
Applied Mathematics E-Notes, 17(2017), 47-57 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Reconstruction Of Bivariate Cardinal Splines Of
Polynomial Growth From Their Local Average

Samples∗

Yugesh Shanmugam†, Devaraj Ponnaian‡

Received June 18 2016

Abstract

We analyse the following local average sampling problem for two variables:
Let h be a nonnegative function supported in the rectangle

[
− 1
2
, 1
2

]
×
[
− 1
2
, 1
2

]
.

Given a sequence of samples {yij}i,j∈Z, find a bivariate spline f(x, y) such that
(f ? h)(i, j) = yij . It is shown that this problem has infinitely many solutions.
Further, under some realistic conditions on h it is shown that the above said
problem has unique solution when both samples {yij} and the spline f are of
polynomial growth.

1 Introduction

The extension of classical Whittaker-Shannon-Kotel’nikov sampling formula for k-
dimension may be stated as follows [8, 6, 7]: Any function f bandlimited to the k-
dimensional cube [− 12 ,

1
2 ]k can be reconstructed from its sequence of samples {f(n)}n∈Zk

using the formula

f(t1, t2, . . . , tk) =
∑
α∈Zk

f(α)sinc(t1 − α1)sinc(t2 − α2) . . . sinc(tk − αk),

where the sinc function is defined by sinc(x) =
sin(x)

x
. Although the bandlimited con-

dition is eminently useful, it is not always realistic, since a bandlimited signal is of
infinite duration. It is natural to investigate other signal classes for which a sampling
theorem holds. The reconstruction has been investigated for non-bandlimited functions
in [1, 2, 5, 6, 7, 8, 9, 10]. In this paper, we consider the class of bivariate splines of
polynomial growth.
The B-splines with equally spaced knots in two variables is defined [3, 4] as

βd1d2(x, y) = βd1(x)βd2(y),
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48 Reconstruction of Bivariate Cardinal Splines

where βd is the cardinal central B-spline of degree d in single variable which is given
by

βd := χ[− 1
2 ,

1
2 ]
? . . . ? χ[− 1

2 ,
1
2 ]
, (d+ 1 terms)

and ? denotes the convolution. βd1d2 is a tensor-product of two B-splines and its
piecewise pieces are separated by a rectangular partition. Let Sd1,d2 be the class of
functions f(x, y) satisfying the following properties:

1. The d1d2 partial derivatives
∂u+v

∂xu∂yv
f(x, y), 0 ≤ u ≤ d1 − 1, 0 ≤ v ≤ d2 − 1 are

continuous in the entire plane R2.

2. Let Πx,y denote set of all polynomials in x and y of degree ≤ (d1 + d2), i.e.,

Πx,y =

{
d1∑
u=0

d2∑
v=0

auvx
uyv : auv ∈ R

}
.

In each square [i− 1, i]× [j− 1, j], f(x, y) ∈ Πx,y for both d1 and d2 odd. If d1 is
odd and d2 is even, then in each square [i−1, i]× [j+ 1

2 −1, j+ 1
2 ], f(x, y) ∈ Πx,y.

In each square [i+ 1
2 − 1, i+ 1

2 ]× [j− 1, j], f(x, y) ∈ Πx,y for d1 even and d2 odd.

Also, when d1 and d2 are even, then in each square [i+ 1
2−1, i+ 1

2 ]×[j+ 1
2−1, j+ 1

2 ],
f(x, y) ∈ Πx,y.
We note that Πx,y depends on (d1 + 1)(d2 + 1) parameters and we can write

Sd1,d2 =

f(x, y) =
∑
i∈Z

∑
j∈Z

aijβd1(x− i)βd2(y − j) : aij ∈ R

 .

2 Bivariate Cardinal Spline Interpolation

The bivariate cardinal spline interpolation problem defined in [10] is as follows: Given
a double sequence {yij}i,j∈Z of real numbers, find a bivariate spline f ∈ Sd1,d2 such
that

f(i, j) = yij , i, j ∈ Z. (1)

It can be easily checked that for d1 = d2 = 1, this problem has a unique solution.

