graph structures.
Dhavaseelan et al. [5] defined strong neutrosophic graphs. Akram [2] studied single-
valued neutrosophic planar graphs. Akram and Shahzadi [3] introduced the notion
of neutrosophic soft graphs with applications. In this research paper, we apply the
idea of single-valued neutrosophic sets to graph structure, and explore some interest-
ing properties of single-valued neutrosophic graphs. We also discuss the concept of
φ-complement of single-valued neutrosophic graph structure. Further, we present an
application of single-valued neutrosophic graph structures in decision-making.

2 Preliminaries

Sampathkumar [10] introduced the graph structure which is a generalization of undi-
rected graph and is quite useful in studying some structures, including, graphs, signed
graphs, labelled graphs and edge colored graphs.

DEFINITION 1 ([10]). A graph structure Ǧ = (V, R1, . . . , Rn) consists of a non-
empty set V together with relations R1, R2, . . . , Rn on V which are mutually disjoint
such that each Ri, 1 ≤ i ≤ n, is symmetric and irreflexive.

DEFINITION 2 ([11]). A neutrosophic set N on a universal set V is an object of
the form

N = {(v, TN(v), IN (v), FN (v)) : v ∈ V },

where TN , IN , FN : V →]0−, 1+[ and 0− ≤ TN (v) + IN (v) + FN(v) ≤ 3+.

DEFINITION 3 ([13]). A single-valued neutrosophic (SVN) set N on a universal
set V is an object of the form

N = {(v, TN(v), IN (v), FN (v)) : v ∈ V },

where TN , IN , FN : V → [0, 1] and 0 ≤ TN (v) + IN (v) + FN(v) ≤ 3.

DEFINITION 4 ([3]). A single-valued neutrosophic graph G = (X, Y ) is a pair,
where X : V → [0, 1] is a SVN set on V and Y : V × V → [0, 1] is a SVN neutrosophic
relation on V such that:

TY (v1v2) ≤ min{TX(v1), TX(v2)},

IY (v1v2) ≤ min{IX(v1), IX(v2)},

FY (v1v2) ≤ max{FX(v1), FX(v2)},

for all v1, v2 ∈ V . X and Y are said to be SVN vertex set of G and the SVN edge set
of G, respectively.
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3 Single-Valued Neutrosophic Graph Structures

DEFINITION 1. Ǧn = (Q, Q1, Q2, ..., Qn) is called a single-valued neutrosophic graph
structure (SVNGS) of a graph structure Ǧ = (S, S1, S2..., Sn) if

Q =< n, Ti(n), Ii(n), Fi(n) >

is a single-valued neutrosophic (SVN) set on S and

Qi =< (m, n), T (m, n), I(m, n), F (m, n) >

is a single-valued neutrosophic set on Si such that

Ti(m, n) ≤ min{T (m), T (n)}, Ii(m, n) ≤ min{I(m), I(n)}, Fi(m, n)

≤ max{F (m), F (n)}, ∀m, n ∈ S.

Note that Ti(m, n) = 0 = Ii(m, n) = Fi(m, n) for all (m, n) ∈ S × S − Si and

0 ≤ Ti(m, n) + Ii(m, n) + Fi(m, n) ≤ 3 for all (m, n) ∈ Si,

where S and Si (i = 1, 2, ..., n) are underlying vertex and underlying i-edge sets of Ǧn

respectively.

DEFINITION 2. Let Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS of Ǧ. If Ȟn =
(Q′, Q′

1, Q
′
2, ..., Q

′
n) is a SVNGS of Ǧ such that

T ′(n) ≤ T (n), I′(n) ≤ I(n), F ′(n) ≥ F (n), ∀n ∈ S,

T ′
i (m, n) ≤ Ti(m, n), I′i(m, n) ≤ Ii(m, n) and F ′

i (m, n) ≥ Fi(m, n), ∀m, n ∈ Si,

where i = 1, 2, ..., n. Then Ȟn is called a SVN subgraph structure of SVNGS Ǧn.

DEFINITION 3. A SVNGS Ȟn = (Q′, Q′
1, Q

′
2, ..., Q

′
n) is called a SVN induced

subgraph structure of Ǧn by a subset R of S if

T ′(n) = T (n), I′(n) = I(n), F ′(n) = F (n), ∀n ∈ R,

T ′
i (m, n) = Ti(m, n), I′i(m, n) = Ii(m, n) and F ′

i (m, n) = Fi(m, n), ∀m, n ∈ R,

where i = 1, 2, ..., n.

DEFINITION 4. A SVNGS Ȟn = (Q′, Q′
1, Q

′
2, ..., Q

′
n) is called a SVN spanning

subgraph structure of Ǧn if Q′ = Q and

T ′
i (m, n) ≤ Ti(m, n), I′i(m, n) ≤ Ii(m, n) and F ′

i (m, n) ≥ Fi(m, n), i = 1, 2, ..., n.

EXAMPLE 1. Consider a GS Ǧ = (S, S1, S2) and Q, Q1,Q2 be SVN subsets of
S, S1, S2, respectively, such that

Q = {(n1, 0.5, 0.2, .3), (n2, 0.7, 0.3, 0.4), (n3, 0.4, 0.3, 0.5), (n4, 0.7, 0.3, 0.6)},
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Figure 1: A single-valued neutrosophic graph structure Ǧn.

Q1 = {(n1n2, 0.5, 0.2, 0.4), (n2n4, 0.7, 0.3, 0.6)},

Q2 = {(n3n4, 0.4, 0.3, 0.6), (n1n4, 0.5, 0.2, 0.6)}.

