Reconstruction Of Bivariate Cardinal Splines Of Polynomial Growth From Their Local Average Samples^{*}

Yugesh Shanmugam[†], Devaraj Ponnaian[‡]

Received June 18 2016

Abstract

We analyse the following local average sampling problem for two variables: Let h be a nonnegative function supported in the rectangle $\left[-\frac{1}{2}, \frac{1}{2}\right] \times \left[-\frac{1}{2}, \frac{1}{2}\right]$. Given a sequence of samples $\{y_{ij}\}_{i,j\in\mathbb{Z}}$, find a bivariate spline f(x, y) such that $(f \star h)(i, j) = y_{ij}$. It is shown that this problem has infinitely many solutions. Further, under some realistic conditions on h it is shown that the above said problem has unique solution when both samples $\{y_{ij}\}$ and the spline f are of polynomial growth.

1 Introduction

The extension of classical Whittaker-Shannon-Kotel'nikov sampling formula for kdimension may be stated as follows [8, 6, 7]: Any function f bandlimited to the kdimensional cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^k$ can be reconstructed from its sequence of samples $\{f(n)\}_{n \in \mathbb{Z}^k}$ using the formula

$$f(t_1, t_2, \dots, t_k) = \sum_{\alpha \in \mathbb{Z}^k} f(\alpha) \operatorname{sinc}(t_1 - \alpha_1) \operatorname{sinc}(t_2 - \alpha_2) \dots \operatorname{sinc}(t_k - \alpha_k),$$

where the sinc function is defined by $\operatorname{sinc}(x) = \frac{\sin(x)}{x}$. Although the bandlimited condition is eminently useful, it is not always realistic, since a bandlimited signal is of infinite duration. It is natural to investigate other signal classes for which a sampling theorem holds. The reconstruction has been investigated for non-bandlimited functions in [1, 2, 5, 6, 7, 8, 9, 10]. In this paper, we consider the class of bivariate splines of polynomial growth.

The B-splines with equally spaced knots in two variables is defined [3, 4] as

$$\beta_{d_1d_2}(x,y) = \beta_{d_1}(x)\beta_{d_2}(y),$$

^{*}Mathematics Subject Classifications: 42A15, 94A20.

[†]Department of Mathematics, SSN College of Engineering, Kalavakkam-603 110, Tamil Nadu, India, E-mail: mathsyugesh@gmail.com, yugeshs@ssn.edu.in

[‡]School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India, E-mail: devarajp@iisertvm.ac.in

where β_d is the cardinal central B-spline of degree d in single variable which is given by

$$\beta_d := \chi_{[-\frac{1}{2},\frac{1}{2}]} \star \dots \star \chi_{[-\frac{1}{2},\frac{1}{2}]}, (d+1 \text{ terms})$$

and \star denotes the convolution. $\beta_{d_1d_2}$ is a tensor-product of two B-splines and its piecewise pieces are separated by a rectangular partition. Let S_{d_1,d_2} be the class of functions f(x, y) satisfying the following properties:

- 1. The d_1d_2 partial derivatives $\frac{\partial^{u+v}}{\partial x^u \partial y^v} f(x,y), 0 \le u \le d_1 1, 0 \le v \le d_2 1$ are continuous in the entire plane \mathbb{R}^2 .
- 2. Let $\Pi_{x,y}$ denote set of all polynomials in x and y of degree $\leq (d_1 + d_2)$, i.e.,

$$\Pi_{x,y} = \left\{ \sum_{u=0}^{d_1} \sum_{v=0}^{d_2} a_{uv} x^u y^v : a_{uv} \in \mathbb{R} \right\}.$$

In each square $[i-1,i] \times [j-1,j]$, $f(x,y) \in \Pi_{x,y}$ for both d_1 and d_2 odd. If d_1 is odd and d_2 is even, then in each square $[i-1,i] \times [j+\frac{1}{2}-1,j+\frac{1}{2}]$, $f(x,y) \in \Pi_{x,y}$. In each square $[i+\frac{1}{2}-1,i+\frac{1}{2}] \times [j-1,j]$, $f(x,y) \in \Pi_{x,y}$ for d_1 even and d_2 odd.

Also, when d_1 and d_2 are even, then in each square $[i+\frac{1}{2}-1,i+\frac{1}{2}]\times[j+\frac{1}{2}-1,j+\frac{1}{2}], f(x,y) \in \Pi_{x,y}$.

