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Abstract

In this paper, q-integral representations for q-Hahn and Askey-Wilson poly-
nomials are given by the method of q-difference equation. Moreover, Srivastava-
Agarwal type generating function for Al-Salam-Chihara polynomials and mixed
generating function for Andrews-Askey polynomials are deduced by means of
q-integral. At last, duality property of q-Hahn polynomials is obtained by the
technique of transformation.

1 Introduction

The q-polynomials and their generating functions are very important and interesting
sets of special functions and more specially of orthogonal polynomials. They appear in
several branches of mathematics [2, 16, 29], e.g., continued fractions, Eulerian series,
elliptic functions, quantum groups and algebras, discrete mathematics (combinatorics,
graph theory), coding theory, etc. For more information, we refer to [1, 2, 15, 16, 24,
29, 32, 33, 34, 35, 38].
In this paper, we follow the notations and terminology in [16] and suppose that

0 < q < 1. The q-series and its compact factorials are defined respectively by

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(
1− aqk

)
, (a; q)∞ =

∞∏
k=0

(
1− aqk

)
and (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, where m is a positive integer and
n is a non-negative integer or ∞.
The basic hypergeometric series rφs [16, Eq. (1.2.22)] is given by

rφs

[
a1, . . . , ar
b1, . . . , bs

; q, z

]
=

∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, . . . , bs; q)n

zn
[
(−1)nqn(n−1)/2

]s+1−r
,
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which is convergent for either |q| < 1 and |z| < ∞ when r ≤ s or |q| < 1 and |z| < 1
when r = s+ 1, provided that no zero appears in the denominator.

The continuous q-Hermite polynomials [23, Eq. (3.26.1)]

Hn(x|q) = einθ2φ0

[
q−n, 0
− ; q, qne−2iθ

]
, x = cos θ (1)

and the big q-Hermite polynomials [23, Eq. (3.18.1)]

Hn(x; a|q) =
1

an
3φ2

[
q−n, aeiθ, ae−iθ

0, 0
; q, q

]
, x = cos θ. (2)

The Al-Salam-Chihara polynomials [23, Eq. (3.8.1)]

Qn(x; a, b|q) =
(ab; q)n
an

3φ2

[
q−n, aeiθ, ae−iθ

ab, 0
; q, q

]
, x = cos θ.

The continuous dual q-Hahn polynomials [23, Eq. (3.3.1)]

pn(x; a, b, c|q) =
(ab, ac; q)n

an
3φ2

[
q−n, aeiθ, ae−iθ

ab, ac
; q, q

]
, x = cos θ. (3)

Those q-polynomials are based on the Askey-scheme [23]. For more information, we
refer to [16, 23].

The Askey-Wilson polynomials [23, Eq. (3.1.1)]

pn(a, b, c, d; cos θ) =
(ab, ac, ad; q)n

an
4φ3

[
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad
; q, q

]
are the 4φ3 polynomials. Note that the product of the denominator parameters in this
4φ3 series is q times the product of the numerator parameters, and the argument of the
function is q. Basic hypergeometric series with this property are called balanced [16].
The Askey-Wilson polynomials are the most general family of orthogonal polynomials
that share the properties of the classical polynomials of Jacobi, Hermite and Laguerre.
The Askey-Wilson polynomials provide a basic generalization or a q-analog of Wigner’s
6− j symbols and the Racah coeffi cients. For more information, please refer to [4, 18,
19, 20, 21, 26, 27, 36].
The concept of the q-integral has proved to be very useful in analyzing q-special

functions. Ismail and Stanton [20] deduced the following q-integral representations for
q-Hermite and Al-Salam-Chihara polynomials [20, Theorem 2.1 and 4.1]

H(cos θ|q) = 1

(1− q)eiθ
(
q, qe2iθ, e−2iθ; q

)
∞

∫ eiθ

e−iθ
yn
(
qyeiθ, qye−iθ; q

)
∞dqy,

Qn(cos θ; t1, t2|q) =
tn1
(
t1e

iθ, t1e
−iθ, t2e

iθ, t2e
−iθ; q

)
∞

(1− q)eiθ
(
q, t1t2, qe2iθ, e−2iθ; q

)
∞

∫ eiθ

e−iθ
yn
(
qyeiθ, qye−iθ; q

)
∞

(t1y, t2y; q)∞
dqy.
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The author [9] given the q-integral representations for Andrews-Askey polynomials [9,
Eq. (40)]

