Reconstruction Of Bivariate Cardinal Splines Of Polynomial Growth From Their Local Average Samples*

Yugesh Shanmugam ${ }^{\dagger}$, Devaraj Ponnaian ${ }^{\ddagger}$

Received June 182016

Abstract

We analyse the following local average sampling problem for two variables: Let h be a nonnegative function supported in the rectangle $\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$. Given a sequence of samples $\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}}$, find a bivariate spline $f(x, y)$ such that $(f \star h)(i, j)=y_{i j}$. It is shown that this problem has infinitely many solutions. Further, under some realistic conditions on h it is shown that the above said problem has unique solution when both samples $\left\{y_{i j}\right\}$ and the spline f are of polynomial growth.

1 Introduction

The extension of classical Whittaker-Shannon-Kotel'nikov sampling formula for k dimension may be stated as follows [8, 6, 7]: Any function f bandlimited to the k dimensional cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{k}$ can be reconstructed from its sequence of samples $\{f(n)\}_{n \in \mathbb{Z}^{k}}$ using the formula

$$
f\left(t_{1}, t_{2}, \ldots, t_{k}\right)=\sum_{\alpha \in \mathbb{Z}^{k}} f(\alpha) \operatorname{sinc}\left(t_{1}-\alpha_{1}\right) \operatorname{sinc}\left(t_{2}-\alpha_{2}\right) \ldots \operatorname{sinc}\left(t_{k}-\alpha_{k}\right)
$$

where the sinc function is defined by $\operatorname{sinc}(x)=\frac{\sin (x)}{x}$. Although the bandlimited condition is eminently useful, it is not always realistic, since a bandlimited signal is of infinite duration. It is natural to investigate other signal classes for which a sampling theorem holds. The reconstruction has been investigated for non-bandlimited functions in $[1,2,5,6,7,8,9,10]$. In this paper, we consider the class of bivariate splines of polynomial growth.

The B-splines with equally spaced knots in two variables is defined [3, 4] as

$$
\beta_{d_{1} d_{2}}(x, y)=\beta_{d_{1}}(x) \beta_{d_{2}}(y)
$$

[^0]where β_{d} is the cardinal central B-spline of degree d in single variable which is given by
$$
\beta_{d}:=\chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]} \star \ldots \star \chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]},(d+1 \text { terms })
$$
and \star denotes the convolution. $\beta_{d_{1} d_{2}}$ is a tensor-product of two B-splines and its piecewise pieces are separated by a rectangular partition. Let $S_{d_{1}, d_{2}}$ be the class of functions $f(x, y)$ satisfying the following properties:

1. The $d_{1} d_{2}$ partial derivatives $\frac{\partial^{u+v}}{\partial x^{u} \partial y^{v}} f(x, y), 0 \leq u \leq d_{1}-1,0 \leq v \leq d_{2}-1$ are continuous in the entire plane \mathbb{R}^{2}.
2. Let $\Pi_{x, y}$ denote set of all polynomials in x and y of degree $\leq\left(d_{1}+d_{2}\right)$, i.e.,

$$
\Pi_{x, y}=\left\{\sum_{u=0}^{d_{1}} \sum_{v=0}^{d_{2}} a_{u v} x^{u} y^{v}: a_{u v} \in \mathbb{R}\right\}
$$

In each square $[i-1, i] \times[j-1, j], f(x, y) \in \Pi_{x, y}$ for both d_{1} and d_{2} odd. If d_{1} is odd and d_{2} is even, then in each square $[i-1, i] \times\left[j+\frac{1}{2}-1, j+\frac{1}{2}\right], f(x, y) \in \Pi_{x, y}$. In each square $\left[i+\frac{1}{2}-1, i+\frac{1}{2}\right] \times[j-1, j], f(x, y) \in \Pi_{x, y}$ for d_{1} even and d_{2} odd.

Also, when d_{1} and d_{2} are even, then in each square $\left[i+\frac{1}{2}-1, i+\frac{1}{2}\right] \times\left[j+\frac{1}{2}-1, j+\frac{1}{2}\right]$, $f(x, y) \in \Pi_{x, y}$.