Direct calculations show that Ǧn = (Q, Q1, Q2) is a SVNGS of Ǧ as shown in Figure
1.

EXAMPLE 2. A SVNGS Ǩn = (Q′, Q11, Q12) shown in Figure 2 is a SVN subgraph
structure of Ǧn = (Q, Q1, Q2) shown in Figure 1.
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Figure 2: A SVN subgraph structure Ǩn.

DEFINITION 5. Let Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS of Ǧ. Then mn ∈ Si is
called a SVN Qi-edge or simply Qi-edge if Ti(m, n) > 0 or Ii(m, n) > 0 or Fi(m, n) > 0
or all three conditions hold. Consequently, support of Qi is:

supp(Qi) = {mn ∈ Qi : Ti(m, n) > 0} ∪ {mn ∈ Qi : Ii(m, n) > 0}

∪{mn ∈ Qi : Fi(m, n) > 0}, i = 1, 2, ..., n.

DEFINITION 6. Qi-path in a SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is a sequence of
distinct vertices n1, n2, ..., nm (except choice that nm = n1) in S, such that nj−1nj is
a SVN Qi-edge for all j = 2, ..., m.
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DEFINITION 7. A SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is called Qi-strong for some
i ∈ {1, 2, ..., n} if

Ti(m, n) = min{T (m), T (n)}, Ii(m, n) = min{I(m), I(n)}

and

Fi(m, n) = max{F (m), F (n)}, ∀mn ∈ supp(Qi).

SVNGS Ǧn is called strong if it is Qi-strong for all i ∈ {1, 2, ..., n}.

EXAMPLE 3. Consider a SVNGS Ǧn = (Q, Q1, Q2) as shown in Figure 3. Then
Ǧn is a strong SVNGS since it is both Q1- and Q2-strong.
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Figure 3: A strong SVNGS Ǧn = (Q, Q1, Q2).

DEFINITION 8. A SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is called complete or Q1Q2...Qn-
complete, if Ǧn is a strong SVNGS, supp(Qi) 6= φ for all i = 1, 2, ..., n and for every
pair of vertices m, n ∈ S, mn is a Qi-edge for some i.

EXAMPLE 4. Let Ǧn = (Q, Q1, Q2) be a SVNGS of graph structure Ǧ = (S, S1, S2)
such that S = {n1, n2, n3}, S1 = {n1n2} and S2 = {n2n3, n1n3} as shown in Figure
4. By simple calculations, it can be seen that Ǧn is a strong SVNGS. Moreover,
supp(Q1) 6= φ, supp(Q2) 6= φ and each pair of vertices in S is either a Q1-edge or an
Q2-edge. So Ǧn is a complete, i.e., Q1Q2-complete SVNGS.

DEFINITION 9. Let Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS. Then truth strength,
indeterminacy strength and falsity strength of a Qi-path PQi

= n1, n2, ..., nm are de-
noted by T.PQi

, I.PQi
and F.PQi

, respectively and defined as

T.PQi
=

m∧

j=2

[TP
Qi

(nj−1nj)], I.PQi
=

m∧

j=2

[IP
Qi

(nj−1nj)], F.PQi
=

m∨

j=2

[F P
Qi

(nj−1nj)].
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Figure 4: A complete SVNGS.

EXAMPLE 5. Consider a SVNGS Ǧn = (Q, Q1, Q2) as shown in Figure 4. We
found that PQ2 = n2, n1, n3 is a Q2-path. So T.PQ2 = 0.4, I.PQ2 = 0.4 and F.PQ2 =
0.8.

DEFINITION 10. Let Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS. Then

(i) Qi-truth strength of connectedness between m and n is defined by T∞
Qi

(mn) =∨
j≥1

{T j
Qi

(mn)} such that T
j
Qi

(mn) = (T j−1
Qi

◦ T 1
Qi

)(mn) for j ≥ 2 and

T 2
Qi

(mn) = (T 1
Qi

◦ T 1
Qi

)(mn) =
∨

z

(T 1
Qi

(mz) ∧ T 1
Qi

)(zn).

(ii) Qi-indeterminacy strength of connectedness between m and n is defined by
I∞Qi

(mn) =
∨

j≥1

{Ij
Qi

(mn)} such that I
j
Qi

(mn) = (Ij−1
Qi

◦ I1
Qi

)(mn) for j ≥ 2 and

I2
Qi

(mn) = (I1
Qi

◦ I1
Qi

)(mn) =
∨

z

(I1
Qi

(mz) ∧ I1
Qi

)(zn).

(iii) Qi-Falsity strength of connectedness between m and n is defined by F∞
Qi

(mn) =
∧

j≥1

{F j
Qi

(mn)} such that F
j
Qi

(mn) = (F j−1
Qi

◦ F 1
Qi

)(mn) for j ≥ 2 and

F 2
Qi

(mn) = (F 1
Qi

◦ F 1
Qi

)(mn) =
∧

z

(F 1
Qi

(mz) ∨ F 1
Qi

)(zn).

DEFINITION 11. A SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is a Qi-cycle if

(supp(Q), supp(Q1), supp(Q2), ..., supp(Qn)) is a Qi-cycle.

DEFINITION 12. A SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is a SVN fuzzy Qi-cycle (for
some i) if Ǧn is a Qi-cycle, no unique Qi-edge mn is in Ǧn such that

TQi
(mn) = min{TQi

(rs) : rs ∈ Si = supp(Qi)},
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or
IQi

(mn) = min{IQi
(rs) : rs ∈ Si = supp(Qi)},

or
FQi

(mn) = max{FQi
(rs) : rs ∈ Si = supp(Qi)}.

