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Abstract

This paper proposes a new implementation of the block Kaczmarz algorithm
for solving systems of linear equations by the least squares method. The im-
plementation of the block algorithm is related to solving underdetermined linear
systems. Each iteration of the proposed algorithm is considered as the solution of
a sub-system defined by a specific arrowhead matrix. This sub-system is solved
in an effective way using the direct projection method. In this work we demon-
strate the existence of an optimal partition into equally-sized blocks for the test
problem.

1 Introduction

The projection iterative algorithm was developed by Kaczmarz in 1937 [12], later var-
ious modifications of this method were used in many applications of signal and image
processing. Each equation of the linear system can be interpreted as a hyperplane, and
the solution of the consistent system can be interpreted as the point of intersection of
these hyperplanes. The search for an approximate solution by the Kaczmarz algorithm
is carried out in the directions perpendicular to these hyperplanes. Active discussion of
this algorithm was stimulated by [16], which proposes a randomized version of this al-
gorithm and estimates its rate of convergence. The main purpose of the randomization
of projection method is to provide the speed of convergence regardless of the number
of equations in the system [17]. The block Kaczmarz modification was developed with
the study of the convergence of the random projection algorithm [7, 18]. The idea of
randomization for a block algorithm is discussed in [2, 15, 20]. From the geometric
point of view, the projection is not made onto the hyperplane, but on intersection of
several hyperplanes.
The block algorithm implementation is related with the least squares solution of an

underdetermined system of linear algebraic equations in each iteration. This problem
can be solved using the Moore—Penrose pseudo-inverse. This is a very computationally
complex problem. In this paper, we show that each iteration of the block algorithm is
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144 The Block Kaczmarz Algorithm and Arrowhead Matrices

equivalent to solving a system of equations with a generalized arrowhead matrix. To
solve this system, we propose a special modification of the direct projection method
[4, 22, 23].

2 Related Results

There are two large groups of numerical methods for solving systems of linear algebraic
equations (SLAEs)

Au = f, A ∈ Rm×n, u ∈ Rn, f ∈ Rm.

There are the direct and iterative methods in computational mathematics. Direct
methods for solving linear systems can be classified as follows [6]:

• Orthogonal direct methods (for the case of m = n), characterized by the fact
that the main stages of the method use only orthogonal transformations which
do not change the conditionality of the computational problem, and thus are
computationally stable.

• Methods for solving the system of normal equations, the initial stage of which is
to transform the original system to an equivalent one, in the sense of the least
squares method, using Gauss’left transformation. And the condition number of
the equivalent system increases greatly. The Cholesky decomposition is mainly
used for the solution of these systems.

• Methods of the augmented matrix, the basic idea of which is to transform an
SLAEs into an equivalent augmented consistent system.

As an augmented SLAEs, in this class, the following system is often used [5, 9](
Im×m A
AT On×n

)(
y
u

)
=

(
f
On

)
⇔ Âû = f̂ . (1)

The main drawback of this SLAEs is that the spectral condition number of its matrix is

estimated as k2
(
Â
)

= O
(
k22 (A)

)
, for example [14]. This fact may have a catastrophic

effect on the computational stability in floating-point arithmetic for most of the com-
putational methods if the minimal singular value of A is small. Another example of an
equivalent system (1) can be regarded as an augmented system from [1](

Im×m −A
AT On×n

)(
y
u

)
=

(
Om
AT f

)
. (2)

This system has no advantages over (1), but a class of direct methods has been designed
to solve it, such as special modifications of the algorithms of the so-called ABS class1 . It
should be noted that the system (2) can be considered as one of the classes of so-called
equilibrium systems, the solution of which is important for a variety of applications,

1 It’s the acronym contains the initials of Jozsef Abaffy, Charles G. Broyden and Emilio Spedicato.
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such as [19]. It also points to the often insurmountable diffi culties with computational
stability when implementing the known direct algorithms for solving such systems. The
expediency of iterative SOR (successive over-relaxation) methods is demonstrated in
[8] for solving systems of the type (1) and (2).
In [24] there is offered an augmented system of the type(