LEMMA 1. Let d1, d2 > 1. Then given a double sequence {yij}i,j∈Z of real numbers,
there are infinitely many bivariate splines f ∈ Sd1,d2 such that f(i, j) = yij , for i, j ∈ Z.
Moreover, the set of all such solutions in Sd1,d2 form a linear manifold of dimension
(d1 + 1)(d2 + 1)− 4 when both d1, d2 are odd or d1 is odd and d2 is even or d1 is even
and d2 is odd and of dimension (d1 + 1)(d2 + 1)− 3 when both d1, d2 are even.

PROOF. Case (i): d1, d2 are odd. In this case every f(x, y) ∈ Sd1,d2 can be uniquely
represented in the form

f(x, y) = P (x, y) +
∑
u>0

∑
v>0

auv(x−u)d1+ (y− v)d2+ +
∑
u≥0

∑
v≥0

a−u−v(−x−u)d1+ (−y− v)d2+ ,
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where P (x, y) ∈ Πx,y, auv are constants, and x+ := max(0, x). Since f(x, y) = P (x, y)
in [0, 1] × [0, 1], we have the relations, P (0, 0) = y00, P (1, 0) = y10, P (0, 1) = y01
and P (1, 1) = y11. The coeffi cients auv are uniquely determined by the interpolation
conditions f(i, j) = yij , i, j ∈ Z. Therefore f(x, y) linearly depends on (d1 + 1)(d2 +
1)− 4 parameters in P (x, y).

Case(ii): d1 is odd and d2 is even. Every f(x, y) ∈ Sd1,d2 has a unique representation
of the form

f(x, y) = P (x, y) +
∑
u>0

∑
v>0

auv(x− u)d1+

((
y +

1

2

)
− v
)d2
+

+
∑
u≥0

∑
v≥0

a−u−v(−x− u)d1+

(
−
(
y +

1

2

)
− v
)d2
+

.

Therefore if f(x, y) satisfies equation (1), then P (0, 0) = y00, P (1, 0) = y10, P (0, 1) =
y01 and P (1, 1) = y11. As in the previous case the coeffi cients auv are calculated from
the interpolation conditions 1. Hence f(x, y) linearly depends on (d1 + 1)(d2 + 1)− 4
parameters.
Case(iii): d1 is even and d2 is odd. In this case every f(x, y) ∈ Sd1,d2 can be

uniquely written in the form

f(x, y) = P (x, y) +
∑
u>0

∑
v>0

auv

((
x+

1

2

)
− u
)d1
+

(y − v)d2+

+
∑
u≥0

∑
v≥0

a−u−v

(
−
(
x+

1

2

)
− u
)d1
+

(−y − v)d2+ .

In this case also P (0, 0) = y00, P (1, 0) = y10, P (0, 1) = y01 and P (1, 1) = y11. As in
the previous cases, f(x, y) linearly depends on (d1 + 1)(d2 + 1)− 4 parameters.

Case(iv): Both d1 and d2 are even. Every f(x, y) ∈ Sd1,d2 has unique representation
of the form

f(x, y) = P (x, y) +
∑
u>0

∑
v>0

buv

(
(x+

1

2
)− u

)d1
+

(
(y +

1

2
)− v

)d2
+

+
∑
u≥0

∑
v≥0

b−u−v

(
−
(
x+

1

2

)
− u
)d1
+

(
−
(
y +

1

2

)
− v
)d2
+

,

where P (x, y) ∈ Πx,y. Then P (x, y) satisfies the relations P (0, 0) = y00, P (1, 0) = y10
and P (0, 1) = y01. Thus three coeffi cients in P (x, y) can be uniquely found from these
relations. The coeffi cients buv are uniquely determined using the conditions f(i, j) =
yij , i, j ∈ Z. Therefore, in this case f(x, y) linearly depends on (d1 + 1)(d2 + 1) − 3
parameters.