A(a,b)n (x, y|q) ,
n∑
k=0

[
n
k

]
(ay, by; q)k
(abxy; q)k

xkyn−k

=
(ax, ay, bx, by; q)∞

y(1− q)
(
q, qy/x, x/y, abxy; q

)
∞

∫ y

x

tn
(
qt/x, qt/y; q

)
∞

(at, bt; q)∞
dqt. (4)

Motivated by [20], one may ask naturally a question: Whether there exist q-integral
representations for q-Hahn and Askey-Wilson polynomials? For more information,
please refer to [7, 9, 10, 20, 30, 31, 37].
The purpose of this paper is to answer the above question and represent Askey-

Wilson polynomials in terms of q-integrals as follows.

THEOREM 1. For n ∈ N, we have

4φ3

[
q−n, ax, ay, acdxyα/q
abxy, acxy, adxy

; q, q

]
=

an
(
ax, ay, bx, by, acdxyα/q, cy, dy; q

)
∞

y(1− q)
(
q, qy/x, x/y, abxy, acxy, adxy, cdyα; q

)
∞

∫ y

x

tn
(
qt/x, qt/y; q

)
∞

(at, bt; q)∞

×


∞∑
j=0

(
x/t, q/(by); q

)
j
(cy)j(

q, q/(bt); q
)
j

3φ2

[
q−j , q/(cy), q/(cα)

q2/(cdyα), 0
; q, q

] dqt. (5)

COROLLARY 2. For n ∈ N, we have

pn(a, b, c, d; cos θ)

=

(
ae−iθ, aeiθ, beiθ, be−iθ, abcdqn−1, ceiθ, deiθ; q

)
∞

eiθ(1− q)
(
q, qe−2iθ, e2iθ, abqn, acqn, adqn, bcdqneiθ; q

)
∞

∫ eiθ

e−iθ

tn
(
qteiθ, qte−iθ; q

)
∞

(at, bt; q)∞

×


∞∑
j=0

(
e−iθ/t, qe−iθ/b; q

)
j
(ceiθ)j(

q, q/(bt); q
)
j

3φ2

[
q−j , qe−iθ/c, q1−n/(bc)
q2−ne−iθ/(bcd), 0

; q, q

] dqt. (6)

COROLLARY 3. For n ∈ N, we have

pn(x; a, b, c|q)

=

(
aeiθ, ae−iθ, beiθ, be−iθ, ceiθ; q

)
∞

einθ(1− q)
(
q, qe2iθ, e−2iθ, abqn, acqn; q

)
∞

×
∫ eiθ

e−iθ

tn
(
qteiθ, qte−iθ; q

)
∞

(at, bt; q)∞
2φ1

[
e−iθ/t, qe−iθ/b

q/(bt)
; q, ceiθ

]
dqt. (7)



J. Cao and Z.-H. Shen 189

REMARK 4. Letting (x, y, α) =
(
e−iθ, eiθ, bqn

)
and (x, y, d, α) =

(
e−iθ, eiθ, 0, bqn

)
in Theorem 1, equation (5) reduces to (6) and (7) respectively.

The rest of the paper will be organized as follows. In section 2, we deduce the
main theorem by the method of q-difference equation. In section 3, we gain a new
Srivastava-Agarwal type generating function for Al-Salam-Chihara polynomials by us-
ing q-integral. In section 4, we obtain duality property of q-Hahn polynomials by
technique of transformation. In section 5, we derive a mixed generating function for
Andrews-Askey polynomials by means of q-integral.

2 Proof of the Main Theorem

In this paper, we follow the notations and terminology in [16] and suppose that 0 <
q < 1. The q-series and its compact factorials are defined respectively by

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(
1− aqk

)
, (a; q)∞ =

∞∏
k=0

(
1− aqk

)
and (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, where m is a positive integer and
n is a non-negative integer or ∞.

Jackson defined the q-integral by [22]∫ ∞
0

f(t)dqt = d(1− q)
∞∑
n=0

f
(
dqn
)
qn,

∫ d

c

f(t)dqt =
∫ d

0

f(t)dqt−
∫ c

0

f(t)dqt.

For more information about q-series and q-integrals, please refer to [9, 16]. The follow-
ing two q-difference operators are defined by [14, 16]

Da{f(a)} =
f(a)− f(aq)

a
, θa{f(a)} =

f
(
aq−1

)
− f(a)

q−1a
.