EXAMPLE 6. Consider a SVNGS Ǧn = (Q, Q1, Q2) as shown in Figure 3. Then
Ǧn is a Q1-cycle and SVN fuzzy Q1 − cycle, since (supp(Q), supp(Q1), supp(Q2)) is a
Q1-cycle and there is no unique Q1-edge satisfying above condition.

DEFINITION 13. Let Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS and p be a vertex
in Ǧn. Let (Q′, Q′

1, Q
′
2, ..., Q

′
n) be a SVNGS induced by S \ {p} such that, for all

v 6= p, w 6= p,

TQ′(p) = 0 = IQ′ (p) = FQ′(p), TQ′

i
(pv) = 0 = IQ′

i
(pv) = FQ′

i
(pv), ∀edges pv ∈ Ǧn,

TQ′ (v) = TQ(v), IQ′ (v) = IQ(v), FQ′(v) = FQ(v),

TQ′

i
(vw) = TQi

(vw), IQ′

i
(vw) = IQi

(vw) and FQ′

i
(vw) = FQi

(vw).

Then p is SVN fuzzy Qi-cut vertex for any i if

T∞
Qi

(vw) > T∞
Q′

i
(vw), I∞Qi

(vw) > I∞Q′

i
(vw) and F∞

Qi
(vw) > F∞

Q′

i
(vw),

for some v, w ∈ S \ {p}. Note that p is a Qi − T SVN fuzzy cut vertex if T∞
Qi

(vw) >

T∞
Q′

i
(vw), Qi − I SVN fuzzy cut vertex if I∞Qi

(vw) > I∞Q′

i
(vw) and Qi − F SVN fuzzy

cut vertex if F∞
Qi

(vw) > F∞
Q′

i
(vw).

EXAMPLE 7. Consider a SVNGS Ǧn = (Q, Q1, Q2) as shown in Figure 5 and
let Ǧ′

n = (Q′, Q′
1, Q

′
2) be a SVN subgraph structure of SVNGS Ǧn found by deleting

vertex n2. Deleted vertex n2 is a SVN fuzzy Q1-I cut vertex since

I∞Q1
(n2n5) = 0.4 > 0.3 = I∞Q′

1
(n2n5), I∞Q1

(n3n4) = 0.7 = I∞Q′

1
(n3n4),

and
I∞Q1

(n3n5) = 0.4 > 0.3 = I∞Q′

1
(n3n5).

DEFINITION 14. Suppose Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS and mn be Qi-
edge. Let (Q′, Q′

1, Q
′
2, ..., Q

′
n) be a SVN fuzzy spanning subgraph structure of Ǧn, such

that ∀ edges mn 6= rs,

TQ′

i
(mn) = 0 = IQ′

i
(mn) = FQ′

i
(mn), TQ′

i
(rs) = TQi

(rs),

IQ′

i
(rs) = IQi

(rs) and FQ′

i
(rs) = FQi

(rs).

Then mn is a SVN fuzzy Qi-bridge if T∞
Qi

(vw) > T∞
Q′

i
(vw), I∞Qi

(vw) > I∞Q′

i
(vw) and

F∞
Qi

(vw) > F∞
Q′

i
(vw), for some v, w ∈ S. Note that mn is a Qi −T SVN fuzzy bridge if
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Figure 5: A SVNGS Ǧn = (Q, Q1, Q2).

T∞
Qi

(vw) > T∞
Q′

i
(vw), Qi − I SVN fuzzy bridge if I∞Qi

(vw) > I∞
Q′

i
(vw) and Qi − F SVN

fuzzy bridge if F∞
Qi

(vw) > F∞
Q′

i
(vw).

EXAMPLE 8. Consider the SVNGS Ǧn = (Q, Q1, Q2) as shown in Figure 5 and
Ǧ′

n = (Q′, Q′
1, Q

′
2) be a SVN spanning subgraph structure of SVNGS Ǧn which is found

by deleting Q1-edge (n2n5).Edge (n2n5) is a SVN fuzzy Q1-bridge. Since

T∞
Q1

(n2n5) = 0.4 > 0.3 = T∞
Q′

1
(n2n5),

I∞Q1
(n2n5) = 0.4 > 0.3 = I∞Q′

1
(n2n5)

and
F∞

Q1
(n2n5) = 0.5 > 0 = F∞

Q′

1
(n2n5).

DEFINITION 15. A SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is a Qi-tree if

(supp(Q), supp(Q1), supp(Q2), ..., supp(Qn))

is a Qi-tree. In other words, Ǧn is a Qi-tree if a subgraph of Ǧn induced by supp(Qi)
generates a tree.

DEFINITION 16. A SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is a SVN fuzzy Qi-tree if
Ǧn has a SVN fuzzy spanning subgraph structure Ȟn = (Q′, Q′

1, Q
′
2, ..., Q

′
n) such that

∀Qi-edges mn not in Ȟn, Ȟn is a Q′
i-tree,

TQi
(mn) < T∞

Q′

i
(mn), IQi

(mn) < I∞Q′

i
(mn) and FQi

(mn) > F∞
Q′

i
(mn).

In particular, Ǧn is a SVN fuzzy Qi-T tree if TQi
(mn) < T∞

Q′

i
(mn), a SVN fuzzy Qi-I

tree if IQi
(mn) < I∞Q′

i
(mn) and a SVN fuzzy Qi-F tree if FQi

(mn) > F∞
Q′

i
(mn).