We note that $\Pi_{x, y}$ depends on $\left(d_{1}+1\right)\left(d_{2}+1\right)$ parameters and we can write

$$
S_{d_{1}, d_{2}}=\left\{f(x, y)=\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} a_{i j} \beta_{d_{1}}(x-i) \beta_{d_{2}}(y-j): a_{i j} \in \mathbb{R}\right\}
$$

2 Bivariate Cardinal Spline Interpolation

The bivariate cardinal spline interpolation problem defined in [10] is as follows: Given a double sequence $\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}}$ of real numbers, find a bivariate spline $f \in S_{d_{1}, d_{2}}$ such that

$$
\begin{equation*}
f(i, j)=y_{i j}, i, j \in \mathbb{Z} \tag{1}
\end{equation*}
$$

It can be easily checked that for $d_{1}=d_{2}=1$, this problem has a unique solution.
LEMMA 1. Let $d_{1}, d_{2}>1$. Then given a double sequence $\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}}$ of real numbers, there are infinitely many bivariate splines $f \in S_{d_{1}, d_{2}}$ such that $f(i, j)=y_{i j}$, for $i, j \in \mathbb{Z}$. Moreover, the set of all such solutions in $S_{d_{1}, d_{2}}$ form a linear manifold of dimension $\left(d_{1}+1\right)\left(d_{2}+1\right)-4$ when both d_{1}, d_{2} are odd or d_{1} is odd and d_{2} is even or d_{1} is even and d_{2} is odd and of dimension $\left(d_{1}+1\right)\left(d_{2}+1\right)-3$ when both d_{1}, d_{2} are even.

PROOF. Case (i): d_{1}, d_{2} are odd. In this case every $f(x, y) \in S_{d_{1}, d_{2}}$ can be uniquely represented in the form
$f(x, y)=P(x, y)+\sum_{u>0} \sum_{v>0} a_{u v}(x-u)_{+}^{d_{1}}(y-v)_{+}^{d_{2}}+\sum_{u \geq 0} \sum_{v \geq 0} a_{-u-v}(-x-u)_{+}^{d_{1}}(-y-v)_{+}^{d_{2}}$,
where $P(x, y) \in \Pi_{x, y}, a_{u v}$ are constants, and $x_{+}:=\max (0, x)$. Since $f(x, y)=P(x, y)$ in $[0,1] \times[0,1]$, we have the relations, $P(0,0)=y_{00}, P(1,0)=y_{10}, P(0,1)=y_{01}$ and $P(1,1)=y_{11}$. The coefficients $a_{u v}$ are uniquely determined by the interpolation conditions $f(i, j)=y_{i j}, i, j \in \mathbb{Z}$. Therefore $f(x, y)$ linearly depends on $\left(d_{1}+1\right)\left(d_{2}+\right.$ 1) - 4 parameters in $P(x, y)$.

Case(ii): d_{1} is odd and d_{2} is even. Every $f(x, y) \in S_{d_{1}, d_{2}}$ has a unique representation of the form

$$
\begin{aligned}
f(x, y)= & P(x, y)+\sum_{u>0} \sum_{v>0} a_{u v}(x-u)_{+}^{d_{1}}\left(\left(y+\frac{1}{2}\right)-v\right)_{+}^{d_{2}} \\
& +\sum_{u \geq 0} \sum_{v \geq 0} a_{-u-v}(-x-u)_{+}^{d_{1}}\left(-\left(y+\frac{1}{2}\right)-v\right)_{+}^{d_{2}}
\end{aligned}
$$

Therefore if $f(x, y)$ satisfies equation (1), then $P(0,0)=y_{00}, P(1,0)=y_{10}, P(0,1)=$ y_{01} and $P(1,1)=y_{11}$. As in the previous case the coefficients $a_{u v}$ are calculated from the interpolation conditions 1 . Hence $f(x, y)$ linearly depends on $\left(d_{1}+1\right)\left(d_{2}+1\right)-4$ parameters.

Case(iii): d_{1} is even and d_{2} is odd. In this case every $f(x, y) \in S_{d_{1}, d_{2}}$ can be uniquely written in the form

$$
\begin{aligned}
f(x, y)= & P(x, y)+\sum_{u>0} \sum_{v>0} a_{u v}\left(\left(x+\frac{1}{2}\right)-u\right)_{+}^{d_{1}}(y-v)_{+}^{d_{2}} \\
& +\sum_{u \geq 0} \sum_{v \geq 0} a_{-u-v}\left(-\left(x+\frac{1}{2}\right)-u\right)_{+}^{d_{1}}(-y-v)_{+}^{d_{2}}
\end{aligned}
$$

In this case also $P(0,0)=y_{00}, P(1,0)=y_{10}, P(0,1)=y_{01}$ and $P(1,1)=y_{11}$. As in the previous cases, $f(x, y)$ linearly depends on $\left(d_{1}+1\right)\left(d_{2}+1\right)-4$ parameters.