Chen and Liu [13, 14] employed the technique of Parameter Augmentation by con-
structed the following two q-exponential operators

T(bDa) =

∞∑
n=0

(
bDa

)n
(q; q)n

, E(bθa) =
∞∑
n=0

q(
n
2)
(
bθa
)n

(q; q)n
.

Later, authors [12, 15] researched on the following general q-exponential operators

T(a, bDc) =

∞∑
n=0

(a; q)n
(q; q)n

(bDc)
n, E(a,−bθc) =

∞∑
n=0

(a; q)n
(q; q)n

(−bθc)n.

To prove Theorem 1, the following lemmas are necessary.

LEMMA 5 ([25, Theorems 1 and 2]). Let f(a, b) be a two variables analytic function
in a neighbourhood of (a, b) = (0, 0) ∈ C2.
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(A.1) If f(a, b) satisfies the difference equation

bf(aq, b)− af(a, bq) = (b− a)f(a, b),
then we have

f(a, b) = T(bDa){f(a, 0)}.

(A.2) If f(a, b) satisfies the difference equation

af(aq, b)− bf(a, bq) = (a− b)f(aq, bq), (8)

then we have
f(a, b) = E(bθa){f(a, 0)}.

LEMMA 6 ([26, Eq. (1.5)]). For max {|bt| , |cy|} < 1, we have

E(cθb)
{
(bx, by; q)∞
(bt; q)∞

}
=
(bx, by, cy; q)∞

(bt; q)∞
2φ1

[
x/t, q/(by)
q/(bt)

; q, cy

]
. (9)

LEMMA 7 ([40, Eq. (11)]). For n ∈ N and |adst/q| < 1, we have

E(dθa) {an(as, at; q)∞} =
an(as, at, ds, dt; q)∞(

adst/q; q
)
∞

3φ2

[
q−n, q/(as), q/(at)

q2/(adst), 0
; q, q

]
. (10)

PROOF OF THEOREM 1. Equation (4) may be written equivalently as
n∑
k=0

(
q−n, ax, ay; q

)
k
qk

(q; q)k
·
(
abxyqk; q

)
∞

=
an(ax, ay; q)∞

y(1− q)
(
q, qy/x, x/y; q

)
∞

∫ y

x

tn
(
qt/x, qt/y; q

)
∞

(at; q)∞
· (bx, by; q)∞
(bt; q)∞

dqt. (11)

Let f(b, c) denote

f(b, c) ,
n∑
k=0

(
q−n, ax, ay; q

)
k
qk

(q; q)k
·
(
abxyqk, acxyqk; q

)
∞. (12)

It’s easy to verify that f(b, c) satisfies equation (8), so by (11) and (9), we have

f(b, c)

= E(bθa){f(a, 0)}

= E(bθa)

{
n∑
k=0

(
q−n, ax, ay; q

)
k
qk

(q; q)k
·
(
abxyqk; q

)
∞

}

=
an(ax, ay; q)∞

y(1− q)
(
q, qy/x, x/y; q

)
∞

∫ y

x

tn
(
qt/x, qt/y; q

)
∞

(at; q)∞
· E(bθa)

{
(bx, by; q)∞
(bt; q)∞

}
dqt

=
an(ax, ay; q)∞

y(1− q)
(
q, qy/x, x/y; q

)
∞

×
∫ y

x

tn
(
qt/x, qt/y; q

)
∞

(at; q)∞
· (bx, by, cy; q)∞

(bt; q)∞
2φ1

[
x/t, q/(by)
q/(bt)

; q, cy

]
dqt. (13)
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By simplification of equation (12) and (13), we have

n∑
k=0

(
q−n, ax, ay; q

)
k
qk

(q, abxy; q)k
·
(
acxyqk; q

)
∞

=
an(ax, ay, bx, by; q)∞

y(1− q)
(
q, qy/x, x/y, abxy; q

)
∞

×
∫ y

x

tn
(
qt/x, qt/y; q

)
∞

(at, bt; q)∞

∞∑
j=0

(
x/t, q/(by); q

)
j
yj(

q, q/(bt); q
)
j

· cj(cy; q)∞dqt. (14)

Equation (5) can also be written as

n∑
k=0

(
q−n, ax, ay; q

)
k
qk

(q, abxy; q)k
·
(
acxyqk, adxyqk, cα, dα; q

)
∞(

acdxyαqk−1; q
)
∞

=
an(ax, ay, bx, by; q)∞

y(1− q)
(
q, qy/x, x/y, abxy; q

)
∞

∫ y

x

tn
(
qt/x, qt/y; q

)
∞

(at, bt; q)∞

∞∑
j=0

(
x/t, q/(by); q

)
j
yj(

q, q/(bt); q
)
j

×c
j(cy, cα, dy, dα; q)∞(

cdyα/q; q
)
∞

3φ2

[
q−j , q/(cy), q/(cα)

q2/(cdyα), 0
; q, q

]
dqt. (15)