We note that $\Pi_{x,y}$ depends on $(d_1+1)(d_2+1)$ parameters and we can write

$$S_{d_1,d_2} = \left\{ f(x,y) = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} a_{ij} \beta_{d_1}(x-i) \beta_{d_2}(y-j) : a_{ij} \in \mathbb{R} \right\}.$$

2 Bivariate Cardinal Spline Interpolation

The bivariate cardinal spline interpolation problem defined in [10] is as follows: Given a double sequence $\{y_{ij}\}_{i,j\in\mathbb{Z}}$ of real numbers, find a bivariate spline $f \in S_{d_1,d_2}$ such that

$$f(i,j) = y_{ij}, \ i,j \in \mathbb{Z}.$$
(1)

It can be easily checked that for $d_1 = d_2 = 1$, this problem has a unique solution.

LEMMA 1. Let $d_1, d_2 > 1$. Then given a double sequence $\{y_{ij}\}_{i,j\in\mathbb{Z}}$ of real numbers, there are infinitely many bivariate splines $f \in S_{d_1,d_2}$ such that $f(i,j) = y_{ij}$, for $i, j \in \mathbb{Z}$. Moreover, the set of all such solutions in S_{d_1,d_2} form a linear manifold of dimension $(d_1+1)(d_2+1) - 4$ when both d_1, d_2 are odd or d_1 is odd and d_2 is even or d_1 is even and d_2 is odd and of dimension $(d_1+1)(d_2+1) - 3$ when both d_1, d_2 are even.

PROOF. Case (i): d_1, d_2 are odd. In this case every $f(x, y) \in S_{d_1, d_2}$ can be uniquely represented in the form

$$f(x,y) = P(x,y) + \sum_{u>0} \sum_{v>0} a_{uv}(x-u)^{d_1}_+(y-v)^{d_2}_+ + \sum_{u\ge0} \sum_{v\ge0} a_{-u-v}(-x-u)^{d_1}_+(-y-v)^{d_2}_+,$$

S. Yugesh and P. Devaraj

where $P(x, y) \in \Pi_{x,y}$, a_{uv} are constants, and $x_+ := max(0, x)$. Since f(x, y) = P(x, y)in $[0, 1] \times [0, 1]$, we have the relations, $P(0, 0) = y_{00}$, $P(1, 0) = y_{10}$, $P(0, 1) = y_{01}$ and $P(1, 1) = y_{11}$. The coefficients a_{uv} are uniquely determined by the interpolation conditions $f(i, j) = y_{ij}$, $i, j \in \mathbb{Z}$. Therefore f(x, y) linearly depends on $(d_1 + 1)(d_2 + 1) - 4$ parameters in P(x, y).

Case(ii): d_1 is odd and d_2 is even. Every $f(x, y) \in S_{d_1, d_2}$ has a unique representation of the form

$$f(x,y) = P(x,y) + \sum_{u>0} \sum_{v>0} a_{uv} (x-u)_{+}^{d_1} \left(\left(y + \frac{1}{2} \right) - v \right)_{+}^{d_2} + \sum_{u\geq 0} \sum_{v\geq 0} a_{-u-v} (-x-u)_{+}^{d_1} \left(-\left(y + \frac{1}{2} \right) - v \right)_{+}^{d_2}.$$

Therefore if f(x, y) satisfies equation (1), then $P(0, 0) = y_{00}$, $P(1, 0) = y_{10}$, $P(0, 1) = y_{01}$ and $P(1, 1) = y_{11}$. As in the previous case the coefficients a_{uv} are calculated from the interpolation conditions 1. Hence f(x, y) linearly depends on $(d_1 + 1)(d_2 + 1) - 4$ parameters.

Case(iii): d_1 is even and d_2 is odd. In this case every $f(x,y) \in S_{d_1,d_2}$ can be uniquely written in the form

$$f(x,y) = P(x,y) + \sum_{u>0} \sum_{v>0} a_{uv} \left(\left(x + \frac{1}{2} \right) - u \right)_{+}^{a_1} (y-v)_{+}^{a_2} + \sum_{u\geq 0} \sum_{v\geq 0} a_{-u-v} \left(-\left(x + \frac{1}{2} \right) - u \right)_{+}^{a_1} (-y-v)_{+}^{a_2}.$$

In this case also $P(0,0) = y_{00}$, $P(1,0) = y_{10}$, $P(0,1) = y_{01}$ and $P(1,1) = y_{11}$. As in the previous cases, f(x,y) linearly depends on $(d_1+1)(d_2+1) - 4$ parameters.