In order to obtain uniqueness of solution Schoenberg [10] has applied the following
power growth condition on the bivariate cardinal spline and the bi-infinite samples:

Sγ = {f(x, y) ∈ Sd1,d2 : f(x, y) = O(|x|+ |y|+ 1)γ},
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Dγ = {{yij}i,j∈Z : yij = O(|i|+ |j|+ 1)γ}.

Further, he has shown in [10] that for γ ≥ 0 and for a given double sequence of real
numbers {yij}i,j∈Z ∈ Dγ , there exists a unique bivariate spline f ∈ Sγ such that
f(i, j) = yij , i, j ∈ Z.
In practice, the available samples are not always exact. The samples of f are the

local averages of the function f at (m,n). i.e.,∫ n+ 1
2

n− 1
2

∫ m+ 1
2

m− 1
2

f(x, y)h(n− x,m− y)dxdy,

where h is suitable weight function which reflects the characteristic of the measurement
process.
Average sampling problem:
Given a sequence of real numbers{yij}i,j∈Z , find a bivariate spline f ∈ Sd1,d3 such

that f ? h(i, j) = yij , i, j ∈ Z, where the averaging function h satisfies

supp(h) ⊆
[
−1

2
,

1

2

]
×
[
−1

2
,

1

2

]
and h(x, y) ≥ 0, (2)

0 <

∫ 0

− 1
2

∫ 0

− 1
2

h(x, y)dxdy <∞ and 0 <

∫ 1
2

0

∫ 1
2

0

h(x, y)dxdy <∞. (3)

We show that this average sampling problem has infinitely many solutions for every
d. Further, by applying the polynomial growth conditions as that of [10], the uniqueness
is obtained.

LEMMA 2. If the averaging function h satisfies (2) and (3), then for a given
double sequence of real numbers {yij}i,j∈Z, there are infinitely many bivariate splines
f ∈ Sd1,d2 such that

f ? h(i, j) = yij , i, j ∈ Z. (4)

The set of such solutions in Sd1,d2 form a linear manifold of dimension (d1 + 1)(d2 + 1)
if d1, d2 are odd and of dimension (d1 + 1)(d2 + 1)− 1 for the other three cases.

PROOF. Case(i): Both d1 and d2 are odd. In this case, the functions f ∈ Sd1,d2
can be uniquely represented in the form

f(x, y) = P (x, y) +
∑
u>0

∑
v>0

auv(x− u)d1+ (y− v)d2+ +
∑
u≥0

∑
v≥0

a−u−v(−x− u)d1+ (−y− v)d2+

with appropriate coeffi cients auv and P (x, y) = f(x, y) in [0, 1]×[0, 1]. If f(x, y) satisfies
(4), then f ? h(1, 1) = y1,1. i.e.,

h ? f(1, 1) = h ? P (1, 1) + a11

∫ 3
2

1
2

∫ 3
2

1
2

h(1− x, 1− y)(x− 1)d+(y − 1)d+dxdy
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and
∫ 3

2
1
2

∫ 3
2
1
2

h(1− x, 1− y)(x− 1)d1+ (y− 1)d2+ dxdy > 0. From this the coeffi cient a11 can

be uniquely determined such that f ? h(1, 1) = y1,1. Similarly the other coeffi cients aij
can be uniquely determined using the other conditions of f ? h(i, j) = yi,j . Thus the
solutions linearly depends on (d1 + 1)(d2 + 1) parameters.
Case(ii): d1 is odd and d2 is even. Then every f(x, y) ∈ Sd1,d2 can be uniquely

written in the form

f(x, y) = P (x, y) +
∑
u>0

∑
v>0

auv(x− u)d1+

(
(y +

1

2
)− v

)d2
+

+
∑
u≥0

∑
v≥0

a−u−v(−x− u)d1+

(
−(y +

1

2
)− v

)d2
+

.

If f(x, y) satisfies equation (4), then in this case

h ? f(0, 0) =

∫ 1
2

−1
2

∫ 1
2

−1
2

h(−x,−y)P (x, y)dxdy.