Case(iv): Both d_{1} and d_{2} are even. Every $f(x, y) \in S_{d_{1}, d_{2}}$ has unique representation of the form

$$
\begin{aligned}
f(x, y)= & P(x, y)+\sum_{u>0} \sum_{v>0} b_{u v}\left(\left(x+\frac{1}{2}\right)-u\right)_{+}^{d_{1}}\left(\left(y+\frac{1}{2}\right)-v\right)_{+}^{d_{2}} \\
& +\sum_{u \geq 0} \sum_{v \geq 0} b_{-u-v}\left(-\left(x+\frac{1}{2}\right)-u\right)_{+}^{d_{1}}\left(-\left(y+\frac{1}{2}\right)-v\right)_{+}^{d_{2}}
\end{aligned}
$$

where $P(x, y) \in \Pi_{x, y}$. Then $P(x, y)$ satisfies the relations $P(0,0)=y_{00}, P(1,0)=y_{10}$ and $P(0,1)=y_{01}$. Thus three coefficients in $P(x, y)$ can be uniquely found from these relations. The coefficients $b_{u v}$ are uniquely determined using the conditions $f(i, j)=$ $y_{i j}, i, j \in \mathbb{Z}$. Therefore, in this case $f(x, y)$ linearly depends on $\left(d_{1}+1\right)\left(d_{2}+1\right)-3$ parameters.

In order to obtain uniqueness of solution Schoenberg [10] has applied the following power growth condition on the bivariate cardinal spline and the bi-infinite samples:

$$
S_{\gamma}=\left\{f(x, y) \in S_{d_{1}, d_{2}}: f(x, y)=O(|x|+|y|+1)^{\gamma}\right\}
$$

$$
D_{\gamma}=\left\{\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}}: y_{i j}=O(|i|+|j|+1)^{\gamma}\right\} .
$$

Further, he has shown in [10] that for $\gamma \geq 0$ and for a given double sequence of real numbers $\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}} \in D_{\gamma}$, there exists a unique bivariate spline $f \in S_{\gamma}$ such that $f(i, j)=y_{i j}, \quad i, j \in \mathbb{Z}$.

In practice, the available samples are not always exact. The samples of f are the local averages of the function f at (m, n). i.e.,

$$
\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \int_{m-\frac{1}{2}}^{m+\frac{1}{2}} f(x, y) h(n-x, m-y) d x d y
$$

where h is suitable weight function which reflects the characteristic of the measurement process.

Average sampling problem:

Given a sequence of real numbers $\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}}$, find a bivariate spline $f \in S_{d_{1}, d_{3}}$ such that $f \star h(i, j)=y_{i j}, i, j \in \mathbb{Z}$, where the averaging function h satisfies

$$
\begin{gather*}
\operatorname{supp}(h) \subseteq\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \text { and } h(x, y) \geq 0 \tag{2}\\
0<\int_{-\frac{1}{2}}^{0} \int_{-\frac{1}{2}}^{0} h(x, y) d x d y<\infty \text { and } 0<\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} h(x, y) d x d y<\infty \tag{3}
\end{gather*}
$$

We show that this average sampling problem has infinitely many solutions for every d. Further, by applying the polynomial growth conditions as that of [10], the uniqueness is obtained.

LEMMA 2. If the averaging function h satisfies (2) and (3), then for a given double sequence of real numbers $\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}}$, there are infinitely many bivariate splines $f \in S_{d_{1}, d_{2}}$ such that

$$
\begin{equation*}
f \star h(i, j)=y_{i j}, \quad i, j \in \mathbb{Z} \tag{4}
\end{equation*}
$$

The set of such solutions in $S_{d_{1}, d_{2}}$ form a linear manifold of dimension $\left(d_{1}+1\right)\left(d_{2}+1\right)$ if d_{1}, d_{2} are odd and of dimension $\left(d_{1}+1\right)\left(d_{2}+1\right)-1$ for the other three cases.

PROOF. Case(i): Both d_{1} and d_{2} are odd. In this case, the functions $f \in S_{d_{1}, d_{2}}$ can be uniquely represented in the form
$f(x, y)=P(x, y)+\sum_{u>0} \sum_{v>0} a_{u v}(x-u)_{+}^{d_{1}}(y-v)_{+}^{d_{2}}+\sum_{u \geq 0} \sum_{v \geq 0} a_{-u-v}(-x-u)_{+}^{d_{1}}(-y-v)_{+}^{d_{2}}$
with appropriate coefficients $a_{u v}$ and $P(x, y)=f(x, y)$ in $[0,1] \times[0,1]$. If $f(x, y)$ satisfies (4), then $f \star h(1,1)=y_{1,1}$. i.e.,

$$
h \star f(1,1)=h \star P(1,1)+a_{11} \int_{\frac{1}{2}}^{\frac{3}{2}} \int_{\frac{1}{2}}^{\frac{3}{2}} h(1-x, 1-y)(x-1)_{+}^{d}(y-1)_{+}^{d} d x d y
$$