Case(iv): Both d_1 and d_2 are even. Every $f(x, y) \in S_{d_1, d_2}$ has unique representation of the form

$$f(x,y) = P(x,y) + \sum_{u>0} \sum_{v>0} b_{uv} \left((x+\frac{1}{2}) - u \right)_{+}^{d_1} \left((y+\frac{1}{2}) - v \right)_{+}^{d_2} + \sum_{u\geq 0} \sum_{v\geq 0} b_{-u-v} \left(-\left(x+\frac{1}{2}\right) - u \right)_{+}^{d_1} \left(-\left(y+\frac{1}{2}\right) - v \right)_{+}^{d_2},$$

where $P(x, y) \in \Pi_{x,y}$. Then P(x, y) satisfies the relations $P(0, 0) = y_{00}$, $P(1, 0) = y_{10}$ and $P(0, 1) = y_{01}$. Thus three coefficients in P(x, y) can be uniquely found from these relations. The coefficients b_{uv} are uniquely determined using the conditions $f(i, j) = y_{ij}$, $i, j \in \mathbb{Z}$. Therefore, in this case f(x, y) linearly depends on $(d_1 + 1)(d_2 + 1) - 3$ parameters.

In order to obtain uniqueness of solution Schoenberg [10] has applied the following power growth condition on the bivariate cardinal spline and the bi-infinite samples:

$$S_{\gamma} = \{ f(x, y) \in S_{d_1, d_2} : f(x, y) = O(|x| + |y| + 1)^{\gamma} \},\$$

$$D_{\gamma} = \{\{y_{ij}\}_{i,j\in\mathbb{Z}} : y_{ij} = O(|i| + |j| + 1)^{\gamma}\}.$$

Further, he has shown in [10] that for $\gamma \geq 0$ and for a given double sequence of real numbers $\{y_{ij}\}_{i,j\in\mathbb{Z}} \in D_{\gamma}$, there exists a unique bivariate spline $f \in S_{\gamma}$ such that $f(i,j) = y_{ij}, i, j \in \mathbb{Z}$.

In practice, the available samples are not always exact. The samples of f are the local averages of the function f at (m, n). i.e.,

$$\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \int_{m-\frac{1}{2}}^{m+\frac{1}{2}} f(x,y)h(n-x,m-y)dxdy,$$

where h is suitable weight function which reflects the characteristic of the measurement process.

Average sampling problem:

Given a sequence of real numbers $\{y_{ij}\}_{i,j\in\mathbb{Z}}$, find a bivariate spline $f \in S_{d_1,d_3}$ such that $f \star h(i,j) = y_{ij}$, $i, j \in \mathbb{Z}$, where the averaging function h satisfies

$$supp(h) \subseteq \left[-\frac{1}{2}, \frac{1}{2}\right] \times \left[-\frac{1}{2}, \frac{1}{2}\right] \text{ and } h(x, y) \ge 0,$$
 (2)

$$0 < \int_{-\frac{1}{2}}^{0} \int_{-\frac{1}{2}}^{0} h(x, y) dx dy < \infty \text{ and } 0 < \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} h(x, y) dx dy < \infty.$$
(3)

We show that this average sampling problem has infinitely many solutions for every d. Further, by applying the polynomial growth conditions as that of [10], the uniqueness is obtained.

LEMMA 2. If the averaging function h satisfies (2) and (3), then for a given double sequence of real numbers $\{y_{ij}\}_{i,j\in\mathbb{Z}}$, there are infinitely many bivariate splines $f \in S_{d_1,d_2}$ such that

$$f \star h(i,j) = y_{ij}, \ i, j \in \mathbb{Z}.$$
(4)

The set of such solutions in S_{d_1,d_2} form a linear manifold of dimension $(d_1+1)(d_2+1)$ if d_1, d_2 are odd and of dimension $(d_1+1)(d_2+1) - 1$ for the other three cases.