The coeffi cients auv can be found from the conditions (4). Hence f(x, y) linearly
depends on (d1 + 1)(d2 + 1)− 1 parameters.

Case(iii): d1 is even and d2 is odd. In this case every function f ∈ Sd1,d2 has a
unique representation of the form

f(x, y) = P (x, y) +
∑
u>0

∑
v>0

auv

(
(x+

1

2
)− u

)d1
+

(y − v)d2+

+
∑
u≥0

∑
v≥0

a−u−v

(
−(x+

1

2
)− u

)d1
+

(−y − v)d2+ .

In this case the condition (4) implies P (x, y) satisfies

h ? f(0, 0) =

∫ 1
2

−1
2

∫ 1
2

−1
2

h(−x,−y)P (x, y)dxdy.

Therefore f(x, y) linearly depends on (d1 + 1)(d2 + 1)− 1 coeffi cients.
Case(iv): Suppose that both d1 and d2 are even. Then every function f ∈ Sd1,d2

can be uniquely represented in the form

f(x, y) = P (x, y) +
∑
u>0

∑
v>0

buv

(
(x+

1

2
)− u

)d1
+

(
(y +

1

2
)− v

)d2
+

+
∑
u≥0

∑
v≥0

b−u−v

(
−(x+

1

2
)− u

)d1
+

(
−(y +

1

2
)− v

)d2
+

(5)
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with appropriate coeffi cients buv. Since

h ? f(0, 0) =

∫ 1
2

−1
2

∫ 1
2

−1
2

h(−x,−y)f(x, y)dxdy

=

∫ 1
2

−1
2

∫ 1
2

−1
2

h(−x,−y)P (x, y)dxdy

and f(x, y) satisfies h ? f(0, 0) = y00, the solutions f(x, y) linearly depends on (d1 +
1)(d2 + 1)− 1 parameters.

3 Average Sampling Theorem

THEOREM 1. [Main Theorem] Let d1, d2 ∈ N and h(x, y) = h1(x)h2(y) satisfy the
conditions (2) and (3). Then for a given double sequence of real numbers {yij}i,j∈Z ∈
Dγ , there exists a unique bivariate spline f ∈ Sγ such that

f ? h(i, j) = yij i, j ∈ Z.

In order to prove this theorem, we introduce the vector

Gh(z, w) = (Gh1,d1(z), Gh2,d2(w)),

where Gh1,d1(z) and Gh2,d2(w) are Laurent polynomials defined by

Gh1,d1(z) =

∫ 1
2

−1
2

h1(x)Υz,d1(x)dx,

Gh2,d2(w) =

∫ 1
2

−1
2

h2(y)Υw,d2(y)dy,

Υz,d1(x) =
∑
i∈Z

z−iβd1(i− x),

Υw,d2(y) =
∑
j∈Z

w−jβd2(j − y).

For the proof we also need the following properties [9]:

LEMMA 3 ([9]). For d1 ∈ N, n ∈ Z and z ∈ C \ {0} we have

(i) Υz−1,d1(−x) = Υz,d1(x).

(ii) Υz,d1(x+ n) = z−nΥz,d1(x).

(iii) Υ′z,d1+1(x) = (1− z)Υz,d1(x+ 1
2 ).

(iv) Υ−1,d1(x) is even, Υ−1,d1(
1
2 ) = 0 and Υ−1,d1(x) > 0 for x ∈ (−12 ,

1
2 ).
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THEOREM 2. Consider the linear space∧
:= {f(x, y) ∈ Sd1,d2 : h ? f(i, j) = 0 ∀ i, j ∈ Z} .

If z1, z2, . . . , zp are the simple roots of Gh1,d1(z) and w1, w2, . . . , wq are the simple roots
of Gh2,d2(w) then the set of functions

{Υz−1r ,d1
·Υw−1s ,d2

: 1 ≤ r ≤ p, 1 ≤ s ≤ q}

forms a basis of
∧
.