and $\int_{\frac{1}{2}}^{\frac{3}{2}} \int_{\frac{1}{2}}^{\frac{3}{2}} h(1-x, 1-y)(x-1)_{+}^{d_{1}}(y-1)_{+}^{d_{2}} d x d y>0$. From this the coefficient a_{11} can be uniquely determined such that $f \star h(1,1)=y_{1,1}$. Similarly the other coefficients $a_{i j}$ can be uniquely determined using the other conditions of $f \star h(i, j)=y_{i, j}$. Thus the solutions linearly depends on $\left(d_{1}+1\right)\left(d_{2}+1\right)$ parameters.

Case(ii): d_{1} is odd and d_{2} is even. Then every $f(x, y) \in S_{d_{1}, d_{2}}$ can be uniquely written in the form

$$
\begin{aligned}
f(x, y)= & P(x, y)+\sum_{u>0} \sum_{v>0} a_{u v}(x-u)_{+}^{d_{1}}\left(\left(y+\frac{1}{2}\right)-v\right)_{+}^{d_{2}} \\
& +\sum_{u \geq 0} \sum_{v \geq 0} a_{-u-v}(-x-u)_{+}^{d_{1}}\left(-\left(y+\frac{1}{2}\right)-v\right)_{+}^{d_{2}}
\end{aligned}
$$

If $f(x, y)$ satisfies equation (4), then in this case

$$
h \star f(0,0)=\int_{\frac{-1}{2}}^{\frac{1}{2}} \int_{\frac{-1}{2}}^{\frac{1}{2}} h(-x,-y) P(x, y) d x d y
$$

The coefficients $a_{u v}$ can be found from the conditions (4). Hence $f(x, y)$ linearly depends on $\left(d_{1}+1\right)\left(d_{2}+1\right)-1$ parameters.

Case(iii): d_{1} is even and d_{2} is odd. In this case every function $f \in S_{d_{1}, d_{2}}$ has a unique representation of the form

$$
\begin{aligned}
f(x, y)= & P(x, y)+\sum_{u>0} \sum_{v>0} a_{u v}\left(\left(x+\frac{1}{2}\right)-u\right)_{+}^{d_{1}}(y-v)_{+}^{d_{2}} \\
& +\sum_{u \geq 0} \sum_{v \geq 0} a_{-u-v}\left(-\left(x+\frac{1}{2}\right)-u\right)_{+}^{d_{1}}(-y-v)_{+}^{d_{2}} .
\end{aligned}
$$

In this case the condition (4) implies $P(x, y)$ satisfies

$$
h \star f(0,0)=\int_{\frac{-1}{2}}^{\frac{1}{2}} \int_{\frac{-1}{2}}^{\frac{1}{2}} h(-x,-y) P(x, y) d x d y
$$

Therefore $f(x, y)$ linearly depends on $\left(d_{1}+1\right)\left(d_{2}+1\right)-1$ coefficients.
Case(iv): Suppose that both d_{1} and d_{2} are even. Then every function $f \in S_{d_{1}, d_{2}}$ can be uniquely represented in the form

$$
\begin{align*}
f(x, y)= & P(x, y)+\sum_{u>0} \sum_{v>0} b_{u v}\left(\left(x+\frac{1}{2}\right)-u\right)_{+}^{d_{1}}\left(\left(y+\frac{1}{2}\right)-v\right)_{+}^{d_{2}} \\
& +\sum_{u \geq 0} \sum_{v \geq 0} b_{-u-v}\left(-\left(x+\frac{1}{2}\right)-u\right)_{+}^{d_{1}}\left(-\left(y+\frac{1}{2}\right)-v\right)_{+}^{d_{2}} \tag{5}
\end{align*}
$$

with appropriate coefficients $b_{u v}$. Since

$$
\begin{aligned}
h \star f(0,0) & =\int_{\frac{-1}{2}}^{\frac{1}{2}} \int_{\frac{-1}{2}}^{\frac{1}{2}} h(-x,-y) f(x, y) d x d y \\
& =\int_{\frac{-1}{2}}^{\frac{1}{2}} \int_{\frac{-1}{2}}^{\frac{1}{2}} h(-x,-y) P(x, y) d x d y
\end{aligned}
$$

and $f(x, y)$ satisfies $h \star f(0,0)=y_{00}$, the solutions $f(x, y)$ linearly depends on $\left(d_{1}+\right.$ $1)\left(d_{2}+1\right)-1$ parameters.