We use g(c, d) to denote the left-right hand side of (15), it’s checked that g(c, d) also
satisfies equation (8). So by (14), we have

g(c, d) = E(dθc){g(c, 0)}

= E(dθc)

{
n∑
k=0

(
q−n, ax, ay; q

)
k
qk

(q, abxy; q)k
·
(
acxyqk, cα; q

)
∞

}

=
an(ax, ay, bx, by; q)∞

y(1− q)
(
q, qy/x, x/y, abxy; q

)
∞

×
∫ y

x

tn
(
qt/x, qt/y; q

)
∞

(at, bt; q)∞

∞∑
j=0

(
x/t, q/(by); q

)
j
yj(

q, q/(bt); q
)
j

E(dθc)
{
cj(cy, cα; q)∞

}
dqt,

which is the right-hand side of (15) after using formula (10). The proof is complete.

3 ANew Srivastava-Agarwal Type Generating Func-
tion for Al-Salam-Chihara Polynomials

Note that as q → 1−1, the Al-Salam-Chihara polynomials Qn(x; a, b|q) become the
simple monomials (2x − a − b)n. To see another interesting limits by setting one or
both parameters a and b to be zero. In these cases the polynomials Qn(x; a, b|q) reduce
to q-generalizations of the classical Hermite polynomials, the so-called continuous big
q-Hermite polynomials (2) and the continuous q-Hermite polynomials (1). For more
information, please refer to [5, 23].
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The author [8] considered Srivastava-Agarwal type generating functions by the
method of q-exponential decomposition. For more information, please refer to [8].
In this section, we study the following Srivastava-Agarwal type generating functions

for Al-Salam-Chihara polynomials by the way of q-integral.

THEOREM 8. For max{|t1t| , |st1t/t2|} < 1, we have
∞∑
n=0

(s; q)nt
n

(q; q)n
Qn(cos θ; t1, t2|q)

=

(
t1t2t, st1t/t2; q

)
∞(

t1te−iθ, t1teiθ; q
)
∞
3φ2

[
t2e

iθ, t2e
−iθ, t1t2/s

t1t2, t1t2t
; q,

st1t

t2

]
. (16)

COROLLARY 9 ([23, Eq. (3.8.13)]). We have

∞∑
n=0

(t1t2; q)nt
n

(q; q)ntn1
Qn(cos θ; t1, t2|q) =

(tt1, tt2; q)∞(
teiθ, te−iθ; q

)
∞
. (17)

REMARK 10. Let (s, t) =
(
t1t2, t/t1

)
in Theorem 3, equation (16) reduces to (17)

directly.

Before the proof, the following lemma is necessary.

LEMMA 11 ([25, Eq. (4.2)]). We have∫ d

c

(qt/c, qt/d, ft; q)∞
(at, bt, et; q)∞

dqt

=
d(1− q)

(
q, c/d, qd/c, abcd, bcde, f/b; q

)
∞

(ac, ad, bc, bd, ce, de; q)∞
3φ2

[
bc, bd, abcde/f
abcd, bcde

; q,
f

b

]
. (18)

PROOF OF THEOREM 8. The left-hand side of (16) is equal to(
t1e

iθ, t1e
−iθ, t2e

iθ, t2e
−iθ; q

)
∞

(1− q)eiθ
(
q, t1t2, qe2iθ, e−2iθ; q

)
∞

∫ eiθ

e−iθ

{ ∞∑
n=0

(s; q)n(yt1t)
n

(q; q)n

} (
qyeiθ, qye−iθ; q

)
∞

(t1y, t2y; q)∞
dqy

=

(
t1e

iθ, t1e
−iθ, t2e

iθ, t2e
−iθ; q

)
∞

(1− q)eiθ
(
q, t1t2, qe2iθ, e−2iθ; q

)
∞

∫ eiθ

e−iθ

(
qyeiθ, qye−iθ, st1ty; q

)
∞

(t1y, t2y, t1ty; q)∞
dqy by (18)