PROOF. Case(i): Both d_1 and d_2 are odd. In this case, the functions $f \in S_{d_1,d_2}$ can be uniquely represented in the form

$$f(x,y) = P(x,y) + \sum_{u>0} \sum_{v>0} a_{uv}(x-u)^{d_1}_+(y-v)^{d_2}_+ + \sum_{u\ge0} \sum_{v\ge0} a_{-u-v}(-x-u)^{d_1}_+(-y-v)^{d_2}_+$$

with appropriate coefficients a_{uv} and P(x, y) = f(x, y) in $[0, 1] \times [0, 1]$. If f(x, y) satisfies (4), then $f \star h(1, 1) = y_{1,1}$. i.e.,

$$h \star f(1,1) = h \star P(1,1) + a_{11} \int_{\frac{1}{2}}^{\frac{3}{2}} \int_{\frac{1}{2}}^{\frac{3}{2}} h(1-x,1-y)(x-1)_{+}^{d}(y-1)_{+}^{d} dx dy$$

S. Yugesh and P. Devaraj

and $\int_{\frac{1}{2}}^{\frac{3}{2}} \int_{\frac{1}{2}}^{\frac{3}{2}} h(1-x,1-y)(x-1)_{+}^{d_1}(y-1)_{+}^{d_2} dx dy > 0$. From this the coefficient a_{11} can be uniquely determined such that $f \star h(1,1) = y_{1,1}$. Similarly the other coefficients a_{ij} can be uniquely determined using the other conditions of $f \star h(i,j) = y_{i,j}$. Thus the solutions linearly depends on $(d_1 + 1)(d_2 + 1)$ parameters.

Case(ii): d_1 is odd and d_2 is even. Then every $f(x, y) \in S_{d_1, d_2}$ can be uniquely written in the form

$$f(x,y) = P(x,y) + \sum_{u>0} \sum_{v>0} a_{uv}(x-u)^{d_1}_+ \left((y+\frac{1}{2})-v\right)^{d_2}_+ \\ + \sum_{u\geq 0} \sum_{v\geq 0} a_{-u-v}(-x-u)^{d_1}_+ \left(-(y+\frac{1}{2})-v\right)^{d_2}_+.$$

If f(x, y) satisfies equation (4), then in this case

$$h \star f(0,0) = \int_{\frac{-1}{2}}^{\frac{1}{2}} \int_{\frac{-1}{2}}^{\frac{1}{2}} h(-x,-y) P(x,y) dx dy.$$

The coefficients a_{uv} can be found from the conditions (4). Hence f(x, y) linearly depends on $(d_1 + 1)(d_2 + 1) - 1$ parameters.

Case (iii): d_1 is even and d_2 is odd. In this case every function $f\in S_{d_1,d_2}$ has a unique representation of the form

$$f(x,y) = P(x,y) + \sum_{u>0} \sum_{v>0} a_{uv} \left(\left(x + \frac{1}{2}\right) - u \right)_{+}^{d_1} (y - v)_{+}^{d_2} + \sum_{u\geq 0} \sum_{v\geq 0} a_{-u-v} \left(-\left(x + \frac{1}{2}\right) - u \right)_{+}^{d_1} (-y - v)_{+}^{d_2}.$$

In this case the condition (4) implies P(x, y) satisfies

$$h \star f(0,0) = \int_{\frac{-1}{2}}^{\frac{1}{2}} \int_{\frac{-1}{2}}^{\frac{1}{2}} h(-x,-y) P(x,y) dx dy.$$

Therefore f(x, y) linearly depends on $(d_1 + 1)(d_2 + 1) - 1$ coefficients.

Case(iv): Suppose that both d_1 and d_2 are even. Then every function $f \in S_{d_1,d_2}$ can be uniquely represented in the form

$$f(x,y) = P(x,y) + \sum_{u>0} \sum_{v>0} b_{uv} \left(\left(x + \frac{1}{2} \right) - u \right)_{+}^{d_1} \left(\left(y + \frac{1}{2} \right) - v \right)_{+}^{d_2} + \sum_{u\geq 0} \sum_{v\geq 0} b_{-u-v} \left(-\left(x + \frac{1}{2} \right) - u \right)_{+}^{d_1} \left(-\left(y + \frac{1}{2} \right) - v \right)_{+}^{d_2}$$
(5)

with appropriate coefficients b_{uv} . Since

$$h \star f(0,0) = \int_{\frac{-1}{2}}^{\frac{1}{2}} \int_{\frac{-1}{2}}^{\frac{1}{2}} h(-x,-y)f(x,y)dxdy$$
$$= \int_{\frac{-1}{2}}^{\frac{1}{2}} \int_{\frac{-1}{2}}^{\frac{1}{2}} h(-x,-y)P(x,y)dxdy$$

and f(x, y) satisfies $h \star f(0, 0) = y_{00}$, the solutions f(x, y) linearly depends on $(d_1 + 1)(d_2 + 1) - 1$ parameters.