3 Average Sampling Theorem

THEOREM 1. [Main Theorem] Let $d_{1}, d_{2} \in \mathbb{N}$ and $h(x, y)=h_{1}(x) h_{2}(y)$ satisfy the conditions (2) and (3). Then for a given double sequence of real numbers $\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}} \in$ D_{γ}, there exists a unique bivariate spline $f \in S_{\gamma}$ such that

$$
f \star h(i, j)=y_{i j} i, j \in \mathbb{Z}
$$

In order to prove this theorem, we introduce the vector

$$
G_{h}(z, w)=\left(G_{h_{1}, d_{1}}(z), G_{h_{2}, d_{2}}(w)\right)
$$

where $G_{h_{1}, d_{1}}(z)$ and $G_{h_{2}, d_{2}}(w)$ are Laurent polynomials defined by

$$
\begin{aligned}
G_{h_{1}, d_{1}}(z) & =\int_{\frac{-1}{2}}^{\frac{1}{2}} h_{1}(x) \Upsilon_{z, d_{1}}(x) d x \\
G_{h_{2}, d_{2}}(w) & =\int_{\frac{-1}{2}}^{\frac{1}{2}} h_{2}(y) \Upsilon_{w, d_{2}}(y) d y \\
\Upsilon_{z, d_{1}}(x) & =\sum_{i \in \mathbb{Z}} z^{-i} \beta_{d_{1}}(i-x) \\
\Upsilon_{w, d_{2}}(y) & =\sum_{j \in \mathbb{Z}} w^{-j} \beta_{d_{2}}(j-y) .
\end{aligned}
$$

For the proof we also need the following properties [9]:
LEMMA 3 ([9]). For $d_{1} \in \mathbb{N}, n \in \mathbb{Z}$ and $z \in \mathbb{C} \backslash\{0\}$ we have
(i) $\Upsilon_{z^{-1}, d_{1}}(-x)=\Upsilon_{z, d_{1}}(x)$.
(ii) $\Upsilon_{z, d_{1}}(x+n)=z^{-n} \Upsilon_{z, d_{1}}(x)$.
(iii) $\Upsilon_{z, d_{1}+1}^{\prime}(x)=(1-z) \Upsilon_{z, d_{1}}\left(x+\frac{1}{2}\right)$.
(iv) $\Upsilon_{-1, d_{1}}(x)$ is even, $\Upsilon_{-1, d_{1}}\left(\frac{1}{2}\right)=0$ and $\Upsilon_{-1, d_{1}}(x)>0$ for $x \in\left(\frac{-1}{2}, \frac{1}{2}\right)$.

THEOREM 2. Consider the linear space

$$
\bigwedge:=\left\{f(x, y) \in S_{d_{1}, d_{2}}: h \star f(i, j)=0 \forall i, j \in \mathbb{Z}\right\}
$$

If $z_{1}, z_{2}, \ldots, z_{p}$ are the simple roots of $G_{h_{1}, d_{1}}(z)$ and $w_{1}, w_{2}, \ldots, w_{q}$ are the simple roots of $G_{h_{2}, d_{2}}(w)$ then the set of functions

$$
\left\{\Upsilon_{z_{r}^{-1}, d_{1}} \cdot \Upsilon_{w_{s}^{-1}, d_{2}}: 1 \leq r \leq p, 1 \leq s \leq q\right\}
$$

forms a basis of \bigwedge.
PROOF. We have to find l linearly independent functions in \bigwedge related to the roots of $G_{h}(z, w)$. The dimension of \bigwedge is

$$
l:= \begin{cases}\left(d_{1}+1\right)\left(d_{2}+1\right) & \text { if both } d_{1} \text { and } d_{2} \text { are odd } \\ \left(d_{1}+1\right)\left(d_{2}\right) & \text { if } d_{1} \text { is odd and } d_{2} \text { are even } \\ d_{1}\left(d_{2}+1\right) & \text { if } d_{1} \text { is even and } d_{2} \text { are odd } \\ d_{1} d_{2} & \text { if both } d_{1} \text { and } d_{2} \text { are even }\end{cases}
$$