=

(
t1e

iθ, t1e
−iθ, t2e

iθ, t2e
−iθ; q

)
∞

(1− q)eiθ
(
q, t1t2, qe2iθ, e−2iθ; q

)
∞

eiθ(1− q)
(
q, e−2iθ, qe2iθ, t1t2, t1t2t, st1t/t2; q

)
∞(

t1e−iθ, t1eiθ, t2e−iθ, t2eiθ, t1te−iθ, t1teiθ; q
)
∞

× 3φ2

[
t2e

iθ, t2e
−iθ, t1t2/s

t1t2, t1t2t
; q,

st1t

t2

]
,

which is the right-hand side of (16) after simplification. The proof is complete.
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4 Duality Property of q-Hahn Polynomials

The continuous dual q-Hahn polynomials (3) is a particular case of the Askey-Wilson
polynomials. The limit process of q → 1 gives the case of associated continuous Hahn
polynomials which have been studied by Ismail et al. [21]. In both of these asso-
ciated cases we made extensive use of contiguous relations for hypergeometric and
q-hypergeometric functions. Although the use of contiguous relations in connection
with continued fractions goes back to Gauss [28], the importance of contiguous rela-
tions in relation to the theory of orthogonal polynomials was first stressed by Wilson
[39]. For more information, please refer to [17, 21, 23, 28, 39].
From the expression of (3), we find that the continuous dual q-Hahn polynomials are

dual with respect to θ. In this section, we study duality property of q-Hahn polynomials
from the view of their q-integral representations.

LEMMA 12 ([16, Eq. (III.1)]). We have

2φ1

[
a, b
c
; q, z

]
=
(b, az; q)∞
(c, z; q)∞

2φ1

[
c/b, z
az

; q, b

]
(19)

=

(
abz/c; q

)
∞

(z; q)∞
2φ1

[
c/a, c/b

c
; q,

abz

c

]
. (20)

PROOF OF (3). Denoting f(θ) as the q-Hahn polynomials (7), by (20), we have

f(θ)

=

(
aeiθ, ae−iθ, beiθ, be−iθ, ceiθ; q

)
∞

einθ(1− q)
(
q, qe2iθ, e−2iθ, abqn, acqn; q

)
∞

×
∫ eiθ

e−iθ

tn
(
qteiθ, qte−iθ; q

)
∞

(at, bt; q)∞

(
ce−iθ; q

)
∞(

ceiθ; q
)
∞

2φ1

[
eiθ/t, qeiθ/b
q/(bt)

; q, ce−iθ
]
dqt.

So we have

f(−θ) =
(
aeiθ, ae−iθ, beiθ, be−iθ, ceiθ, ce−iθ; q

)
∞

e−inθ(1− q)
(
q, qe−2iθ, e2iθ, abqn, acqn, ce−iθ; q

)
∞

×
∫ e−iθ

eiθ

tn
(
qteiθ, qte−iθ; q

)
∞

(at, bt; q)∞
2φ1

[
e−iθ/t, qe−iθ/b

q/(bt)
; q, ceiθ

]
dqt

=

(
aeiθ, ae−iθ, beiθ, be−iθ, ceiθ; q

)
∞

einθ(1− q)
(
q, qe2iθ, e−2iθ, abqn, acqn; q

)
∞

×
∫ eiθ

e−iθ

tn
(
qteiθ, qte−iθ; q

)
∞

(at, bt; q)∞
2φ1

[
e−iθ/t, qe−iθ/b

q/(bt)
; q, ceiθ

]
dqt

×
{
−e2inθ

(
qe2inθ, e−2iθ; q

)
∞(

qe−2iθ, e2iθ; q
)
∞

}
,
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which is equivalent to f(θ) after simplification. The proof is complete.

REMARK 13. We may deduce the duality property of Askey-Wilson polynomials
by this method.

5 A Mixed Generating Function for Andrews-Askey
Polynomials

The Andrews-Askey polynomials are important in the theory of q-polynomials [3, 9].
In this section, we deduce the following mixed generating function for Andrews-

Askey polynomials.

THEOREM 14. For M ∈ N and ay = q−M , we have

∞∑
m,n=0

A(a,b)n (x, y|q)hm+n(z|q)
umvn

(q; q)m(q; q)n

=
(uvyz; q)∞

(u, uz, yvz, vy; q)∞

∞∑
n=0

(ay, yvz, by; q)k(xv)
k

(q, uvyz, abxy; q)k
3φ2

[
u, byqk, ayqk

uvyzqk, abxyqk
; q, xvz

]
(21)

where max{|u| , |uz| , |yvz| , |vy| , |xvz| , |xv|} < 1.