ωIm×m A
AT −ωIn×n

)(
y
u

)
=

(
f
On

)
⇔ Âû = f̂ , (3)

where, if both ω2 < εmach and ω > εmach, it is proved that k2
(
Â
)

= k2 (A) in floating-

point arithmetic. The disadvantages of this system include the fact that the matrix of
the system is semi-definite. In [10] there is an effective modification of the projection
iterative algorithm of Kaczmarz for solving this system.
It should be noted that iterative methods, which converge in a finite number of

iterations, can be considered part of the group of direct methods for solving linear sys-
tems, so the difference between the direct and iterative methods for some mathematical
results may not be hard and fast. For example, in [21], it is stated that the classical
iterative method of Kaczmarz for a system with a row-orthogonal matrix converges in
a finite number of iterations, and each uk is a solution of the first k equations SLAEs,
where k = 1, 2, . . . , n. The authors of that work offer a recursive modification of Kacz-
marz’s method; its iterative process includes the stages of the reduction of the matrix
of the original system to row-orthogonal form by implicit decomposition into a product
of a lower triangular and an orthogonal matrix (the LQ decomposition). This idea is
also implemented in one of the ABS methods—Huang’s method [1]; the same method
can be successfully applied to the solution of the system (2).
According to the classification of Abaffi and Spedikatto [1], there are other three

classes of direct methods for solving SLAEs:

• The first class consists of methods whose structure is such that during solution,
the initial system is transformed into a system with smaller rank, for example, in
Gaussian’s elimination, every step eliminates one equation of the system.

• The second class includes methods that convert the matrix of the original SLAEs
to another matrix. Solving SLAEs with the other matrix is reached in a simple
way, for example, by reduction of the matrix to triangular or diagonal form.

• A third class of methods is such that the matrix of the system does not change,
but some supporting matrix is modified. Examples of this class include ABS
algorithms.

The so-called direct projection method [4] relates to the third class. It is based on
the Sherman—Morrison formula and it is equal to Gaussian elimination has been proved
[22]. It is important to note that a computationally stable implementation of the direct
projection method requires the choice of the leading element (or pivot), because of this
equivalence.
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3 Direct Projection Method

Consider a system of linear algebraic equations

Au = f, A ∈ Rn×n, u ∈ Rn, f ∈ Rn, det (A) 6= 0. (4)

Obviously, the first k equations of the system (4) can be written as

(
Āk,k Āk,n−k

)( ūk
ūn−k

)
= f̄k ⇒ Āk,kūk + Āk,n−kūn−k = f̄k,

where Āk,k ∈ Rk×k are the minors of the matrix A of order k, ūk = (u1, u2, . . . , uk),
f̄k = (f1, f2, . . . , fk) and k = 1, 2, . . . , n. Then, the direct projection method is deter-
mined by the following recurrent procedure [22, 23]:

u0 = θn, P0 = In×n, δk+1 = aTk+1Pkek+1,

uk+1 = uk + Pkek+1
(
fk+1 − aTk+1uk

)
δ−1k+1, (5)

Pk+1 = Pk −
(
Pkek+1a

T
k+1Pk

)
δ−1k+1,

where θn is the n-dimensional zero vector, In×n is the n×n identity matrix, [·]T signifies
the transpose, aTk+1 is a row of the matrix A, and k = 0, 1, . . . , n − 1. To successfully
complete this method, as with Gauss’method, it is necessary that all the principal
minors of the matrix A be nonsingular, i.e.,

det
(
Āk,k

)
6= 0, ∀k = 1, 2, . . . , n. (6)

If special structure of the matrix Pk is ignored, the number of arithmetic operations of
the direct projection method is estimated to be O

(
2n3
)
, but [22] proposed that Pk for

k = 1, 2, . . . , n

Pk =

(
Ok×k −Ā−1k,kĀk,n−k

O(n−k)×k I(n−k)×(n−k)

)
, (7)

where Pk ∈ Rn×n, Ok×k is a k × k zero matrix. We further give more details about
the direct projection method referred at [22].