3 Average Sampling Theorem

THEOREM 1. [Main Theorem] Let $d_1, d_2 \in \mathbb{N}$ and $h(x, y) = h_1(x)h_2(y)$ satisfy the conditions (2) and (3). Then for a given double sequence of real numbers $\{y_{ij}\}_{i,j\in\mathbb{Z}} \in D_{\gamma}$, there exists a unique bivariate spline $f \in S_{\gamma}$ such that

$$f \star h(i,j) = y_{ij} \ i, j \in \mathbb{Z}.$$

In order to prove this theorem, we introduce the vector

$$G_h(z,w) = (G_{h_1,d_1}(z), G_{h_2,d_2}(w))$$

where $G_{h_1,d_1}(z)$ and $G_{h_2,d_2}(w)$ are Laurent polynomials defined by

$$\begin{aligned} G_{h_1,d_1}(z) &= \int_{\frac{-1}{2}}^{\frac{1}{2}} h_1(x) \Upsilon_{z,d_1}(x) dx, \\ G_{h_2,d_2}(w) &= \int_{\frac{-1}{2}}^{\frac{1}{2}} h_2(y) \Upsilon_{w,d_2}(y) dy, \\ \Upsilon_{z,d_1}(x) &= \sum_{i \in \mathbb{Z}} z^{-i} \beta_{d_1}(i-x), \\ \Upsilon_{w,d_2}(y) &= \sum_{j \in \mathbb{Z}} w^{-j} \beta_{d_2}(j-y). \end{aligned}$$

For the proof we also need the following properties [9]:

LEMMA 3 ([9]). For $d_1 \in \mathbb{N}, n \in \mathbb{Z}$ and $z \in \mathbb{C} \setminus \{0\}$ we have

- (i) $\Upsilon_{z^{-1},d_1}(-x) = \Upsilon_{z,d_1}(x).$
- (ii) $\Upsilon_{z,d_1}(x+n) = z^{-n} \Upsilon_{z,d_1}(x).$
- (iii) $\Upsilon'_{z,d_1+1}(x) = (1-z)\Upsilon_{z,d_1}(x+\frac{1}{2}).$
- (iv) $\Upsilon_{-1,d_1}(x)$ is even, $\Upsilon_{-1,d_1}(\frac{1}{2}) = 0$ and $\Upsilon_{-1,d_1}(x) > 0$ for $x \in (\frac{-1}{2}, \frac{1}{2})$.

THEOREM 2. Consider the linear space

$$\bigwedge := \{ f(x,y) \in S_{d_1,d_2} : h \star f(i,j) = 0 \ \forall \ i,j \in \mathbb{Z} \} .$$

If z_1, z_2, \ldots, z_p are the simple roots of $G_{h_1,d_1}(z)$ and w_1, w_2, \ldots, w_q are the simple roots of $G_{h_2,d_2}(w)$ then the set of functions

$$\{\Upsilon_{z_r^{-1},d_1} \cdot \Upsilon_{w_s^{-1},d_2} : 1 \le r \le p, 1 \le s \le q\}$$

forms a basis of \bigwedge .

PROOF. We have to find l linearly independent functions in \bigwedge related to the roots of $G_h(z, w)$. The dimension of \bigwedge is

$$l := \begin{cases} (d_1 + 1)(d_2 + 1) & \text{if both } d_1 \text{ and } d_2 \text{ are odd,} \\ (d_1 + 1)(d_2) & \text{if } d_1 \text{ is odd and } d_2 \text{ are even,} \\ d_1(d_2 + 1) & \text{if } d_1 \text{ is even and } d_2 \text{ are odd,} \\ d_1d_2 & \text{if both } d_1 \text{ and } d_2 \text{ are even,} \end{cases}$$