Now

$$
\begin{aligned}
& \Upsilon_{z_{r}^{-1}, d_{1}} \cdot \Upsilon_{w_{s}^{-1}, d_{2}} \star h(i, j) \\
= & \Upsilon_{z_{r}^{-1}, d_{1}} \star h_{1}(i) \cdot \Upsilon_{w_{s}^{-1}, d_{2}} \star h_{2}(j) \\
= & \int_{-\frac{1}{2}}^{\frac{1}{2}} \Upsilon_{z_{r}^{-1}, d_{1}}(i-u) h_{1}(u) d u \cdot \int_{-\frac{1}{2}}^{\frac{1}{2}} \Upsilon_{w_{s}^{-1}, d_{2}}(i-v) h_{2}(v) d v \\
= & z_{r}^{i} \int_{-\frac{1}{2}}^{\frac{1}{2}} \Upsilon_{z_{r}^{-1}, d_{1}}(-u) h_{1}(u) d u \cdot w_{s}^{j} \int_{-\frac{1}{2}}^{\frac{1}{2}} \Upsilon_{w_{s}^{-1}, d_{2}}(-v) h_{2}(v) d v \\
= & z_{r}^{i} \int_{-\frac{1}{2}}^{\frac{1}{2}} \Upsilon_{z_{r}^{-1}, d_{1}}(u) h_{1}(u) d u \cdot w_{s}^{j} \int_{-\frac{1}{2}}^{\frac{1}{2}} \Upsilon_{w_{s}^{-1}, d_{2}}(v) h_{2}(v) d v \\
= & z_{r}^{i} G_{h_{1}, d_{1}}\left(z_{r}\right) \cdot w_{s}^{j} G_{h_{2}, d_{2}}\left(w_{s}\right) \\
= & 0 \text { for } r=1,2, \ldots, p \text { and } s=1,2, \ldots, q .
\end{aligned}
$$

Now we prove $\Upsilon_{z_{r}^{-1}, d_{1}} \cdot \Upsilon_{w_{s}^{-1}, d_{2}}$ are linearly independent. For, suppose that

$$
\sum_{r=1}^{p} \sum_{s=1}^{q} c_{r s}\left[\Upsilon_{z_{r}^{-1}, d_{1}}(x) \cdot \Upsilon_{w_{s}^{-1}, d_{2}}(y)\right]=0
$$

Then

$$
\sum_{r=1}^{p} \sum_{s=1}^{q} c_{r s}\left[\sum_{i \in \mathbb{Z}} z_{r}^{i} \beta_{d_{1}}(i-x) \sum_{j \in \mathbb{Z}} w_{s}^{j} \beta_{d_{2}}(j-y)\right]=0 .
$$

i.e.,

$$
\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\left[\sum_{r=1}^{p} \sum_{s=1}^{q} c_{r s} z_{r}^{i} w_{s}^{j}\right] \beta_{d_{1}}(i-x) \beta_{d_{2}}(j-y)=0
$$

As $\beta_{d_{1}}(i-x) \beta_{d_{2}}(j-y)$ are linearly independent, $\sum_{r=1}^{p} \sum_{s=1}^{q} c_{r s} z_{r}^{i} w_{s}^{j}=0 \forall i, j \in$ \mathbb{Z}. The above system is a set of linear equations in $c_{i j}$ with coefficient matrix, the Vandermonde's matrix. Since the Vandermonde determinant is not zero, $c_{r s}=0$. Therefore the functions $\Upsilon_{z_{r}^{-1}, d_{1}} \cdot \Upsilon_{w_{s}^{-1}, d_{2}}$ form a basis of Λ.

THEOREM 3. Suppose that $d_{1}, d_{2} \in \mathbb{N}, \gamma \geq 0$ and h is in the separable form satisfying conditions (2) and (3). If the roots of $G_{h_{1}, d_{1}}(z), G_{h_{2}, d_{2}}(w)$ are simple and no roots on the unit circles $|z|=1,|w|=1$ respectively, then for a given double sequence of real numbers $\left\{y_{i j}\right\}_{i, j \in \mathbb{Z}} \in D_{\gamma}$ the problem, of finding a bivariate spline $f \in S_{\gamma}$ satisfying

$$
f \star h(i, j)=y_{i j}, \quad i, j \in \mathbb{Z}
$$

has a unique solution. The solution is of the form

$$
f(x, y)=\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{i j} L_{h_{1}, d_{1}}(x-i) L_{h_{2}, d_{2}}(y-j)
$$

where $L_{h_{1}, d_{1}}(x)=\sum_{i \in \mathbb{Z}} c_{i} \beta_{d_{1}}(x-i), L_{h_{2}, d_{2}}(y)=\sum_{j \in \mathbb{Z}} d_{j} \beta_{d_{2}}(y-j), c_{i}$ and d_{j} are coefficients of the Laurent expansion of $G_{h_{1}, d_{1}}^{-1}(z)$ and $G_{h_{2}, d_{2}}^{-1}(w)$ respectively. The spline $L_{h_{1}, d_{1}}$ and $L_{h_{2}, d_{2}}$ have exponential decay.