EXAMPLE 9. Consider the SVNGS Ǧn = (Q, Q1, Q2) as shown in Figure 6, which
is a Q2-tree. It is not a Q1-tree but a SVN fuzzy Q1-tree since it has a single-valued
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neutrosophic fuzzy spanning subgraph (Q′, Q′
1, Q

′
2) as a Q′

1-tree, which is obtained by
deleting Q1-edge n2n5 from Ǧn. Moreover,

TQ1 (n2n5) = 0.2 < 0.3 = T∞
Q′

1
(n2n5), IQ1 (n2n5) = 0.1 < 0.3 = I∞Q1

′ (n2n5)

and
FQ1(n2n5) = 0.6 > 0.5 = F∞

Q1
′(n2n5).
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Figure 6: A single-valued neutrosophic fuzzy Q1-tree.

DEFINITION 17. A SVNGS Ǧs1 = (Q1, Q11, Q12, ..., Q1n) of the graph structure
Ǧ1 = (S1, S11, S12, ..., S1n) is isomorphic to SVNGS Ǧs2 = (Q2, Q21, Q22, ..., Q2n) of
the graph structure Ǧ2 = (S2, S21, Q22, ..., S2n) if we have (f, φ) where f : S1 → S2 is a
bijection and φ is a permutation on set {1, 2, ..., n} and following relations are satisfied

TQ1 (m) = TQ2 (f(m)), IQ1(m) = IQ2 (f(m)), FQ1(m) = FQ2(f(m)),

for all m ∈ S1 and

TQ1i
(mn) = TQ2φ(i)

(f(m)f(n)), IQ1i
(mn) = IQ2φ(i)

(f(m)f(n),

FQ1i
(mn) = FQ2φ(i)

(f(m)f(n)),

for all mn ∈ S1i, i = 1, 2, ..., n.

EXAMPLE 10. Let Ǧn1 = (Q, Q1, Q2) and Ǧn2 = (Q′, Q′
1, Q

′
2) be two SVNGSs as

shown in Figure 7. Ǧn1 is isomorphic Ǧn2 under (f, φ) where f : S → S′ is a bijection
and φ is a permutation on set {1, 2} defined as φ(1) = 2, φ(2) = 1 and following
relations are satisfied

TQ(ni) = TQ′(f(ni)), IQ(ni) = IQ′ (f(ni)), FQ(ni) = FQ′(f(ni)),

for all ni ∈ S, and

TQi
(ninj) = TQ′

φ(i)
(f(ni)f(nj )), IQi

(ninj) = IQ′

φ(i)
(f(ni)f(nj )),
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Figure 7: Isomorphic SVN graph structures.

FQi
(ninj) = FQ′

φ(i)
(f(ni)f(nj)),

∀ninj ∈ Si and i = 1, 2.

DEFINITION 18. A SVNGS Ǧs1 = (Q1, Q11, Q12, ..., Q1n) of the graph structure
Ǧ1 = (S1, S11, S12, ..., S1n) is identical to SVNGS Ǧs2 = (Q2, Q21, Q22, ..., Q2n) of
graph structure Ǧ2 = (S2, S21, Q22, ..., S2n) if f : S1 → S2 is a bijection and following
relations are satisfied

TQ1 (m) = TQ2 (f(m)), IQ1(m) = IQ2 (f(m)), FQ1(m) = FQ2(f(m)),

∀m ∈ S1 and

TQ1i
(mn) = TQ2i

(f(m)f(n)), IQ1i
(mn) = IQ2i

(f(m)f(n)),

FQ1i
(mn) = FQ2(i)

(f(m)f(n)),

for all mn ∈ S1i and i = 1, 2, ..., n.

EXAMPLE 11. Let Ǧn1 = (Q, Q1, Q2) and Ǧn2 = (Q′, Q′
1, Q

′
2) be two SVNGSs of

GSs Ǧ1 = (S, S1, S2) and Ǧ2 = (S′, S′
1, S

′
2), respectively, as shown in Figures 8 and 9.

SVNGS Ǧn1 is identical to Ǧn2 under f : S → S′ defined as

f(n1) = m2, f(n2) = m1, f(n3) = m4, f(n4) = m3, f(n5) = m5, f(n6) = m8,

f(n7) = m7, f(n8) = m6, TQ(ni) = TQ′ (f(ni)),

IQ(ni) = IQ′ (f(ni)), FQ(ni) = FQ′(f(ni)),
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Figure 8: A SVNGS Ǧn1.
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Figure 9: A SVNGS Ǧn2.

for all ni ∈ S and

TQi
(ninj) = TQ′

i
(f(ni)f(nj)), IQi

(ninj) = IQ′

i
(f(ni)f(nj)), FQi

(ninj) = FQ′

i
(f(ni)f(nj )),

for all ninj ∈ Si and i = 1, 2.

DEFINITION 19. Let Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS and φ be a permu-
tation on {Q1, Q2, ..., Qn} and on {1, 2, ..., n} that is φ(Qi) = Qj iff φ(i) = j ∀i. If
mn ∈ Qi for any i and

T
Q

φ

i

(mn) = TQ(m)∧TQ(n)−
∨

j 6=i

Tφ(Qj)(mn), I
Q

φ

i

(mn) = IQ(m)∧IQ(n)−
∨

j 6=i

Iφ(Qj)(mn),

F
Q

φ
i
(mn) = FQ(m) ∨ FQ(n) −

∧

j 6=i

Tφ(Qj)(mn), i = 1, 2, ..., n,

then mn ∈ Q
φ
k , where k is selected such that

T
Q

φ

k

(mn) ≥ T
Q

φ

i

(mn), I
Q

φ

k

(mn) ≥ I
Q

φ

i

(mn) and F
Q

φ

k

(mn) ≥ F
Q

φ

i

(mn) for all i.
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And SVNGS (Q, Q
φ
1 , Q

φ
2 , ..., Qφ

n) is called φ-complement of SVNGS Ǧn and denoted by
Ǧφc

n .