Now

$$\begin{split} &\Upsilon_{z_{r}^{-1},d_{1}}\cdot\Upsilon_{w_{s}^{-1},d_{2}}\star h(i,j) \\ &= \ \Upsilon_{z_{r}^{-1},d_{1}}\star h_{1}(i)\cdot\Upsilon_{w_{s}^{-1},d_{2}}\star h_{2}(j) \\ &= \ \int_{-\frac{1}{2}}^{\frac{1}{2}}\Upsilon_{z_{r}^{-1},d_{1}}(i-u)h_{1}(u)du\cdot\int_{-\frac{1}{2}}^{\frac{1}{2}}\Upsilon_{w_{s}^{-1},d_{2}}(i-v)h_{2}(v)dv \\ &= \ z_{r}^{i}\int_{-\frac{1}{2}}^{\frac{1}{2}}\Upsilon_{z_{r}^{-1},d_{1}}(-u)h_{1}(u)du\cdot w_{s}^{j}\int_{-\frac{1}{2}}^{\frac{1}{2}}\Upsilon_{w_{s}^{-1},d_{2}}(-v)h_{2}(v)dv \\ &= \ z_{r}^{i}\int_{-\frac{1}{2}}^{\frac{1}{2}}\Upsilon_{z_{r}^{-1},d_{1}}(u)h_{1}(u)du\cdot w_{s}^{j}\int_{-\frac{1}{2}}^{\frac{1}{2}}\Upsilon_{w_{s}^{-1},d_{2}}(v)h_{2}(v)dv \\ &= \ z_{r}^{i}G_{h_{1},d_{1}}(z_{r})\cdot w_{s}^{j}G_{h_{2},d_{2}}(w_{s}) \\ &= \ 0 \text{ for } r = 1,2,\ldots,p \text{ and } s = 1,2,\ldots,q. \end{split}$$

Now we prove $\Upsilon_{z_r^{-1},d_1}\cdot\Upsilon_{w_s^{-1},d_2}$ are linearly independent. For, suppose that

$$\sum_{r=1}^{p} \sum_{s=1}^{q} c_{rs} \left[\Upsilon_{z_{r}^{-1}, d_{1}}(x) \cdot \Upsilon_{w_{s}^{-1}, d_{2}}(y) \right] = 0.$$

Then

$$\sum_{r=1}^{p} \sum_{s=1}^{q} c_{rs} \left[\sum_{i \in \mathbb{Z}} z_{r}^{i} \beta_{d_{1}}(i-x) \sum_{j \in \mathbb{Z}} w_{s}^{j} \beta_{d_{2}}(j-y) \right] = 0.$$

i.e.,

$$\sum_{i\in\mathbb{Z}}\sum_{j\in\mathbb{Z}}\left[\sum_{r=1}^{p}\sum_{s=1}^{q}c_{rs}z_{r}^{i}w_{s}^{j}\right]\beta_{d_{1}}(i-x)\beta_{d_{2}}(j-y)=0.$$

As $\beta_{d_1}(i-x)\beta_{d_2}(j-y)$ are linearly independent, $\sum_{r=1}^p \sum_{s=1}^q c_{rs} z_r^i w_s^j = 0 \ \forall \ i, j \in \mathbb{Z}$. The above system is a set of linear equations in c_{ij} with coefficient matrix, the Vandermonde's matrix. Since the Vandermonde determinant is not zero, $c_{rs} = 0$. Therefore the functions $\Upsilon_{z_r^{-1},d_1} \cdot \Upsilon_{w_s^{-1},d_2}$ form a basis of Λ .

THEOREM 3. Suppose that $d_1, d_2 \in \mathbb{N}, \gamma \geq 0$ and h is in the separable form satisfying conditions (2) and (3). If the roots of $G_{h_1,d_1}(z), G_{h_2,d_2}(w)$ are simple and no roots on the unit circles |z| = 1, |w| = 1 respectively, then for a given double sequence of real numbers $\{y_{ij}\}_{i,j\in\mathbb{Z}} \in D_{\gamma}$ the problem, of finding a bivariate spline $f \in S_{\gamma}$ satisfying

$$f \star h(i,j) = y_{ij}, \ i,j \in \mathbb{Z}$$

has a unique solution. The solution is of the form

$$f(x,y) = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{ij} L_{h_1, d_1}(x-i) L_{h_2, d_2}(y-j),$$

where $L_{h_1,d_1}(x) = \sum_{i \in \mathbb{Z}} c_i \beta_{d_1}(x-i)$, $L_{h_2,d_2}(y) = \sum_{j \in \mathbb{Z}} d_j \beta_{d_2}(y-j)$, c_i and d_j are coefficients of the Laurent expansion of $G_{h_1,d_1}^{-1}(z)$ and $G_{h_2,d_2}^{-1}(w)$ respectively. The spline L_{h_1,d_1} and L_{h_2,d_2} have exponential decay.