PROOF. The coefficients c_{i}, d_{j} are given by $C(z)=G_{h_{1}, d_{1}}^{-1}(z)=\sum_{i \in \mathbb{Z}} c_{i} z^{-i}$ and $D(w)=G_{h_{2}, d_{2}}^{-1}(w)=\sum_{j \in \mathbb{Z}} d_{j} w^{-j}$. These coefficients have exponential decay. Therefore $c_{i}=O\left(\phi_{h_{1}, d_{1}}^{|i|}\right), d_{j}=O\left(\phi_{h_{2}, d_{2}}^{|j|}\right)$, where $\phi_{h_{1}, d_{1}}, \phi_{h_{2}, d_{2}} \in(0,1)$. Hence $L_{h_{1}, d_{1}}=$ $O\left(\phi_{h_{1}, d_{1}}^{|x|}\right)$ and $L_{h_{2}, d_{2}}=O\left(\phi_{h_{2}, d_{2}}^{|y|}\right)$. For $|x|>2,|y|>2$ consider,

$$
\begin{aligned}
& \frac{\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}(|i|+|j|+1)^{\gamma} \phi_{h_{1}, d_{1}}^{|x-i|} \phi_{h_{2}, d_{2}}^{|y-j|}}{(|x|+|y|+1)^{\gamma}} \\
\leq & \frac{\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}(|x-i+1|+|y-j+1|+1)^{\gamma} \phi_{h_{1}, d_{1}}^{|i|-1} \phi_{h_{2}, d_{2}}^{|j|-1}}{(|x|+|y|+1)^{\gamma}} \\
\leq & \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}(1+|i|+|j|)^{\gamma} \phi_{h_{1}, d_{1}}^{|i|-1} \phi_{h_{2}, d_{2}}^{|j|-1}<\infty .
\end{aligned}
$$

Therefore from the order of $y_{i j}$ we get

$$
\begin{aligned}
f(x, y) & =\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{i j} L_{h_{1}, d_{1}}(x-i) L_{h_{2}, d_{2}}(y-j) \\
& =\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}(|i|+|j|+1)^{\gamma} \phi_{h_{1}, d_{1}}^{|x-i|} \phi_{h_{2}, d_{2}}^{|y-j|} \\
& \leq K(|x|+|y|+1)^{\gamma} \forall(x, y) \in \mathbb{R}^{2} .
\end{aligned}
$$

Hence

$$
f(x, y)=O(|x|+|y|+1)^{\gamma} \forall(x, y) \in \mathbb{R}^{2}
$$

Now

$$
\begin{aligned}
f(x, y) & =\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{i j} L_{h_{1}, d_{1}}(x-i) L_{h_{2}, d_{2}}(y-j) \\
& =\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{i j}\left[\sum_{u \in \mathbb{Z}} c_{u} \beta_{d_{1}}(x-u-i)\right]\left[\sum_{v \in \mathbb{Z}} d_{v} \beta_{d_{2}}(y-v-j)\right] \\
& =\sum_{u \in \mathbb{Z}} \sum_{v \in \mathbb{Z}}\left[\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{i j} c_{u-i} d_{v-j}\right] \beta_{d_{1}}(x-u) \beta_{d_{2}}(y-v) .
\end{aligned}
$$

From this we conclude that $f \in S_{\gamma}$. As $C(z) G_{h_{1}, d_{1}}(z)=1$ and $D(w) G_{h_{2}, d_{2}}(w)=1$ we obtain

$$
\begin{aligned}
L_{h_{1}, d_{1}} \star h_{1}(i) & =\sum_{u \in \mathbb{Z}} c_{u}\left[h_{1} \star \beta_{d_{1}}\right](i-u)=\delta_{i} \\
L_{h_{2}, d_{2}} \star h_{2}(j) & =\sum_{v \in \mathbb{Z}} d_{v}\left[h_{2} \star \beta_{d_{2}}\right](j-v)=\delta_{j}
\end{aligned}
$$

Hence we get

$$
\begin{aligned}
f \star h(i, j) & =\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{i j} L_{h_{1}, d_{1}}(x-i) L_{h_{2}, d_{2}}(y-j) \star h(i, j) \\
& =\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} y_{i j}\left[\left[L_{h_{1}, d_{1}}(x-i) \star h_{1}(i)\right]\left[L_{h_{2}, d_{2}}(y-j) \star h_{2}(j)\right]\right] .
\end{aligned}
$$

Clearly $f \star h(i, j)=y_{i j} i, j \in \mathbb{Z}$. We conclude that $f(x, y)$ is a solution. Now we shall show the uniqueness. If the bivariate spline $f, g \in S_{\gamma}$ are two solutions, then by the Theorem 2 we have

$$
f(x, y)-g(x, y)=\sum_{r=1}^{p} \sum_{s=1}^{q} c_{r s}\left[\Upsilon_{z_{r}^{-1}, d_{1}}(x) \cdot \Upsilon_{w_{s}^{-1}, d_{2}}(y)\right]
$$

for some constants $c_{r s}$. Using the behaviour of $\Upsilon_{z_{r}^{-1}, d_{1}}(x) \cdot \Upsilon_{w_{s}^{-1}, d_{2}}(y)$ at $x \rightarrow \pm \infty$ and $y \rightarrow \pm \infty$ we get that $c_{r s}=0$. Therefore $f=g$.