PROOF. We have to find l linearly independent functions in
∧
related to the roots

of Gh(z, w). The dimension of
∧
is

l :=


(d1 + 1)(d2 + 1) if both d1 and d2 are odd,
(d1 + 1)(d2) if d1 is odd and d2 are even,
d1 (d2 + 1) if d1 is even and d2 are odd,
d1d2 if both d1 and d2 are even,

Now

Υz−1r ,d1
·Υw−1s ,d2

? h(i, j)

= Υz−1r ,d1
? h1(i) ·Υw−1s ,d2

? h2(j)

=

∫ 1
2

− 1
2

Υz−1r ,d1
(i− u)h1(u)du ·

∫ 1
2

− 1
2

Υw−1s ,d2
(i− v)h2(v)dv

= zir

∫ 1
2

− 1
2

Υz−1r ,d1
(−u)h1(u)du · wjs

∫ 1
2

− 1
2

Υw−1s ,d2
(−v)h2(v)dv

= zir

∫ 1
2

− 1
2

Υz−1r ,d1
(u)h1(u)du · wjs

∫ 1
2

− 1
2

Υw−1s ,d2
(v)h2(v)dv

= zirGh1,d1(zr) · wjsGh2,d2(ws)
= 0 for r = 1, 2, . . . , p and s = 1, 2, . . . , q.

Now we prove Υz−1r ,d1
·Υw−1s ,d2

are linearly independent. For, suppose that

p∑
r=1

q∑
s=1

crs

[
Υz−1r ,d1

(x) ·Υw−1s ,d2
(y)
]

= 0.

Then
p∑
r=1

q∑
s=1

crs

∑
i∈Z

zirβd1(i− x)
∑
j∈Z

wjsβd2(j − y)

 = 0.

i.e., ∑
i∈Z

∑
j∈Z

[
p∑
r=1

q∑
s=1

crsz
i
rw

j
s

]
βd1(i− x)βd2(j − y) = 0.
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As βd1(i − x)βd2(j − y) are linearly independent,
∑p
r=1

∑q
s=1 crsz

i
rw

j
s = 0 ∀ i, j ∈

Z. The above system is a set of linear equations in cij with coeffi cient matrix, the
Vandermonde’s matrix. Since the Vandermonde determinant is not zero, crs = 0.
Therefore the functions Υz−1r ,d1

·Υw−1s ,d2
form a basis of

∧
.

THEOREM 3. Suppose that d1, d2 ∈ N, γ ≥ 0 and h is in the separable form
satisfying conditions (2) and (3). If the roots of Gh1,d1(z),Gh2,d2(w) are simple and no
roots on the unit circles |z| = 1,|w| = 1 respectively, then for a given double sequence
of real numbers {yij}i,j∈Z ∈ Dγ the problem, of finding a bivariate spline f ∈ Sγ
satisfying

f ? h(i, j) = yij , i, j ∈ Z

has a unique solution. The solution is of the form

f(x, y) =
∑
i∈Z

∑
j∈Z

yijLh1,d1(x− i)Lh2,d2(y − j),

where Lh1,d1(x) =
∑
i∈Z ciβd1(x − i), Lh2,d2(y) =

∑
j∈Z djβd2(y − j), ci and dj are

coeffi cients of the Laurent expansion of G−1h1,d1(z) and G−1h2,d2(w) respectively. The
spline Lh1,d1 and Lh2,d2have exponential decay.

PROOF. The coeffi cients ci, dj are given by C(z) = G−1h1,d1(z) =
∑
i∈Z ciz

−i and
D(w) = G−1h2,d2(w) =

∑
j∈Z djw

−j . These coeffi cients have exponential decay. There-

fore ci = O(φ
|i|
h1,d1

), dj = O(φ
|j|
h2,d2

), where φh1,d1 , φh2,d2 ∈ (0, 1). Hence Lh1,d1 =

O(φ
|x|
h1,d1

) and Lh2,d2 = O(φ
|y|
h2,d2

). For |x| > 2, |y| > 2 consider,

∑
i∈Z
∑
j∈Z(|i|+ |j|+ 1)γφ

|x−i|
h1,d1

φ
|y−j|
h2,d2

(|x|+ |y|+ 1)γ

≤
∑
i∈Z
∑
j∈Z(|x− i+ 1|+ |y − j + 1|+ 1)γφ

|i|−1
h1,d1

φ
|j|−1
h2,d2

(|x|+ |y|+ 1)γ

≤
∑
i∈Z

∑
j∈Z

(1 + |i|+ |j|)γφ|i|−1h1,d1
φ
|j|−1
h2,d2

<∞.