PROOF. The coefficients c_i, d_j are given by $C(z) = G_{h_1, d_1}^{-1}(z) = \sum_{i \in \mathbb{Z}} c_i z^{-i}$ and $D(w) = G_{h_2, d_2}^{-1}(w) = \sum_{j \in \mathbb{Z}} d_j w^{-j}$. These coefficients have exponential decay. Therefore $c_i = O(\phi_{h_1, d_1}^{|i|}), d_j = O(\phi_{h_2, d_2}^{|j|})$, where $\phi_{h_1, d_1}, \phi_{h_2, d_2} \in (0, 1)$. Hence $L_{h_1, d_1} = O(\phi_{h_1, d_1}^{|x|})$ and $L_{h_2, d_2} = O(\phi_{h_2, d_2}^{|y|})$. For |x| > 2, |y| > 2 consider,

$$\frac{\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} (|i| + |j| + 1)^{\gamma} \phi_{h_{1},d_{1}}^{|x-i|} \phi_{h_{2},d_{2}}^{|y-j|}}{(|x| + |y| + 1)^{\gamma}} \\
\leq \frac{\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} (|x-i+1| + |y-j+1| + 1)^{\gamma} \phi_{h_{1},d_{1}}^{|i|-1} \phi_{h_{2},d_{2}}^{|j|-1}}{(|x| + |y| + 1)^{\gamma}} \\
\leq \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} (1 + |i| + |j|)^{\gamma} \phi_{h_{1},d_{1}}^{|i|-1} \phi_{h_{2},d_{2}}^{|j|-1} < \infty.$$

Therefore from the order of y_{ij} we get

$$f(x,y) = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{ij} L_{h_1,d_1}(x-i) L_{h_2,d_2}(y-j)$$

$$= \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} (|i|+|j|+1)^{\gamma} \phi_{h_1,d_1}^{|x-i|} \phi_{h_2,d_2}^{|y-j|}$$

$$\leq K(|x|+|y|+1)^{\gamma} \forall (x,y) \in \mathbb{R}^2.$$

Hence

$$f(x,y) = O(|x| + |y| + 1)^{\gamma} \ \forall (x,y) \in \mathbb{R}^2.$$

Now

$$f(x,y) = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{ij} L_{h_1,d_1}(x-i) L_{h_2,d_2}(y-j)$$

$$= \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{ij} \left[\sum_{u \in \mathbb{Z}} c_u \beta_{d_1}(x-u-i) \right] \left[\sum_{v \in \mathbb{Z}} d_v \beta_{d_2}(y-v-j) \right]$$

$$= \sum_{u \in \mathbb{Z}} \sum_{v \in \mathbb{Z}} \left[\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{ij} c_{u-i} d_{v-j} \right] \beta_{d_1}(x-u) \beta_{d_2}(y-v).$$

From this we conclude that $f \in S_{\gamma}$. As $C(z)G_{h_1,d_1}(z) = 1$ and $D(w)G_{h_2,d_2}(w) = 1$ we obtain

$$L_{h_1,d_1} \star h_1(i) = \sum_{u \in \mathbb{Z}} c_u [h_1 \star \beta_{d_1}](i-u) = \delta_i,$$

$$L_{h_2,d_2} \star h_2(j) = \sum_{v \in \mathbb{Z}} d_v [h_2 \star \beta_{d_2}](j-v) = \delta_j.$$

Hence we get

$$f \star h(i,j) = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{ij} L_{h_1,d_1}(x-i) L_{h_2,d_2}(y-j) \star h(i,j)$$

=
$$\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{ij} \left[[L_{h_1,d_1}(x-i) \star h_1(i)] [L_{h_2,d_2}(y-j) \star h_2(j)] \right].$$

Clearly $f \star h(i, j) = y_{ij}$ $i, j \in \mathbb{Z}$. We conclude that f(x, y) is a solution. Now we shall show the uniqueness. If the bivariate spline $f, g \in S_{\gamma}$ are two solutions, then by the Theorem 2 we have

$$f(x,y) - g(x,y) = \sum_{r=1}^{p} \sum_{s=1}^{q} c_{rs} \left[\Upsilon_{z_{r}^{-1},d_{1}}(x) \cdot \Upsilon_{w_{s}^{-1},d_{2}}(y) \right],$$

for some constants c_{rs} . Using the behaviour of $\Upsilon_{z_r^{-1},d_1}(x) \cdot \Upsilon_{w_s^{-1},d_2}(y)$ at $x \to \pm \infty$ and $y \to \pm \infty$ we get that $c_{rs} = 0$. Therefore f = g.