THEOREM 1 ([22]). Let us consider a matrix

Ak =

(
Āk,k Āk,n−k

O(n−k)×k O(n−k)×(n−k)

)
,

where Āk,k ∈ Rk×k, k < n and rank
(
Āk,k

)
= k.

Then the limit
PAk

= lim
α→0

(Ak + αIn×n)
−1
α

for all |α| < σmin
(
Āk,k

)
exist and PAk

= Pk.
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THEOREM 2 ([22]). Let’s assume that all principal minors of matrix A are nonsin-
gular, i.e. det

(
Āi,i

)
6= 0, ∀i = 1, 2, . . . , n, and let us consider the recurrence equations

uk+1 = uk + gkk+1
(
fk+1 − aTk+1uk

)
δ−1k+1, u

0 = θn,

Pk+1 = Pk −
(
gkk+1a

T
k+1Pk

)
δ−1k+1, P0 = In×n,

where

Pk =
(
gk1 . . . gkn

)
∈ Rn×n, δk+1 = aTk+1g

k
k+1 for k = 0, 1, . . . , n− 1.

Then the (6) is a necessary and suffi cient condition for δk+1 6= 0, ∀k = 0, 1, . . . , n− 1
and wherein the un = A−1f is a solution of system (4). The proof of this theorem is
demonstrated in [22] and uses a famous Sherman—Morrison formula and Theorem 1.

The first k of columns of the matrix Pk are zero, so their use in arithmetic calcula-
tions is redundant, and finally, the number of multiplication needed for the direct pro-
jection method is estimated by O

(
2
3n

3
)
, which is similar to the complexity of Gaussian

elimination, for example [9]. Assuming that A is dense, for Pk, on each iteration, it is
enough to store an array of (n− k) (k + 1) elements. It is important to note that solv-
ing problems with the same matrix A and various right parts, it may be appropriate
to calculate and store all the Pk in memory before the main computational process. In
this case, the complexity of the solution of the problem can be reduced to O

(
2
3n

2
)
.

See Table 2 in the Conclusion, for a definition of this algorithm inMatlab language
and more see in [11].

4 The Block Kaczmarz Algorithm

Consider a consistent SLAEs

Au = f, A ∈ Rm×n, u ∈ Rn, f ∈ Rm, m ≥ n

and its block form

A =


B1
B2
...
Bp

 , f =


d1
d2
...
dp

 , Bi ∈ Rl×n, di ∈ Rl, (8)

where p is the number of blocks, l is the number of rows in the block Bi, m = l · p, and

Bi =


aT(i−1)·l+1
aT(i−1)·l+2

...
aT(i−1)·l+l

 = (bi,1, bi,2, . . . , bi,n) , di =


f(i−1)·l+1
f(i−1)·l+2

...
f(i−1)·l+l

 , i = 1, 2, . . . , p,

where bi,j ∈ Rl is the column of the matrix Bi and j = 1, 2, . . . , n.
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Then the block Kaczmarz algorithm can be written in the form [18, 7]

uk+1 = uk −B+j(k)
(
Bj(k)u

k − dj(k)
)
, (9)

j (k) = k mod p+ 1,

where B+j(k) is the Moore-Penrose pseudo-inverse of Bj(k) and k = 0, 1, 2 . . ., j (k) = 1,2,
. . ., p, 1, 2, . . ., p, . . . for the circle control scheme.
We’ll show that one iteration of this type is equivalent to the solution of SLAEs

with an arrowhead matrix(
In×n BTj(k)
Bj(k) Ol×l

)(
uk+1

yk+1

)
=

(
uk

dj(k)

)
, j (k) = k mod p+ 1. (10)

THEOREM 3. The iterations of the form (9) are equivalent to iterations of the
form (10).

PROOF. We write (10) as a system of two equations{
uk+1 +BTj(k)y

k+1 = uk,

Bj(k)u
k+1 = dj(k).

