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Abstract

In this paper, on the basis of a specific question raised in [6], we further con-
tinue our investigations on the uniqueness of a meromorphic function with its
higher derivatives sharing two sets and answer the question affi rmatively. More-
over, we exhibit some examples to show the sharpness of some conditions used in
our main result.

1 Introduction

By C and N, we mean the set of complex numbers and set of positive integers respec-
tively. We also assume that readers are familiar with the classical Nevanlinna theory
[8].
In 1976, Gross [7] first generalized the concept of value sharing problem by proposing

his famous question on set sharing. To understand Gross’contribution elaborately, we
require the following definition of set sharing:

DEFINITION 1. Let f be a non constant meromorphic function and S ⊂ C∪{∞}.
We define

Ef (S) =
⋃
a∈S
{(z, p) ∈ C× N | f(z) = a with multiplicity p},

Ef (S) =
⋃
a∈S
{z ∈ C | f(z) = a, counting without multiplicity}.

Two meromorphic functions f and g are said to share the set S counting multiplicities
(CM), if Ef (S) = Eg(S). They are said to share the set S ignoring multiplicities (IM),
if Ef (S) = Eg(S).

In 1976, Gross ([7], Question 6) proposed a problem concerning the uniqueness of
entire functions that share sets of distinct elements instead of values as follows:

∗Mathematics Subject Classifications: 30D35.
†Department of Mathematics, University of Kalyani, Kalyani, West Bengal 741235, India
‡Department of Mathematics, Ramakrishna Mission Vivekananda Centenary College, Rahara, West

Bengal 700118, India

164



A. Banerjee and B. Chakraborty 165

QUESTION A. Can one find a finite set S such that any two non constant entire
functions f and g satisfying Ef (S) = Eg(S) must be identical?

In this directions, there are many elegant results in the literature but in the present
scenario our prime focus will be on Gross’following question which deal with the two
sets sharing problems:

QUESTION B. Can one find two finite set S1 and S2 such that any two non constant
entire functions f and g satisfying Ef (Sj) = Eg(Sj) (j = 1, 2) must be identical?

If the answer to this question is affi rmative, it would be interesting to know how
large both sets would have to be.

An affi rmative answer of the above questions were provided by Yi [11] et al.. Since
then, shared sets problems have been studied by many authors and a number of pro-
found results have been obtained. Taking the question of Gross [7] into the background,
the following question is natural:

QUESTION C ([12, 13, 15]). Can one find two finite sets Sj for j = 1, 2 such that
any two non constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2 must be identical?

In connection to the above question, a brief survey can be found in [6]. In this
context, the possible best result is due to Yi [12].
In 2002, Yi [12] proved that there exist two finite sets S1 with one element and S2

with eight elements such that any two non constant meromorphic functions f and g
satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be identical.
In the mean time, Lahiri [9] introduced the notion of weighted sharing which is the

scaling between CM sharing and IM sharing. As far as relaxations of the nature of
sharing of the sets are concerned, this notion has a remarkable influence.

DEFINITION 2 ([9]). Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞}, we denote by
Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted m
times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f and g
share the value a with weight k.
Let S be a set of distinct elements of C ∪ {∞}. We denote by Ef (S, k) the set

Ef (S, k) =
⋃
a∈S Ek(a; f). If Ef (S, k) = Eg(S, k), then we say that f and g share the

set S with weight k.

