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Abstract

A model of the Helmholtz resonator with narrow slit is considered. The con-
struction is based on the theory of self-adjoint extensions of symmetric operators.
Resonance states are described. It is proved that the system of the resonance
states is complete in L2(Ω), where Ω is the convex hull of the resonator with
window.

1 Introduction

The Helmholtz resonator is an open resonator with small boundary window. The prob-
lem of resonances and resonance states for the Helmholtz resonator attracted great
attention starting from famous Lord Rayleigh work [1]. But rigorous mathematical
description of the problem was given only in the second half of 20-th century. Par-
ticularly, it became clear that resonances (not only for the Helmholtz resonator but
for any bounded scatterer) are eigenvalues of some dissipative operator (see [2, 3, 4]
and references in [5]). A few models and asymptotic approaches to the problem were
developed (see, e.g., [6, 7, 8, 9] and references therein). One of the intriguing question
in this field is: What is the minimal domain Ω which gives one the completeness of
the resonance states in L2(Ω)? Our hypothesis is that it is the convex hull of the
scatterer. It is not yet proved. There are only some examples of solved particular
problems [10, 11]. There is an interesting relation between the scattering problem and
functional model [12, 13, 14, 15, 16]. More precisely, the completeness is related to
the factorization of the scattering matrix (correspondingly, characteristic function for
the functional model). This model gives one an instrument for investigation of the
analogous completeness problem for quantum graph with semi-infinite edges. A few
results were obtained in this field [17, 18]. For quantum graph the problem reduces to
the factorization of a scalar function.
The completeness of resonance states problem is not purely mathematical question.

It corresponds to important physical property. The resonance states are related to the
scattering problem. The completeness of resonance states in L2(Ω) for some domain Ω
means that any state (i.e., any vibration in acoustical or electro-magnetic cases) can be
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excited by incoming plane waves. Conversely, the incompleteness means that there are
states which can not be excited by incoming waves. This property is very important
for physical applications.

2 Model Construction and Main Results

Consider convex bounded domain Ωin with smooth boundary ∂Ωin. Let L,L ∈ ∂Ωin,
be smooth bounded curve without self-intersections. To switch on the interaction
between Ωin and the external domain Ωex = R3 \ Ωin through line-like window L we
use so-called "restriction-extension" procedure (see, e.g., [8, 19, 20, 21, 22, 23, 24]).
Let us start from the Neumann Laplacian in Ωin. Restrict this operator onto the set
of smooth functions vanishing at L. The closure −∆0 of this restriction is a symmetric
operator with infinite deficiency indices. To describe the operator extensions, we need
the description of the adjoint operator domain. It is given by the following Lemma.

LEMMA 1 ([8]). The domain of the operator −∆∗0 is as follows

D(−∆∗0) : u(x) =

∫
L

(ξin(s)hink0(x, s) + ξex(s)hexk0 (x, s))ds+ u0(x),

hin,exk1
(x, s) =

{
Gin,ex(x, x(s), k0), x ∈ Ωin,ex,
0 x ∈ Ωex,in,

x(s) ∈ L, u0 ∈W 2
2 (Ωin)⊕W 2

2 (Ωex), ξin,ex ∈W−1
2 (L).

Here Gin,ex(x, y, k0) is the Green function for Ωin,ex corresponding to some regular
value k2

0 < 0 (i.e. <k0 = 0.

Self-adjoint extensions are restrictions of the adjoint operator. We are not interested
in the whole set of such extensions. We consider only one (the most natural) self-adjoint
extension given by the following Lemma.

LEMMA 2. The restriction of −∆∗0 with the following domain gives one a self-
adjoint operator:

D(−∆) = {u : u ∈ D(−∆∗0), ξin = −ξex, uin0 |L = uex0 |L}. (1)

To obtain the scattering matrix, we construct the solution of the scattering problem.

LEMMA 3. The solution of the scattering problem has the form

ψ(x, ν, k) =

{ ∫
L
Gin(x, x(s), k)αin(s)ds, x ∈ Ωin,

ψex(x, ν, k) +
∫
L
Gex(x, x(s), k)αex(s)ds, x ∈ Ωex.

(2)

Here ψex(x, ν, k) is the solution of the problem of scattering of plane wave with wave
vector kν by Ωex without line-like window, αin,ex, αin,ex ∈W−1

2 (L), αin(s) = −αex(s),
is a solution of the equation:∫

L

Q(s, t)αin(t)dt = ψex(x(s), ν, k), (3)
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where

Q(s, t) = Gin(x(s), x(t), k)−Gin(x(s), x(t), k0)+Gex(x(s), x(t), k)−Gex(x(s), x(t), k0).

PROOF. Taking the solution of the scattering problem in general form (2), one
should satisfy condition (1) of self-adjointness. To this purpose, one rewrites the ex-
pression in the following way∫

L

Gin,ex(x, x(s), k)αin,ex(s)ds

=

∫
L

Gin,ex(x, x(s), k0)αin,ex(s)ds+

∫
L

(Gin,ex(x, x(s), k)

−Gin,ex(x, x(s), k))αin,ex(s)ds.

It gives, immediately, ξin,ex(s) = αin,ex(s). Then, condition (1) gives one equation (3)
which finishes the proof.

LEMMA 4. Resonances are roots of the equation:

−1 =
ik

2π

∫
Σ

∫
L

ds

∫
L

dt[Q]−1(s, t)ψex(x(t), ν, k)ψex(x(s), ν, k)dν. (4)

Here [Q]−1(s, t) is the kernel of the inverse operator for integral operator Q.