(11)

Eliminating uk+1 = uk −BTj(k)yk+1 in (11), we get

−Bj(k)BTj(k)yk+1 = dj(k) −Bj(k)uk. (12)

We multiply the left and right parts from the left (12) by the matrix B+j(k), and get

−B+j(k)Bj(k)B
T
j(k)y

k+1 = B+j(k)
(
dj(k) −Bj(k)uk

)
. (13)

From the Moore-Penrose conditions

Bj(k)B
+
j(k)Bj(k) = Bj(k) and B

+
j(k)Bj(k) =

(
B+j(k)Bj(k)

)T
,

from which it follows directly that

BTj(k) =
(
Bj(k)B

+
j(k)Bj(k)

)T
=
(
B+j(k)Bj(k)

)T
BTj(k) = B+j(k)Bj(k)B

T
j(k).

So, (13) can be written in the form

−BTj(k)yk+1 = B+j(k)
(
dj(k) −Bj(k)uk

)
. (14)

The first equation of the system (11) is BTj(k)y
k+1 = uk − uk+1, and in virtue of

(14), we get the final recurrent equation

uk+1 = uk −B+j(k)
(
Bj(k)u

k − dj(k)
)
.
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Our proof is obvious enough. Note that the representation (10) was given in [13] for
the case when the dimension of the block l = 1.

Consider the matrix of the system (10)

B̂k =

(
In×n BTk
Bk Ol×l

)
,

for which, for example [14], the spectral condition number is

k2

(
B̂k

)
=

1
2 +

√
1
4 + σ2max (Bk)

− 12 +
√

1
4 + σ2min (Bk)

.

It should be noted that for small values of the condition number k2
(
B̂k

)
, it may be

advantageous to use iterative methods, for example [8], to solve the system (10).

5 Proposed Algorithm

For solving SLAEs (10) at each iteration it is proposed to use the direct projection
method. Consider the first n of iterations of the direct projection method for solving
(10):

uk+1i+1 = uk+1i + P
j(k)
i ei+1

(
uk (i+ 1)− uk+1i (i+ 1)− bTj(k),i+1yk+1i

)(
δ
j(k)
i+1

)−1
, (15)

where i = 0, 1, . . . , n − 1, bTj(k),i+1 is the transposed i + 1th column of Bj(k), and

uk (i+ 1) is the i+1th component of the vector uk. Please note that in this section, we
use the i-index as a counter for the direct projection algorithm iterations and k-index
as a counter for Kaczmarz steps.

THEOREM 4. Suppose that the components of the vector of the initial approxi-
mation satisfy the condition of consistency

uk+10 = uk −BTj(k)yk+10 , (16)

then
uk+1i+1 ≡ u

k+1
i , i = 0, 1, . . . , n− 1.

PROOF. The proof of this theorem is omitted in this article: it may be easily
carried out, for example, by the method of mathematical induction.

It should be noted that a similar trick was also used in the context of the total least
square problem, for more, see in [23]. As a result, when the matching conditions (16)
are fulfilled, the first n iterations of the direct projection method for solving (10) can
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be omitted. From (7) and the fact that the main minor of the matrix of the system
(10) of order n is the identity matrix, one has

Pn =

(
On×n −BTj(k)
Ol×n Il×l

)
.

Consider the ith iteration of the projection method (i = n, n + 1, . . . , n + l − 1).
Then

uk+1i+1 = uk+1i + P
j(k)
i ei+1

(
dj(k) (i+ 1− n)− aT(j(k)−1)·l+i−n+1uk+1i

)(
δ
j(k)
i+1

)−1
. (17)

Noting that the first n iterations are redundant, we introduce a new iteration numbering
of the direct projection method:

ω = i− n = 0, 1, . . . , l − 1, i = n, n+ 1, . . . , n+ l − 1.