In 2008, the present first author [1] improved the result of Yi [12] by relaxing the
nature of sharing the range sets by the notion of weighted sharing. He established that
there exist two finite sets S1 with one element and S2 with eight elements such that
any two non constant meromorphic functions f and g satisfying Ef (S1, 0) = Eg(S1, 0)
and Ef (S2, 2) = Eg(S2, 2) must be identical.
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But after that no remarkable improvements were done regarding Question C. So
the natural query would be whether one can get better result even for particular class
of meromorphic functions. This possibility encouraged researchers to find the similar
types range sets corresponding to the derivatives of two meromorphic functions. To
proceed further, we first recall the existing results in this direction:

THEOREM A ([15]). Let S1 = {z : zn + azn−1 + b = 0} and S2 = {∞}, where a, b
are nonzero constants such that zn + azn−1 + b = 0 has no repeated root and n (≥ 7),
k be two positive integers. Let f and g be two non constant meromorphic functions
such that Ef(k)(S1,∞) = Eg(k)(S1,∞) and Ef (S2,∞) = Eg(S2,∞). Then f (k) ≡ g(k).

In 2010, Banerjee-Bhattacharjee [3] improved Theorem A in the following way:

THEOREM B ([3]). Let Si (i = 1, 2) and k be given as in Theorem A. Let f and g
be two non constant meromorphic functions such that either Ef(k)(S1, l) = Eg(k)(S1, l)

and Ef (S2,m) = Eg(S2,m), where (l,m) = (2, 1) or (3, 0). Then f (k) ≡ g(k).

In 2011, the same authors ([4]) further improved the above results as:

THEOREM C ([4]). Let Si (i = 1, 2) and k be given as in Theorem A. Let f and g
be two non constant meromorphic functions such that Ef(k)(S1, 2) = Eg(k)(S1, 2) and
Ef (S2, 0) = Eg(S2, 0). Then f (k) ≡ g(k).

Recently the present authors [6] improved the above results at the cost of considering
a new range sets instead of the previous. To discuss the results in [6], we first require
the following polynomial. Suppose for two positive integers m, n

P∗(z) = zn − 2n

n−mzn−m +
n

n− 2m
zn−2m + c, (1)

where c is any complex number satisfying |c| 6= 2m2

(n−m)(n−2m) and c 6= 0,− 1−
2n

n−m+
n

n−2m
2 .

THEOREM D ([6]). Let n ≥ 6, m = 1 and k ≥ 1 be three positive integers. Let
S∗ = {z : P∗(z) = 0} where the polynomial P∗(z) is defined by (1). Let f and g
be two non constant meromorphic functions satisfying Ef(k)(S∗, 3) = Eg(k)(S∗, 3) and
Ef(k)(0, 0) = Eg(k)(0, 0). Then f (k) ≡ g(k).

In the same paper [6], the following question was asked:

QUESTION 1. Whether there exists two suitable sets S1 (with one element) and S2
(with five elements) such that when derivatives of any two non constant meromorphic
functions share them with finite weight yield f (k) ≡ g(k)?
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The motivation of writing this paper is to answer the Question 1 affi rmatively. To
this end, we recall some definitions which we need in this sequel.

DEFINITION 3 ([5]). Let z0 be a zero of f − a and g − a of multiplicity p and q
respectively. Then N1)

E (r, a; f) and N
(2

E (r, a; f) denote the reduced counting functions
of those a-points of f and g where p = q = 1 and p = q ≥ 2 respectively. Also
NL(r, a; f) and NL(r, a; g) denote the reduced counting functions of those a-points of
f and g where p > q ≥ 1 and q > p ≥ 1 respectively.

DEFINITION 4 ([5]). Let f and g share a value a-IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g, i.e, N∗(r, a; f, g) = NL(r, a; f) +
NL(r, a; g).

2 Main Result

For a positive integer n, we shall denote by P (z) the following polynomial ([11]):

P (z) = zn + azn−1 + b where ab 6= 0 and
b

an
6= (−1)n

(n− 1)(n−1)

nn
. (2)

THEOREM 1. Suppose that n(≥ 5) and k(≥ 1) are two positive integers. Further
suppose that S = {z : P (z) = 0}, where the polynomial P (z) is defined by (2). For
two non constant meromorphic functions f and g, if Ef(k)(S, 2) = Eg(k)(S, 2) and
Ef(k)(0, 1) = Eg(k)(0, 1), then f (k) ≡ g(k).