PROOF OF THEOREM 1. In view of Theorem 3, it is sufficient to prove that the roots of $G_{h_1,d_1}(z)$ and $G_{h_2,d_2}(w)$ are simple and none of them is on the unit circles |z| = 1 and |w| = 1 respectively. We can write

$$P(z) = z^{\frac{p}{2}} G_{h_1, d_1}(z)$$

= $h_1 \star \beta_{d_1} \left(\frac{p}{2}\right) + h_1 \star \beta_{d_1} \left(\frac{p}{2} - 1\right) z + h_1 \star \beta_{d_1} \left(\frac{p}{2} - 2\right) z^2$
+ ... + $h_1 \star \beta_{d_1} \left(-\frac{p}{2}\right) z^p$,

where

$$p := \begin{cases} d_1 + 1 & \text{if } d_1 \text{ is odd,} \\ d_1 & \text{if } d_1 \text{ is even.} \end{cases}$$

$$Q(w) = w^{\frac{q}{2}} G_{h_2, d_2}(w)$$

= $h_2 \star \beta_{d_2} \left(\frac{q}{2}\right) + h_2 \star \beta_{d_2} \left(\frac{q}{2} - 1\right) w + h_2 \star \beta_{d_2} \left(\frac{q}{2} - 2\right) w^2$
+ ... + $h_2 \star \beta_{d_2} \left(-\frac{q}{2}\right) w^q$,

where

$$q := \begin{cases} d_2 + 1 & \text{if } d_2 \text{ is odd,} \\ d_2 & \text{if } d_2 \text{ is odd.} \end{cases}$$

It is shown in [5] that the roots of $G_{h_1,d_1}(z)$ and $G_{h_2,d_2}(w)$ are simple and none of them is on the unit circles |z| = 1 and |w| = 1 respectively.

Acknowledgment. The first author would like to thank the Management of SSN College of Engineering, Kalavakkam-603 110, Tamil Nadu, India.

References

- A. Aldroubi and M. Unser, Sampling procedure in function spaces and asymptotic equivalence with Shannon's sampling theory, Numer. Funct. Anal. Optim., 15(1994), 1–21.
- [2] A. Aldroubi and K.Gröchenig, Nonuniform sampling and reconstruction in shiftinvariant spaces, SIAM Rev., 43(2001), 585–620.
- [3] C. K. Chui, Multivariate Splines, SIAM Regional Conference series in Applied Mathematics, 1988.
- [4] C. de Boor, K. Höllig and S. Riemenschneider, Box Splines, Applied Mathematical Sciences, 98. Springer-Verlag, New York, 1993.
- [5] P. Devaraj and S. Yugesh, On the zeros of the generalized Euler-Frobenius Laurent polynomial and reconstruction of cardinal splines of polynomial growth from local average samples, J. Math. Anal. Appl., 432(2015), 983–993.
- [6] A. G. Garcia and G. Perez-Villalon, Multivariate generalized sampling in shift-invariant spaces and its approximation properties, J. Math. Anal. Appl., 355(2009), 397–413.
- [7] A. G. Garcia, M. J. Munoz-Bouzo and G. Perez-Villalon, Regular multivariate sampling and approximation in L^p shift-invariant spaces, J. Math. Anal. Appl., 380(2011), 607–627.
- [8] J. Xian and W. Sun, Local sampling and reconstruction in shift-invariant spaces and their applications in spline subspaces, Numer. Funct. Anal. Optim., 31(2010), 366–386.

56

- [9] G. Perez-Villalon and A. Portal, Reconstruction of splines from local average samples, Appl. Math. Lett., 25(2012), 1315–1319.
- [10] I. J. Schoenberg, Cardinal Spline Interpolation, SIAM Regional Conference series in Applied Mathematics, 1973.