EXAMPLE 12. Let Ǧn = (Q, Q1, Q2, Q3) be a SVNGS shown in Figure 10 and
φ be a permutation on {1, 2, 3} defined as: φ(1) = 2, φ(2) = 3, φ(3) = 1. As a

result of simple calculations, we see that n1n3 ∈ Q
φ
3 , n2n3 ∈ Q

φ
1 , n1n2 ∈ Q

φ
2 . So,

Ǧφc
n = (Q, Q

φ
1 , Q

φ
2 , Q

φ
3 ) is φ-complement of SVNGS Ǧn as showm in Figure 10.

8

9 : ; <

=

n3(0.7,0.5,0.3)n2(0.5,0.6,0.4)n3(0.7,0.5,0.3)n2(0.5,0.6,0.4)

n1(0.3,0.4,0.7)n1(0.3,0.4,0.7)

Q2(0.5,0.4,0.3)

Q
1(0.3,0.4,0.3)Q3

(0.3,0.3,0.4)

Q
φ
2
(0.3,0.4,0.7)

Q
φ
1
(0.5,0.5,0.4)

Q φ
3 (0.3,0.4,0.7)

Figure 10: SVNGSs Ǧn, Ǧφc
n .

PROPOSITION 1. A φ-complement of a SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is always
a strong SVNGS. Moreover, if φ(i) = k, where i, k ∈ {1, 2, ..., n}, then all Qk-edges in

SVNGS (Q, Q1, Q2, ..., Qn) become Q
φ
i -edges in (Q, Q

φ
1 , Q

φ
2 , ..., Qφ

n).

PROOF. According to the definition of φ-complement,

T
Q

φ

i

(mn) = TQ(m) ∧ TQ(n) −
∨

j 6=i

Tφ(Qj)(mn),

I
Q

φ

i

(mn) = IQ(m) ∧ IQ(n) −
∨

j 6=i

Iφ(Qj)(mn),

F
Q

φ
i

(mn) = FQ(m) ∨ FQ(n) −
∧

j 6=i

Fφ(Qj)(mn),

for i ∈ {1, 2, ..., n}. For expression of truthness in φ-complement requirements are
shown as: Since

TQ(m) ∧ TQ(n) ≥ 0,
∨

j 6=i

Tφ(Qj)(mn) ≥ 0 and TQi
(mn) ≤ TQ(m) ∧ TQ(n), ∀Qi,

we see that ∨

j 6=i

Tφ(Qj)(mn) ≤ TQ(m) ∧ TQ(n),

which implies that

TQ(m) ∧ TQ(n) −
∨

j 6=i

Tφ(Qj)(mn) ≥ 0.
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Therefore, T
Q

φ

i

(mn) ≥ 0 ∀i. Moreover, T
Q

φ

i

(mn) achieves its maximum value when∨
j 6=i

Tφ(Qj)(mn) is zero. It is obvious that when φ(Qi) = Qk and mn is a Qk-edge then
∨
j 6=i

Tφ(Qj)(mn) gets zero value. So

T
Q

φ
i

(mn) = TQ(m) ∧ TQ(n), for (mn) ∈ Qk, φ(Qi) = Qk.

Similarly, we have

I
Q

φ
i

(mn) = IQ(m) ∧ IQ(n), for (mn) ∈ Qk, φ(Qi) = Qk.

In the similar way for expression of falsity in φ-complement requirements are shown
as: Since

FQ(m) ∨ FQ(n) ≥ 0,
∧

j 6=i

Fφ(Qj)(mn) ≥ 0 and FQi
(mn) ≤ FQ(m) ∨ FQ(n)∀Qi,

we see that ∧

j 6=i

Fφ(Qj)(mn) ≤ FQ(m) ∨ FQ(n),

which implies that

FQ(m) ∨ FQ(n) −
∧

j 6=i

Fφ(Qj)(mn) ≥ 0.

Therefore, F
Q

φ
i
(mn) is non-negative for all i. Moreover, F

Q
φ
i
(mn) attains its maximum

value when
∧
j 6=i

Fφ(Qj)(mn) becomes zero. It is clear that when φ(Qi) = Qk and mn is

a Qk-edge then
∧
j 6=i

Fφ(Qj)(mn) gets zero value. So

F
Q

φ

i

(mn) = FQ(m) ∨ FQ(n) for (mn) ∈ Qk, φ(Qi) = Qk.

This completes the proof.

DEFINITION 20. Let Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS and φ a permutation
on {1, 2, ..., n}. Then

(i) If Ǧn is isomorphic to Ǧφc
n , then Ǧn is said to be self-complementary.

(ii) If Ǧn is identical to Ǧφc
n , then Ǧn is said to be strong self-complementary.

DEFINITION 21. Suppose Ǧn = (Q, Q1, Q2, ..., Qn) be a SVNGS. Then

(i) If Ǧn is isomorphic to Ǧφc
n , for all permutations φ on {1, 2, ..., n}, then Ǧn is

totally self-complementary.