COROLLARY 1. Suppose that n(≥ 3) and k(≥ 1) are two positive integers. Further
suppose that S = {z : P (z) = 0}, where the polynomial P (z) is defined by (2). For
two non constant entire functions f and g, if Ef(k)(S, 2) = Eg(k)(S, 2) and Ef(k)(0, 0) =

Eg(k)(0, 0), then f (k) ≡ g(k).

REMARK 1. Theorem 1 shows that there exists two sets S1 with one element and
S2 with five elements such that when derivatives of any two non constant meromorphic
functions share them with finite weight yields f (k) ≡ g(k).
Thus the above theorem improves Theorem D in the direction of Question 1.

As Theorem 1 deals with specific class of meromorphic functions, so the general
curiosity will be:

QUESTION 2. Does the Theorem 1 hold good for general class of meromorphic
functions?

The next example shows that the answer is negative, i.e., k ≥ 1 is sharp.
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EXAMPLE 1. Let n ∈ N and S = {z : P (z) = 0} where P (z) is defined by (2).
We choose f(z) = −a 1−hn−11−hn and, g(z) = h(z)f(z), where h(z) = ez−1+sgn(n−5)

ez+1 and
sgn(x) is defined as:

sgn(x) =

{
+1 for x ≥ 0,
−1 for x < 0.

For n ∈ N, (
f

g

)n−1(
f + a

g + a

)
=

1

hn−1

{
ah

n−1−hn
1−hn

a 1−h
1−hn

}
= 1.

Thus Ef (S,∞) = Eg(S,∞).
Again from the construction of h, it is clear that 0 is a Picard exceptional value of

h only when n ≥ 5. So g = hf implies Ef (0,∞) = Eg(0,∞) only when n ≥ 5. Thus f
and g satisfies all the conditions stated in Theorem 1, but f 6≡ g.

Obviously the next natural query would be:

QUESTION 3. Whether the set S can be replaced by any arbitrary set of five
elements in the same environment of Theorem 1?

The next example shows that the answer is negative.

EXAMPLE 2. Let

f(z) =
1

(
√
αβγ)k−1

e
√
αβγ z and g(z) =

(−1)k

(
√
αβγ)k−1

e−
√
αβγ z,

where k ≥ 1. Also let S = {α
√
β, α
√
γ, β
√
γ, γ
√
β,
√
αβγ}, where α, β and γ are

three nonzero distinct complex numbers. Clearly Ef(k)(S,∞) = Eg(k)(S,∞) and
Ef(k)(0,∞) = Eg(k)(0,∞), but f (k) 6≡ g(k).

The following two examples show that ab 6= 0 is necessary in Theorem 1.

EXAMPLE 3. If b = 0, then S = {0,−a}. Thus for f(z) = aez and, g(z) =
(−1)kae−z (k ≥ 1), Ef(k)(S,∞) = Eg(k)(S,∞) and Ef(k)(0,∞) = Eg(k)(0,∞), but
f (k) 6≡ g(k).

EXAMPLE 4. If a = 0, then S = {z | zn + b = 0}. Take n ≥ 5, f(z) = λez and,
g(z) = (−1)kλe−z (k ≥ 1), where λ is one of the value of (−b) 1

n . Then Ef(k)(S,∞) =

Eg(k)(S,∞) and Ef(k)(0,∞) = Eg(k)(0,∞), but f (k) 6≡ g(k).

The next example shows that when the derivative of two meromorphic functions
share two sets, if the cardinality of one set is one, then the cardinality of another set
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is at least three.

EXAMPLE 5. For three distinct complex numbers a, b and c, let S1 = {a} and
S2 = {b, c}. Choose f(z) = p(z) + (b− a)ez and, g(z) = q(z) + (−1)k(c− a)e−z, where

p(z) =
k−1∑
i=0

ciz
i + a

k!z
k and q(z) =

k−1∑
i=0

diz
i + a

k!z
k, ci, di ∈ C. Clearly Ef(k)(Sj ,∞) =

Eg(k)(Sj ,∞) for j = 1, 2, but f (k) 6≡ g(k).