COROLLARY 15 ([11, Eq. (4.1)]). For max{|uz| , |vtz| , |u| , |vt|} < 1, we have

∞∑
m,n=0

hm+n(z|q)
um(vt)n

(q; q)m(q; q)n
=

(uvtz; q)∞
(uz, vtz, u, vt; q)∞

. (22)

COROLLARY 16 ([6, Eq. (1.4)]). For max{|u| , |uz| , |v| , |xv| , |vz| , |xzv|} < 1, we
have

∞∑
m,n=0

hn(x|q)hm+n(z|q)
umvn

(q; q)m(q; q)n

=
(uvz; q)∞

(u, uz, v, xv, vz; q)∞
2φ1

[
u, v
uvz

; q, xzv

]
. (23)

REMARK 17. Set (a, b, x, y) = (0, 0, 0, t) and (a, b, y) = (0, 0, 1) in Theorem 5,
equation (21) reduces to (22) and (23) respectively.

Before the proof of the Theorem, the following lemmas are necessary.
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LEMMA 18 ([9, Theorem 1]). For M ∈ N and r = q−M , we have∫ d

c

(
qt/c, qt/d, rst; q

)
∞

(at, bt, et, st; q)∞
dq t

=
d(1− q)

(
q, c/d, qd/c, abcd, rsd; q

)
∞

(ac, bc, ad, bd, sd, de; q)∞

×
∞∑
n=0

(ad, sd, bd; q)k(ce)
k

(q, rsd, abcd; q)k
3φ2

[
r, bdqk, adqk

rsdqk, abcdqk
; q, sc

]
, (24)

where max{|ac| , |bc| , |ad| , |bd| , |sd| , |de| , |ce|} < 1.

PROOF. Setting (f, g) = (0, c) in Theorem 1 of [9], we have the equation (24).

PROOF OF THEOREM 14. By (22), the left-hand side of (21) is equal to

(ax, ay, bx, by; q)∞

y(1− q)
(
q, qy/x, x/y, abxy; q

)
∞

×
∫ y

x

{ ∞∑
m,n=0

hm+n(z|q)
um(vt)n

(q; q)m(q; q)n

} (
qt/x, qt/y; q

)
∞

(at, bt; q)∞
dqt

=
(ax, ay, bx, by; q)∞

y(1− q)
(
q, qy/x, x/y, abxy, u, uz; q

)
∞

∫ y

x

(
qt/x, qt/y, uvtz; q

)
∞

(at, bt, vtz, vt; q)∞
dqt

=
(ax, ay, bx, by; q)∞

y(1− q)
(
q, qy/x, x/y, abxy, u, uz; q

)
∞

y(1− q)
(
q, x/y, qy/x, abxy, uvyz; q

)
∞

(ax, bx, ay, by, yvz, vy; q)∞

×
∞∑
n=0

(ay, yvz, by; q)k(xv)
k

(q, uvyz, abxy; q)k
3φ2

[
u, byqk, ayqk

uvyzqk, abxyqk
; q, xvz

]

=
(uvyz; q)∞

(u, uz, yvz, vy; q)∞

∞∑
n=0

(ay, yvz, by; q)k(xv)
k

(q, uvyz, abxy; q)k
3φ2

[
u, byqk, ayqk

uvyzqk, abxyqk
; q, xvz

]
,

which is the right-hand side of (21) after simplification. The proof is complete.

PROOF OF COROLLARY 16. By (19), the left-hand side of (23) is equal to

(uvz; q)∞
(u, uz, vz, v; q)∞

∞∑
n=0

(vz; q)k(xv)
k

(q, uvz; q)k
2φ1

[
u, 0
uvzqk

; q, xvz

]

=
(uvz; q)∞

(u, uz, vz, v; q)∞

∞∑
n=0

(vz; q)k(xv)
k

(q, uvz; q)k

(u; q)∞(
uvzqk, xvz; q

)
∞
2φ1

[
vzqk, xvz

0
; q, u

]

=
1

(uz, vz, v, xvz; q)∞

∞∑
n=0

(vz, xvz; q)nu
n

(q; q)n

∞∑
k=0

(
vzqn; q

)
k

(q; q)k
(xv)k

=

(
xv2z; q

)
∞

(uz, vz, v, xvz, xv; q)∞
2φ1

[
vz, xvz
xv2z

; q, u

]
,
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which is the right-hand side of (23) after using (19) and simplification. The proof is
complete.
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