(ii) If Ǧn is identical to Ǧφc
n , for all permutations φ on {1, 2, ..., n}, then Ǧn is totally

strong self-complementary.
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Figure 11: A totally strong self-complementary SVNGS.

REMARK 1. All strong SVNGSs are self-complementary or totally self-complementary
SVNGSs.

EXAMPLE 13. A SVNGS Ǧn = (Q, Q1, Q2, Q3) in Figure 11 is a totally strong
self-complementary SVNGS.

THEOREM 1. A SVNGS is totally self-complementary if and only if it is strong
SVNGS.

PROOF. Consider a strong SVNGS Ǧn and a permutation φ on {1, 2, ..., n}. By
Proposition 1, φ-complement of a SVNGS Ǧn = (Q, Q1, Q2, ..., Qn) is always a strong
SVNGS. Moreover, if φ(i) = k, where i, k ∈ {1, 2, ..., n}, then all Qk-edges in SVNGS

(Q, Q1, Q2, ..., Qn) become Qφ
i -edges in (Q, Qφ

1 , Qφ
2 , ..., Qφ

n). This leads

TQk
(mn) = TQ(m) ∧ TQ(n) = T

Q
φ
i
(mn), IQk

(mn) = IQ(m) ∧ IQ(n) = I
Q

φ
i
(mn)

and
FQk

(mn) = FQ(m) ∨ FQ(n) = F
Q

φ
i
(mn).

Hence under the mapping(identity mapping) f : S → S, Ǧn and Ǧφ
n are isomorphic

such that

TQ(m) = TQ(f(m)), IQ(m) = IQ(f(m)), FQ(m) = FQ(f(m)),

TQk
(mn) = T

Q
φ

i

(f(m)f(n)) = T
Q

φ

i

(mn), IQk
(mn) = I

Q
φ

i

(f(m)f(n)) = I
Q

φ

i

(mn),

FQk
(mn) = F

Q
φ
i
(f(m)f(n)) = F

Q
φ
i
(mn),

for all mn ∈ Sk, φ−1(k) = ii and k = 1, 2, ..., n. This is satisfied for every permutation
φ on {1, 2, ..., n}. Hence Ǧn is totally self-complementary SVNGS. Conversely, let for



M. Akram and M. Sitara 291

every permutation φ on {1, 2, ..., n}, Ǧn and Ǧφ
n are isomorphic. Then according to the

definition of isomorphism of SVNGSs and φ-complement of SVNGS,

TQk
(mn) = T

Q
φ

i

(f(m)f(n)) = TQ(f(m)) ∧ TQ(f(n)) = TQ(m) ∧ TQ(n),

IQk
(mn) = I

Q
φ

i

(f(m)f(n)) = IQ(f(m)) ∧ IQ(f(n)) = TQ(m) ∧ IQ(n),

FQk
(mn) = F

Q
φ

i

(f(m)f(n)) = FQ(f(m)) ∨ TQ(f(n)) = FQ(m) ∧ TQ(n),

for all mn ∈ Sk and k = 1, 2, ..., n. Hence Ǧn is strong SVNGS.

REMARK 2. Every self-complementary SVNGS is totally self-complementary.

THEOREM 2. If Ǧ = (S, S1, S2, ..., Sn) is a totally strong self-complementary GS
and Q = (TQ, IQ, FQ) is a SVN subset of S where TQ, IQ, FQ are constant valued
functions then a strong SVNGS of Ǧ with SVN vertex set Q is always a totally strong
self-complementary SVNGS.

PROOF. Consider three constants p, q, r ∈ [0, 1], such that TQ(m) = p, IQ(m) =
q, FQ(m) = r ∀m ∈ S Since Ǧ is totally self-complementary strong GS, so there is a
bijection f : S → S for any permutation φ−1 on {1, 2, ..., n}, such that for any Sk-edge

(mn), (f(m)f(n)) [a Si-edge in Ǧ ] is a Sk-edge in Ǧφ−1c. Hence for every Qk-edge

(mn), (f(m)f(n)) [a Qi-edge in Ǧn ] is a Q
φ
k -edge in Ǧn

φ−1c
. Moreover Ǧn is strong

SVNGS, so

TQ(m) = p = TQ(f(m)), IQ(m) = q = IQ(f(m)), FQ(m) = r = FQ(f(m)), ∀m ∈ S,

TQk
(mn) = TQ(m) ∧ TQ(n) = TQ(f(m)) ∧ TQ(f(n)) = T

Q
φ
i
(f(m)f(n)),

IQk
(mn) = IQ(m) ∧ IQ(n) = IQ(f(m)) ∧ IQ(f(n)) = I

Q
φ

i

(f(m)f(n)),

FQk
(mn) = FQ(m) ∨ IQ(n) = FQ(f(m)) ∨ FQ(f(n)) = F

Q
φ

i

(f(m)f(n)),

for all mn ∈ Si and i = 1, 2, ..., n. This shows Ǧn is seif-complementary strong SVNGS.
Every permutation φ, φ−1 on {1, 2, ..., n} satisfies above expressions, thus Ǧn is totally
strong self-complementary SVNGS.