The next examples show that if we choose different sets other than the specific form
of choosing the first set S with three or four elements Theorem 1 ceases to hold.

EXAMPLE 6. Choose four nonzero distinct complex numbers α, β, γ and δ such
that αβ = γδ. Let f(z) = −αez and, g(z) = (−1)k+1βe−z (k ≥ 1) and S = {α, β, γ, δ}.
Clearly Ef(k)(S,∞) = Eg(k)(S,∞) and Ef(k)(0,∞) = Eg(k)(0,∞), but f (k) 6≡ g(k).

EXAMPLE 7. Choose three nonzero distinct complex numbers α, β, γ such that
αβ = γ2. Let f(z) = −αez and, g(z) = (−1)k+1βe−z (k ≥ 1) and S = {α, β, γ}.
Clearly Ef(k)(S,∞) = Eg(k)(S,∞) and Ef(k)(0,∞) = Eg(k)(0,∞), but f (k) 6≡ g(k).

However the following question is inevitable from the above discussion:

QUESTION 4. Whether there exists two suitable sets S1 with one element and S2
with three or four elements such that when derivatives of any two non constant non
entire meromorphic functions share them with finite weight yield f (k) ≡ g(k)?

3 Lemmas

Throughout this paper, by H and Φ, we shall mean the following two functions:

H :=

(
F
′′

F ′
− 2F

′

F − 1

)
−
(
G
′′

G′
− 2G

′

G− 1

)
and Φ :=

F
′

F − 1
− G

′

G− 1
,

where F := − (f
(k))n−1(f(k)+a)

−b and G := − (g
(k))n−1(g(k)+a)

−b , for n, k ∈ N. Also we
define T (r) := max{T (r, f (k)), T (r, g(k))} and S(r) = o(T (r)).

LEMMA 1. If f (k) and g(k) share (0, 0), then F ≡ G gives f (k) ≡ g(k) where k(≥ 1)
and n(≥ 1) are two integers.

PROOF. The inequality N(r,∞; f (k)) ≤ 1
1+kN(r,∞; f (k)) ≤ 1

2T (r, f (k)) + O(1)

implies Θ(∞, f (k)) ≥ 1
2 for k ≥ 1. Again F ≡ G implies f (k) and g(k) share (∞,∞).

Now rest of the proof is similar as Lemma 1 of ([14]). So we omit the details.
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LEMMA 2. Suppose f (k) and g(k) share (0, 0), then FG 6≡ 1 for k ≥ 1 and n ≥ 3.

PROOF. On contrary, we assume that FG ≡ 1. Then

(f (k))n−1
(
f (k) + a

)
(g(k))n−1

(
g(k) + a

)
≡ b2. (3)

If z0 be a (−a)-point of f (k) of order p, then z0 is a pole of g of order q such that
p = n(q + k) ≥ n. So

N(r,−a; f (k)) ≤ 1

n
N(r,−a; f (k)).

Again from (3), we have N(r, 0; f (k)) = N(r, 0; g(k)) = S(r) as Ef(k)(0, 0) = Eg(k)(0, 0).
Now using Mokhon’ko’s Lemma ([10]) and the Second Fundamental Theorem, we get

T (r, f (k)) ≤ N(r,∞; f (k)) +N(r, 0; f (k)) +N(r,−a; f (k)) + S(r, f (k)) (4)

≤ N(r,−a; g(k)) +N(r,−a; f (k)) + S(r)

≤ 2

n
T (r, f (k)) + S(r),

which is a contradiction as n ≥ 3. This proves the lemma.

LEMMA 3. ([2]) If F and G share (1, l) where 0 ≤ l <∞, then

N(r, 1;F )+N(r, 1;G)−N1)
E (r, 1, F )+(l− 1

2
)N∗(r, 1;F,G) ≤ 1

2
(N(r, 1;F )+N(r, 1;G)).