Then the direct projection method for the solution of (10) is

uk+10 = uk, yk+10 = θl, P0 =

(
On×n −BTj(k)
Ol×n Il×l

)
,

δ
j(k)
ω+1 =

(
aT(j(k)−1)·l+ω+1 θTl

)
Pωen+ω+1,

uk+1ω+1 = uk+1ω + P j(k)ω en+ω+1dj(k) (ω + 1)− aT(j(k)−1)·l+ω+1uk+1ω

(
δ
j(k)
ω+1

)−1
,

Pω+1 = Pω − Pωen+ω+1
(
aT(j(k)−1)·l+ω+1 θTl

)
Pω

(
δ
j(k)
ω+1

)−1
, (18)

ω = 0, 1, . . . , l − 1.

Upon completion of the iteration of the direct projection method, one needs to put
uk+1l = uk+1.

The complexity of the solution of (10), taking into account the special structure of
the matrix Pi, can be estimated as O

(
1
6 l
3 + n2l

)
, where l is the number of rows in the

block Bi ∈ Rl×n, i = 1, 2, . . . , p.

6 Limitations of the Proposed Algorithm

The algorithm, in theory, was proposed for only consistent and overdetermined sys-
tems. But in practice, this algorithm could apply for solving inconsistent systems also,
especially in the randomized form. If we want to solve underdetermined systems we
can apply the pre-conversion to the regularized augmented system (3) with the small
value of the regularization parameter, for more, see in [24].
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7 Numerical Example

Consider the matrix Bk = {ai,j} ∈ Rl×n, where ai,j ∼ U
(
−
√

3
n ,
√

3
n

)
has a continuous

uniform distribution on the segment
[
−
√

3
n ,
√

3
n

]
, and E (ai,j) = 0, E

(
a2i,j
)

= 1
n ,

l ≤ n, rank (Bk) = l, E
∥∥∥aT(k−1)·l+1∥∥∥ = 1,

k = 1, 2, . . . p, i = (k − 1) l + 1, (k − 1) l + 2, . . . , (k − 1) l + l and j = 1, 2, . . . n.

Notice that the condition l ≤ n is used only for this particular task, and in general it
is not a limitation of the proposed algorithm. Then consider the matrix A ∈ Rm×n,
whose block rows are Bk ∈ Rl×n, k = 1, 2, . . . , p, m = l · p, as in (8), and which satisfy
the above mentioned conditions. In [3] (see the limit conditions of its Theorem 2),
estimates are made for the minimum and maximum eigenvalues of Sk = BkB

T
k

limλmin (Sk) =

(
1−

√
l

n

)2
, limλmax (Sk) =

(
1 +

√
l

n

)2
. (19)

Figure 1: Black points: on the abscissa axis is
(

1−
√

l
n

)2
, on the ordinate axis

is
(

1 +
√

l
n

)2
. Gray points: on the abscissa axis is λmin (Sk), on the ordinate

axis is λmax (Sk). The figure has been plotted for all values n = 10, 11, . . . , 400 and
l = 10, 11, . . . n.
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We give Fig. 1 as an illustration of these limit equations.Considering (19), an ap-
proximate estimate is ‖A‖2 ≈ 1 +

√
m
n and

σ2min (Bk) ≈
(

1−
√
l

n

)2
, σ2max (Bk) ≈

(
1 +

√
l

n

)2
. (20)

Figure 2: Dependence of log10
∥∥u∗ − uk∥∥2 from the iteration number k (on the abscissa

axis) for 100 realizations. The dotted black line shows the error estimate based on (21).
The dotted white line shows the exact error based on [2].

Right-hand side vector of the test system of equations can be built by any method
ensuring the consistency of the system, for example, if

f = Au∗, where u∗ = (u1, u2, . . . , un)

such as ‖u∗‖2 = 1. As a stopping criterion for the iterative algorithm, we will use the
rule

∥∥u∗ − uKstop
∥∥2 ≤ 10−q, where Kstop is a stopping number. Note that the estimate

of the convergence rate that is used for a system of this type is referred at [15], and
take into consideration that the authors treat a consistent system of linear algebraic
equations, and the initial approximation u0 = θ

E
∥∥u∗ − uk∥∥2 ≤ (1− σ2min (A)