PROOF. Consider the asymptotic expansion for ψ(x, ν, k) as |x| → ∞, x = |x|ω
which has the form

ψ(x, ν, k) = exp (ik(x, ν)) +
exp (ik|x|)

4π|x| f(ω, ν, k) + o(
1

|x| ),

where f(ω, ν, k) is the scattering amplitude.
The kernel of the S-matrix is related to the scattering amplitude in the conventional

way:
S(ω, ν, k) = δ(ω − ν) + ik(2π)−1f(ω, ν, k).

As a result, one obtains

S(ω, ν, k) = Sex(ω, ν, k) + ik(2π)−1

∫
L

αex(s)ψex(x(s), ω, k)ds. (5)

The resonances are the zeros of the operator-valued function S(k):∫
Σ

S(ω, ν, k)e(ν)dν = 0.

Here Σ is the unit sphere. In view of the above expression (5) for S, the equation gets
the form:∫

Σ

Sex(ω, ν, k)e(ν)dν = −ik(2π)−1

∫
Σ

∫
L

αex(s)ψex(x(s), ω, k)dse(ν)dν. (6)
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Consider (6) in a neighborhood of the real axis. It is known [2] that if the scatterer
(Ωin) is convex or star-like, then there are no zeros of the operator-valued function
Sex(k) in some strip near the real axis. Hence, in this domain the operator Sex has a
bounded inverse (Sex)−1. Then, the equation takes the form:

−e(ω) = (Sex)−1ik(2π)−1

∫
Σ

∫
L

αex(s)ψex(x(s), ω, k)dse(ν)dν. (7)

Taking into account the known relation

(Sex)−1ψex(x, ω, k) = ψex(x, ω, k),

and (3), one transforms (7) into the following homogeneous integral equation:

−e(ω) =
ik

2π

∫
Σ

(∫
L

ds

∫
L

dt[Q]−1(s, t)ψex(x(t), ω, k)ψex(x(s), ν, k)

)
e(ν)dν.

The condition for existence of non-trivial solution gives one the needed equation (4)
for resonances. QED.

Let us consider a neighborhood of eigenvalue λinn = (kinn )2, kinn ≥ 0. It contains the
resonance λn = k2

n. Let us select the corresponding term in (3):

−
∫
L

ψn(x(s))ψn(x(t))

((kinn )2 − k2)
αin(t)dt

=

∫
L

ψn(x(s))ψn(x(t))

((kinn )2 − k2
0)

αin(t)dt

+(k2 − k2
0)

∫
L

∑
m,m 6=n

ψm(x(s))ψm(x(t))

((kinm )2 − k2)((kinm )2 − k2
0)
αin(t)dt

+

∫
L

(k2 − k2
0)

∫
R3

ψex(x(s), |κ|, ν)ψex(x(t), |κ|, ν)

(κ2 − k2)(κ2 − k2
0)

d3καin(t)dt+ αin(s).

The expression for resonance state in coordinate representation is as follows

ψn(x, kn) =

{ ∫
L
Gin(x, x(s), kn)αin(s)ds, x ∈ Ωin,∫

L
Gex(x, x(s), kn)αex(s)ds, x ∈ Ωex,

where kn is n-th root of (4) (resonance), αin,ex is a solution of (3).
Taking into account that in a neighborhood of (kinn )2 one has

(kinn )2 − k2 = 2kinn (kinn − k) + kinn o(1− k/kinn ),

it is simple to show that the roots of the equation can be estimated as

c1n
−2/3 < |<λn − λinn | < c2n

−2/3

and
c3n
−1 < |=λn| < c4n

−1,
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where c1, c2, c3, c4 do not depend on n. Let us denote the resonance state corresponding
to the eigenfunction ψn by φn. To prove the completeness of the resonance states in
L2(Ωin), we will use the following theorem.

THEOREM 1 ([25]). If a set {ψn} is complete orthogonal and normalized system
of functions, a system of {φn} is ω-linearly independent and∑

n

‖ψn − φn‖2 <∞,

then the set {φn} forms a basis.

To prove the first condition (linear independence) for the resonance states, we use
the following theorem.

DEFINITION ([25]). Operator T is decomposable in respect to X = M+̇N if

PD(T ) ∈ D(T ), TM ∈M, TN ∈ N,

where P is N -parallel projector onto M .

THEOREM 2 ([25]). Let the spectrum σ(T ) of closed operator T , T : X → X,
contain a bounded part σ′ separated from the rest of the spectrum σ′′, σ′′ = σ \ σ′,
i.e. there exists a simple closed curve Γ such that σ′ ∈ IntΓ, σ′′ ∩ IntΓ = ∅. Then
there exist subspaces M ′,M ′′, X = M ′+̇M ′′, such that T is decomposable in respect
to M ′,M ′′ and σ(TM ′)− σ′, σ(TM ′′)− σ′′ and TM ′ is bounded operator.

Thus, the linear independence for the resonance states takes place due to the fact
that these states are eigenstates for a dissipative operator [2]. It should be mentioned
that an eigenstate of the initial operator can preserve for the perturbed operator (with
line-like window). It takes place if L is a part of a nodal line for this eigenfunction. In
this case, we add such eigenfunction to the set of the resonance states. To come to the
result, we need the asymptotics of λinn . It is given by the well-known Weyl asymptotics
for eigenvalues of the Laplace operator in bounded domain in Rd: λn ∼ n2/d. In
our case d = 3. Taking into account this asymptotics and properties of the curve L
(boundedness), we come to our main theorem:

THEOREM 4. Let Ωin be convex bounded domain with smooth boundary ∂Ωin, L
be smooth bounded curve, L ∈ ∂Ωin. Then, the system of resonance states is complete
in L2(Ωin).
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