LEMMA 4. (Lemma 3.6, [6]) Let F , G and Φ be defined as previously and F 6≡ G.
If f (k) and g(k) share (0, q) where 0 ≤ q <∞ and F , G share (1, l), then

{(n− 1)q + n− 2} N(r, 0; f (k) |≥ q + 1)

≤ N(r,∞; f (k)) +N(r,∞; g(k)) +N∗(r, 1;F,G) + S(r),

for n(≥ 3) ∈ N. Similar expressions hold for g(k) also.

LEMMA 5. If f (k) and g(k) share (0, 0); F and G share (1, 2), where n(≥ 3) is an
integer, then

N∗(r, 1;F,G) ≤ n

4n− 10

{
N(r,∞; f (k)) +N(r,∞; g(k))

}
+ S(r).

PROOF. Using Lemma 4, we have

2N∗(r, 1;F,G) ≤ 2N(r, 1;F | ≥ 3) ≤ N
(
r, 0; f (k+1) | f (k) 6= 0

)
+ S(r)

≤ N
(
r, 0; f (k)

)
+N

(
r,∞; f (k)

)
+ S(r)
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≤ 1

n− 2

{
N(r,∞; f (k)) +N(r,∞; g(k)) +N∗(r, 1;F,G)

}
+N(r,∞; f (k)) + S(r). (5)

Again,

2N∗(r, 1;F,G) ≤ 2N(r, 1;G| ≥ 3)

≤ 1

n− 2

(
N(r,∞; g(k)) +N(r,∞; f (k)) +N∗(r, 1;F,G)

)
+N(r,∞; g(k)) + S(r). (6)

Adding (5) and (6), we have

N∗(r, 1;F,G) ≤ n

4n− 10

{
N(r,∞; f (k)) +N(r,∞; g(k))

}
+ S(r).

Hence the proof of the lemma is completed.

LEMMA 6. Suppose f and g are two non constant meromorphic functions. If f (k)

and g(k) share (S, l) and (0, q), where k ≥ 1, l ≥ 2, n ≥ 5 and q ≥ 1, then H ≡ 0.

PROOF. On contrary, we assume that H 6≡ 0. Then clearly F 6≡ G and

N(r, 1;F | = 1) = N(r, 1;G| = 1) ≤ N(r,∞;H)

≤ N
(
r,∞; f (k)

)
+N

(
r,∞; g(k)

)
+N

(
r,−an− 1

n
; f (k)

)
+N

(
r,−an− 1

n
; g(k)

)
+N∗

(
r, 0; f (k), g(k)

)
+N∗(r, 1;F,G)

+N0

(
r, 0; f (k+1)

)
+N0

(
r, 0; g(k+1)

)
, (7)

where N0

(
r, 0; f (k+1)

)
is the reduced counting function of zeros of f (k+1), which is not

zeros of f (k)
(
f (k) + an−1n

)
and (F − 1). Similarly N0

(
r, 0; g(k+1)

)
is defined. Using

the Second Fundamental Theorem, Lemma 3 and inequality (7), we get

(n+ 1)
(
T (r, f (k)) + T (r, g(k))

)
≤ N

(
r,∞; f (k)

)
+N

(
r, 0; f (k)

)
+N

(
r,∞; g(k)

)
+N

(
r, 0; g(k)

)
+N(r, 1;F ) +N(r, 1;G) +N

(
r,−an− 1

n
; f (k)

)
+N

(
r,−an− 1

n
; g(k)

)
−N0

(
r, 0, f (k+1)

)
−N0

(
r, 0, g(k+1)

)
+ S

(
r, f (k)

)
+ S

(
r, g(k)

)
≤ 2

{
N(r,∞; f (k)) +N(r,∞; g(k))

}
+N

(
r, 0; f (k)

)
+N

(
r, 0; g(k)

)
+N∗

(
r, 0; f (k), g(k)

)
+N(r, 1;F ) +N(r, 1;G)−N(r, 1;F | = 1)
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+N∗(r, 1;F,G) + 2

{
N

(
r,−an− 1

n
; f (k)

)
+N

(
r,−an− 1

n
; g(k)

)}
+S

(
r, f (k)

)
+ S

(
r, g(k)

)
.