Therefore from the order of yij we get

f(x, y) =
∑
i∈Z

∑
j∈Z

yijLh1,d1(x− i)Lh2,d2(y − j)

=
∑
i∈Z

∑
j∈Z

(|i|+ |j|+ 1)γφ
|x−i|
h1,d1

φ
|y−j|
h2,d2

≤ K(|x|+ |y|+ 1)γ ∀ (x, y) ∈ R2.

Hence
f(x, y) = O(|x|+ |y|+ 1)γ ∀(x, y) ∈ R2.
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Now

f(x, y) =
∑
i∈Z

∑
j∈Z

yijLh1,d1(x− i)Lh2,d2(y − j)

=
∑
i∈Z

∑
j∈Z

yij

[∑
u∈Z

cuβd1(x− u− i)
][∑

v∈Z
dvβd2(y − v − j)

]

=
∑
u∈Z

∑
v∈Z

∑
i∈Z

∑
j∈Z

yijcu−idv−j

βd1(x− u)βd2(y − v).

From this we conclude that f ∈ Sγ . As C(z)Gh1,d1(z) = 1 and D(w)Gh2,d2(w) = 1 we
obtain

Lh1,d1 ? h1(i) =
∑
u∈Z

cu[h1 ? βd1 ](i− u) = δi,

Lh2,d2 ? h2(j) =
∑
v∈Z

dv[h2 ? βd2 ](j − v) = δj .

Hence we get

f ? h(i, j) =
∑
i∈Z

∑
j∈Z

yijLh1,d1(x− i)Lh2,d2(y − j) ? h(i, j)

=
∑
i∈Z

∑
j∈Z

yij [[Lh1,d1(x− i) ? h1(i)][Lh2,d2(y − j) ? h2(j)]] .

Clearly f ? h(i, j) = yij i, j ∈ Z. We conclude that f(x, y) is a solution. Now we shall
show the uniqueness. If the bivariate spline f, g ∈ Sγ are two solutions, then by the
Theorem 2 we have

f(x, y)− g(x, y) =

p∑
r=1

q∑
s=1

crs

[
Υz−1r ,d1

(x) ·Υw−1s ,d2
(y)
]
,

for some constants crs. Using the behaviour of Υz−1r ,d1
(x) ·Υw−1s ,d2

(y) at x→ ±∞ and
y → ±∞ we get that crs = 0. Therefore f = g.

PROOF OF THEOREM 1. In view of Theorem 3, it is suffi cient to prove that the
roots of Gh1,d1(z) and Gh2,d2(w) are simple and none of them is on the unit circles
|z| = 1 and |w| = 1 respectively. We can write

P (z) = z
p
2Gh1,d1(z)

= h1 ? βd1

(p
2

)
+ h1 ? βd1

(p
2
− 1
)
z + h1 ? βd1

(p
2
− 2
)
z2

+ . . .+ h1 ? βd1

(
−p

2

)
zp,

where

p :=

{
d1 + 1 if d1 is odd,
d1 if d1 is even.
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Also

Q(w) = w
q
2Gh2,d2(w)

= h2 ? βd2

(q
2

)
+ h2 ? βd2

(q
2
− 1
)
w + h2 ? βd2

(q
2
− 2
)
w2

+ . . .+ h2 ? βd2

(
−q

2

)
wq,

where

q :=

{
d2 + 1 if d2 is odd,
d2 if d2 is odd.

It is shown in [5] that the roots of Gh1,d1(z) and Gh2,d2(w) are simple and none of them
is on the unit circles |z| = 1 and |w| = 1 respectively.
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