REMARK 3. Converse of Theorem 2 may not be true, for example a SVNGS shown
in Figure 11 is a totally strong self-complementary, it is strong and its underlying GS
is a totally strong self-complementary but TQ, IQ, FQ are not constant functions.
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Table 1: SVN set Q of eight countries
Country T I F

Bangladesh 0.8 0.7 0.6
Malaysia 0.7 0.7 0.8
Singapore 0.9 0.5 0.5

United Arab Emirates 1.0 0.5 0.6
Pakistan 0.9 0.5 0.5

India 0.8 0.7 0.7
Kenya 0.7 0.6 0.7
Italy 0.9 0.6 0.5

Table 2: SVN set of crimes between Pakistan and other countries during maritime
trade

Type of crime (P, UAE) (P, B) (P, M) (P, S)
Human trafficking (0.7 , 0.4, 0.5) (0.8, 0.3, 0.4) (0.7, 0.4, 0.2) (0.6, 0.4, 0.2)

Illegal Carrying of Weapons (0.6, 0.3, 0.6) (0.7, 0.3, 0.4) (0.4, 0.5, 0.5) (0.4, 0.3, 0.5)
Black money transfer (0.6, 0.3, 0.2) (0.7, 0.5, 0.4) (0.2, 0.4, 0.3) (0.9, 0.2, 0.2)

Smuggling of precious metals (0.8, 0.3, 0.2) (0.6, 0.3, 0.3) (0.2, 0.4, 0.3) (0.8, 0.5, 0.5)
Drug trafficking (0.7, 0.3, 0.3) (0.5, 0.4, 0.3) (0.6, 0.5, 0.6) (0.8, 0.4, 0.3)

Smuggling of rare plants and animals (0.3, 0.5, 0.5) (0.4, 0.3, 0.4) (0.4, 0.4, 0.5) (0.2, 0.3, 0.3)

4 Application

Detection of crucial crimes during maritime trade: Waters are very impor-
tant for trade in whole World but crimes through waters are increasing day by day.
Crimes held during maritime trade are in abundance but some are very crucial includ-
ing human trafficking, illegal carrying of weapons, black money transfer, smuggling
of precious metals, drug trafficking and smuggling of rare plants and animals. Using
SVNGS, we can easily investigate the fact that between any two countries which mar-
itime crime is chronic and increasing rapidly with time. Moreover, we can decide which
country is most sensitive for particular type of maritime crimes. We consider a set S

consisting of eight countries.
S={Bangladesh, Malaysia, Singapore, United Arab Emirates, Pakistan, India, Kenya,
Italy}. Let Q be the SVN set on S, defined in Table 1.

In Table 1, T depicts the importance of that particular country in the World due
to its geographic position, F indicates the degree of its non-importance in the World,
and I expresses, to which extent it is undecided/indeterminate to be beneficial for the
world, geographically.
Let Bangladesh = B, Malaysia = M, Singapore = S, United Arab Emirates = UAE,
Pakistan = P , India = I, Kenya = K, Italy = IT.
In Tables 2–7, we have shown the values of T , I, and F of different crimes for each pair
of countries. Many relations on set S can be defined, let we define six relations on
S as:
S1 = Human trafficking, S2 = Illegal carrying of weapons, S3 = Black money transfer,
S4 = Smuggling of precious metals, S5 = Drug trafficking, S6 = Smuggling of rare
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Table 3: SVN set of crimes between UAE and other countries during maritime trade

Type of crime (UAE, B) (UAE, M) (UAE, S) (UAE, I)
Human trafficking (0.7, 0.3, 0.4) (0.6, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.2)

Illegal carrying of weapons (0.5, 0.2, 0.2) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.4, 0.3, 0.5)
Black money transfer (0.6, 0.3, 0.3) (0.6, 0.2, 0.3) (0.6, 0.2, 0.3) (0.6, 0.4, 0.5)

Smuggling of precious metals (0.6, 0.2, 0.2) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.8, 0.3, 0.2)
Drug trafficking (0.6, 0.2, 0.2) (0.5, 0.4, 0.3) (0.7, 0.3, 0.2) (0.7, 0.4, 0.3)

Smuggling of rare plants and animals (0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.4, 0.2, 0.5) (0.3, 0.3, 0.3)

Table 4: SVN set of crimes between Bangladesh and other countries during maritime
trade

Type of crime (B, M) (B, S) (B, I) (B, K)
Human trafficking (0.6, 0.3, 0.4) (0.8, 0.3, 0.2) (0.5, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of weapons (0.5, 0.2, 0.5) (0.5, 0.3, 0.2) (0.7, 0.3, 0.5) (0.4, 0.3, 0.5)
Black money transfer (0.4, 0.2, 0.2) (0.7, 0.4, 0.3) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4)

Smuggling of precious metals (0.4, 0.2, 0.2) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.2, 0.2, 0.4)
Drug trafficking (0.6, 0.2, 0.2) (0.5, 0.4, 0.3) (0.6, 0.3, 0.5) (0.5, 0.4, 0.4)

Smuggling of rare plants and animals (0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.2, 0.1, 0.4) (0.5, 0.2, 0.2)

Table 5: SVN set of crimes between Malaysia and other countries during maritime
trade

Type of crime (M, S) (M, I) (M, K) (M, IT)
Human trafficking (0.5, 0.3, 0.4) (0.6, 0.2, 0.3) (0.3, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of weapons (0.6, 0.2, 0.2) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.4, 0.3, 0.5)
Black money transfer (0.6, 0.3, 0.3) (0.2, 0.2, 0.3) (0.2, 0.2, 0.3) (0.2, 0.4, 0.5)

Smuggling of precious metals (0.6, 0.2, 0.2) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.2, 0.2, 0.6)
Drug trafficking (0.5, 0.2, 0.2) (0.5, 0.4, 0.3) (0.4, 0.3, 0.6) (0.7, 0.4, 0.2)