That is,

(n+ 1)
(
T (r, f (k)) + T (r, g(k))

)
≤ 2

{
T (r, f (k)) + T (r, g(k))

}
+ 2

{
N(r,∞; f (k)) +N(r,∞; g(k))

}
+ N

(
r, 0; f (k)

)
+N

(
r, 0; g(k)

)
+N

(
r, 0; f (k) | ≥ q + 1

)
+

1

2
(N(r, 1;F ) +N(r, 1;G)) +

(
3

2
− l
)
N∗(r, 1;F,G)

+ S
(
r, f (k)

)
+ S

(
r, g(k)

)
≤

(
2 +

n

2

){
T (r, f (k)) + T (r, g(k))

}
+ 2

{
N(r,∞; f (k)) +N(r,∞; g(k))

}
+ 2N

(
r, 0; f (k)

)
+N

(
r, 0; f (k) | ≥ q + 1

)
+

(
3

2
− l
)
N∗(r, 1;F,G)

+ S
(
r, f (k)

)
+ S

(
r, g(k)

)
.

Using Lemma 4 and Lemma 5 in the above inequality, we obtain(n
2
− 1
)

(T (r, f (k)) + T (r, g(k))) (8)

≤ 2
{
N(r,∞; f (k)) +N(r,∞; g(k))

}
+

(
2

n− 2
+

1

(n− 1)q + (n− 2)

){
N(r,∞; f (k)) +N(r,∞; g(k))

+N∗(r, 1;F,G)
}

+

(
3

2
− l
)
N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k))

≤
(

2 +
2

n− 2
+

1

(n− 1)q + (n− 2)

){
N(r,∞; f (k)) +N(r,∞; g(k))

}
+

(
n

4n− 10

)(
3

2
− l +

2

n− 2
+

1

(n− 1)q + (n− 2)

)
{N(r,∞; f (k))

+N(r,∞; g(k))}+ S(r, f (k)) + S(r, g(k)).

So from (8), we get(n
2
− 1
)

(T (r, f (k)) + T (r, g(k)))

≤
(

1 +
1

n− 2
+

1

2(n− 1)q + 2(n− 2)

)
{N(r,∞; f (k)) +N(r,∞; g(k))}

+

(
n

4n− 10

)(
1

n− 2
+

1

2(n− 1)q + 2(n− 2)
− 1

4

){
N(r,∞; f (k))
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+N(r,∞; g(k))
}

+ S(r, f (k)) + S(r, g(k)),

which leads to a contradiction when n ≥ 5 and q ≥ 1. Thus H ≡ 0. Hence the proof
of the lemma is completed.

REMARK 2. It is easy to see that if we take f and g as two non constant entire
functions in Lemma 6 and if f (k) and g(k) share (S, l) and (0, 0), where k ≥ 1, l ≥ 2,
n ≥ 3, then H ≡ 0.

LEMMA 7. Suppose f (k) and g(k) share (0, 0) and H ≡ 0. If n ≥ 4 and k ≥ 1, then
f (k) ≡ g(k).