βp

)k
‖u∗‖2 , (21)

where max
{
σ2max (Bj)

}p
j=1
≤ β, and the selection of the block in each iteration is
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determined randomly: P (j (k) = i) = 1
p , i = 1, 2, . . . , p. It follows that

K̃stop =
−q − log10 ‖u∗‖

2

log10

(
1− σ2min(A)

βp

) . (22)

A software implementation of these numerical simulations is presented in [11]. The
logarithm of the error versus the iteration number is plotted for p = 182 in Fig. 2, from
which the pessimistic estimate (21) is obvious for this problem.

Conclusion

Analyzing the results of the numerical experiment in Table 1, it should be noted that
the optimal number of blocks for the research task, in terms of the total time of the
algorithm, is p = 182. As noted above, the complexity of each iteration of the proposed

l 1 2 4 7 8 13 · · · 364
Kstop 109032 57020 30247 16244 13980 8750 · · · 118
β 1.09 1.13 1.18 1.24 1.26 1.34 · · · 3.4

K̃stop 368952 190996 100204 60298 98015 34977 · · · 3149
p 728 364 182 104 91 56 · · · 2

Time 11.0 8.95 8.88 9.46 9.31 11.23 · · · 54.8

Table 1: Results averaged over 100 realizations of the numerical example for m = 728
and n = 512, where Time is the average time of the algorithm in seconds until reaching
the prescribed accuracy when q = 8. The equation (20) was used to estimate the
parameter β.

algorithm is estimated as O
(
1
6 l
3 + n2l

)
, from which it can be concluded that it is

appropriate to choose p = m
l such that l < n. In this way, we maintain a quadratic

growth of the complexity of the calculations per iteration. It is important to note that
the system of linear equations with the same matrix Bj(k) and various right-hand parts
is solved at each iteration, therefore, it is necessary to carry out a direct computation
of Pω only once for each matrix Bj(k), and they can then be saved in memory for
reuse. This trick will significantly reduce the number of arithmetic operations in each
iteration, but the requirements for RAM space will increase substantially.
In the present paper, one iteration of Kaczmarz’s block algorithm has been presented

for the task of solving a system of linear equations with a special arrowhead matrix.
But not only a direct projection method can be employed to solve such a system, so
can, for example, Huang’s algorithm [1]. The particular interest for computational
mathematics is the use of a direct projection method for solving linear systems with
an arrowhead matrix.

Remarks. According to the numerical experiment, the obtained estimate of the
number of iterations before stopping, using the expression (22), is too pessimistic; in
[2], the authors note this fact and offer an accurate estimate for E

∥∥u∗ − uk∥∥2. It would
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be extremely useful to generalize the results of [2] to the block randomized algorithm:
in this case, it is analytically possible to obtain the optimum value for p using the
estimate of the algorithmic complexity.
The developed algorithm in its randomized modification, as in [16], taking into

account the results of [15, 20], can be applied also to the inconsistent case.
It should be noted that the direct projection method may have an effective imple-

mentation for solutions of augmented systems of the form (1), (2), and (3). Just to
show the trick for each of these systems, that is used in this paper (see the Theorem 4).
The trick allow us to accept that one part of the augmented system is redundant. It
can be the object of further research, particularly in the context of a direct projection
method with pivoting.

Acknowledgment. Our special thanks to Prof. G. A. Kalyabin for English proof-
reading and editing.

Projection methods
dpmsolve Direct Projection Method (DPM) as in (5).
pblockkaczmarz Block Kaczmarz Algorthm based on solving linear

systems with arrowhead matrices. Cyclic Con-
trol.

randpblockkaczmarz Same as above, but with randomized control
schemes from [15, 16].

Demos
dpmsolve_demo Sample for DPM with pivoting.
pblockkaczmarz_demo Sample contains comments for equivalence Theo-

rem 3.
randpblockkaczmarz_demo The demo for standardized matrix. Example

plotted in Fig. 1.

Table 2: Overview of Matlab Package [11].
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