Smuggling of rare plants and animals (0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.6, 0.2, 0.2) (0.5, 0.3, 0.3)

Table 6: SVN set of crimes between Singapore and other countries during maritime
trade

Type of crime (S, I) (S, K) (S, IT) (P, I)
Human trafficking (0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.6)

Illegal carrying of weapons (0.7, 0.4, 0.5) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.8, 0.2, 0.4)
Black money transfer (0.5, 0.3, 0.4) (0.6, 0.2, 0.3) (0.6, 0.2, 0.3) (0.7, 0.4, 0.5)

Smuggling of precious metals (0.8, 0.3, 0.7) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.6, 0.2, 0.4)
Drug trafficking (0.7, 0.3, 0.4) (0.5, 0.4, 0.3) (0.6, 0.3, 0.2) (0.8, 0.4, 0.4)

Smuggling of rare plants and animals (0.7, 0.5, 0.6) (0.4, 0.3, 0.4) (0.6, 0.2, 0.5) (0.7, 0.3, 0.3)

Table 7: SVN set of crimes between Italy and other countries during maritime trade

Type of crime (IT, P) (IT, UAE) (IT, B) (IT, I)
Human trafficking (0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.6)

Illegal carrying of weapons (0.8, 0.3, 0.3) (0.6, 0.3, 0.2) (0.4, 0.3, 0.5) (0.7, 0.3, 0.5)
Black money transfer (0.6, 0.3, 0.3) (0.5, 0.2, 0.3) (0.2, 0.2, 0.3) (0.5, 0.4, 0.5)

Smuggling of precious metals (0.7, 0.3, 0.3) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.7, 0.3, 0.6)
Drug trafficking (0.9, 0.3, 0.3) (0.6, 0.4, 0.3) (0.7, 0.3, 0.5) (0.8, 0.3, 0.3)

Smuggling of rare plants and animals (0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.6, 0.2, 0.5) (0.7, 0.3, 0.3)
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Table 8: SVN set of crimes between Kenya and other countries during maritime trade

Type of crime (K, P) (K, UAE) (K, I) (K, IT)
Human trafficking (0.5, 0.3, 0.4) (0.6, 0.2, 0.5) (0.5, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of weapons (0.6, 0.2, 0.5) (0.5, 0.3, 0.4) (0.5, 0.3, 0.5) (0.4, 0.3, 0.5)
Black money transfer (0.5, 0.3, 0.3) (0.5, 0.2, 0.3) (0.5, 0.2, 0.3) (0.5, 0.4, 0.5)

Smuggling of precious metals (0.4, 0.2, 0.2) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.4, 0.2, 0.4)
Drug trafficking (0.7, 0.2, 0.2) (0.5, 0.4, 0.3) (0.5, 0.3, 0.5) (0.8, 0.4, 0.2)

Smuggling of rare plants and animals (0.3, 0.4, 0.4) (0.7, 0.3, 0.4) (0.6, 0.2, 0.4) (0.7, 0.3, 0.3)

plants and animals, such that (S, S1, S2, S3, S4, S5, S6) is a graph structure. An ele-
ment in a relation detects that kind of crime during maritime trade between those two
countries.
As (S, S1 , S2, S3, S4, S5, S6) is a graph structure, an element will not be in more than
one relations, so it can appear just once. Therefore, we will consider it an element of
that relation for which its percentage of truth is high, and percentage of both falsity
and indeterminacy is low as compared to other relations.
According to given data, we write the elements in relations with their truth, falsity
and indeterminacy values, resulting sets are SVN sets on S1, S2, S3, S4, S5, S6, re-
spectively. We can name these sets as Q1, Q2, Q3, Q4, Q5, Q6, respectively. Let S1 =
{(Bangladesh, Pakistan), (Malaysia, Pakistan), (Bangladesh, Singapore)},
S2={(Pakistan, India)},
S3={(Singapore, Pakistan)},
S4={(India, Singapore), (UnitedArabEmirates, India)},
S5 = {(Italy, Pakistan), (India, Italy)},
S6 = {(Kenya, Singapore)}.
And corresponding SVN sets are:
Q1={((B, P ), 0.8, 0.2, 0.2),((M, P ), 0.7, 0.4, 0.2),((B, S), 0.8, 0.3, 0.2)},
Q2={((P, I), 0.8, 0.2, 0.4)},
Q3={((S, P ), 0.9, 0.2, 0.2), },
Q4={((I, S), 0.8, 0.3, 0.4),((UAE, I), 0.8, 0.3, 0.2)},
Q5={((IT, P ), 0.9, 0.3, 0.3),((I, IT ), 0.8, 0.3, 0.3)},
Q6 = {((K, S), 0.7, 0.2, 0.4)}.
Clearly, (Q, Q1, Q2, Q3, Q4, Q5, Q6) is a SVNGS as shown in Fig. 12.

In SVNGS shown in Fig. 12 every edge detects most frequent crime between adjacent
countries during maritime trade. For instance: most frequent maritime crime between
Pakistan and Singapore is black money transfer, its strength is 90%, weakness is 20% ,
and indeterminacy is 20% . We can also note that for relation human trafficking, ver-
tex Pakistan has highest vertex degree, it means Pakistan is most sensitive country for
human trafficking. Moreover, according to our SVNGS most frequent crime is human
trafficking. It means that navy and maritime forces of these eight countries should take
action to control human trafficking.
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Figure 12: SVNGS showing most crucial maritime crime between any two countries
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