PROOF. Given H ≡ 0. On integration, we have

F ≡ AG+B

CG+D
, (9)

where A,B,C,D are constant satisfying AD − BC 6= 0. So A = C = 0 never occur.
Thus clearly F and G share (1,∞). Now by Mokhon’ko’s Lemma ([10]), we have

T
(
r, f (k)

)
= T

(
r, g(k)

)
+ S(r). (10)

Next we consider the following two cases:
CASE-1. Assume AC 6= 0. In this case (9) can be written as

F − A

C
≡ BC −AD
C(CG+D)

. (11)

Now by using the Second Fundamental Theorem, equations (10) and (11), we get

nT (r, f (k)) +O(1) = T (r, F )

≤ N(r,∞;F ) +N(r, 0;F ) +N

(
r,
A

C
;F

)
+ S(r, F )

≤ N(r,∞; f (k)) +N(r, 0; f (k)) + T (r, f (k)) +N(r,∞; g(k)) + S(r, f (k))

≤ 1

2

(
N(r,∞; f (k)) +N(r,∞; g(k))

)
+N(r, 0; f (k)) + T (r, f (k)) + S(r, f (k))

≤ 3T (r, f (k)) + S(r, f (k)),

which is a contradiction as n ≥ 4.
CASE-2. Next we assume AC = 0. Now we consider the following subcases:
SUBCASE-2.1. Let A = 0 and C 6= 0. Hence B 6= 0. Thus equation (9) becomes

F ≡ 1

γG+ δ
, where γ =

C

B
and δ =

D

B
. (12)

If F has no 1-point, then in view of the Second Fundamental Theorem, we get

nT (r, f (k)) +O(1) = T (r, F )
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≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F ) + S(r, F )

≤ N(r,∞; f (k)) +N(r, 0; f (k)) + T (r, f (k)) + S(r, f (k))

≤ 5

2
T (r, f (k)) + S(r, f (k)),

which is a contradiction as n ≥ 4.
Thus there exist atleast one z0 such that F (z0) = G(z0) = 1. Hence from equation
(12), we get γ + δ = 1, γ 6= 0 and hence

F ≡ 1

γG+ 1− γ .

If γ 6= 1, then the Second Fundamental Theorem yields

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N

(
r, 0;G+

1− γ
γ

)
+ S(r,G)

≤ N(r,∞; g(k)) +N(r, 0; g(k)) + T (r, g(k)) +N(r,∞; f (k)) + S(r, g(k))

≤ 3

n
T (r, F ) + S(r, F ),

which is impossible as n ≥ 4. Thus γ = 1, i.e., FG ≡ 1, which is again impossible by
Lemma 2.
SUBCASE-2.2. Let A 6= 0 and C = 0. Hence D 6= 0. So equation (9) becomes

F ≡ λG+ µ, where λ =
A

D
and µ =

B

D
.

If F has no 1-point, then proceeding as above in Subcase-2.1, we arrive at a contradic-
tion. Thus λ+ µ = 1 with λ 6= 0. If λ 6= 1, then equation (9) yields

N(r, 0, f (k)) = N(r, 0, g(k)) = S(r).

Now applying the Second Fundamental Theorem, we obtain

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N

(
r, 0;G+

1− λ
λ

)
+ S(r,G)

≤ N(r,∞; g(k)) +N(r, 0; g(k)) + T (r, g(k)) +N(r, 0; f (k)) + T (r, f (k))

+ S(r, g(k))

≤ 5

2n
T (r,G) + S(r,G),

which is a contradiction as n ≥ 4. Thus λ = 1 and hence F ≡ G. Consequently Lemma
1 gives f (k) ≡ g(k). Hence the proof of the lemma is completed.

REMARK 3. It is easy to see that if we take f and g as two non constant entire
functions in Lemma 7 and if f (k) and g(k) share (0, 0) and H ≡ 0, then f (k) ≡ g(k),
where n ≥ 3 and k ≥ 1.
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4 Proof of the Theorem

PROOF OF THE THEOREM 1. Given that f (k) and g(k) share (S, 2) and (0, 1). Since
l = 2 and q = 1, so in view of Lemma 6, we get H ≡ 0. Next we apply the Lemma 7,
and we obtain our desired result f (k) ≡ g(k) when n ≥ 5. Hence the theorem is proved.
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