PROOF OF THEOREM 1. In view of Theorem 3, it is sufficient to prove that the roots of $G_{h_{1}, d_{1}}(z)$ and $G_{h_{2}, d_{2}}(w)$ are simple and none of them is on the unit circles $|z|=1$ and $|w|=1$ respectively. We can write

$$
\begin{aligned}
P(z)= & z^{\frac{p}{2}} G_{h_{1}, d_{1}}(z) \\
= & h_{1} \star \beta_{d_{1}}\left(\frac{p}{2}\right)+h_{1} \star \beta_{d_{1}}\left(\frac{p}{2}-1\right) z+h_{1} \star \beta_{d_{1}}\left(\frac{p}{2}-2\right) z^{2} \\
& +\ldots+h_{1} \star \beta_{d_{1}}\left(-\frac{p}{2}\right) z^{p}
\end{aligned}
$$

where

$$
p:= \begin{cases}d_{1}+1 & \text { if } d_{1} \text { is odd } \\ d_{1} & \text { if } d_{1} \text { is even }\end{cases}
$$

Also

$$
\begin{aligned}
Q(w)= & w^{\frac{q}{2}} G_{h_{2}, d_{2}}(w) \\
= & h_{2} \star \beta_{d_{2}}\left(\frac{q}{2}\right)+h_{2} \star \beta_{d_{2}}\left(\frac{q}{2}-1\right) w+h_{2} \star \beta_{d_{2}}\left(\frac{q}{2}-2\right) w^{2} \\
& +\ldots+h_{2} \star \beta_{d_{2}}\left(-\frac{q}{2}\right) w^{q}
\end{aligned}
$$

where

$$
q:= \begin{cases}d_{2}+1 & \text { if } d_{2} \text { is odd } \\ d_{2} & \text { if } d_{2} \text { is odd }\end{cases}
$$

It is shown in [5] that the roots of $G_{h_{1}, d_{1}}(z)$ and $G_{h_{2}, d_{2}}(w)$ are simple and none of them is on the unit circles $|z|=1$ and $|w|=1$ respectively.

Acknowledgment. The first author would like to thank the Management of SSN College of Engineering, Kalavakkam-603 110, Tamil Nadu, India.

References

[1] A. Aldroubi and M. Unser, Sampling procedure in function spaces and asymptotic equivalence with Shannon's sampling theory, Numer. Funct. Anal. Optim., 15(1994), 1-21.
[2] A. Aldroubi and K.Gröchenig, Nonuniform sampling and reconstruction in shiftinvariant spaces, SIAM Rev., 43(2001), 585-620.
[3] C. K. Chui, Multivariate Splines, SIAM Regional Conference series in Applied Mathematics, 1988.
[4] C. de Boor, K. Höllig and S. Riemenschneider, Box Splines, Applied Mathematical Sciences, 98. Springer-Verlag, New York, 1993.
[5] P. Devaraj and S. Yugesh, On the zeros of the generalized Euler-Frobenius Laurent polynomial and reconstruction of cardinal splines of polynomial growth from local average samples, J. Math. Anal. Appl., 432(2015), 983-993.
[6] A. G. Garcia and G. Perez-Villalon, Multivariate generalized sampling in shift-invariant spaces and its approximation properties, J. Math. Anal. Appl., 355(2009), 397-413.
[7] A. G. Garcia, M. J. Munoz-Bouzo and G. Perez-Villalon, Regular multivariate sampling and approximation in L^{p} shift-invariant spaces , J. Math. Anal. Appl., $380(2011)$, 607-627.
[8] J. Xian and W. Sun, Local sampling and reconstruction in shift-invariant spaces and their applications in spline subspaces, Numer. Funct. Anal. Optim., 31(2010), 366-386.
[9] G. Perez-Villalon and A. Portal, Reconstruction of splines from local average samples, Appl. Math. Lett., 25(2012), 1315-1319.
[10] I. J. Schoenberg, Cardinal Spline Interpolation, SIAM Regional Conference series in Applied Mathematics, 1973.

[^0]: *Mathematics Subject Classifications: 42A15, 94A20.
 ${ }^{\dagger}$ Department of Mathematics, SSN College of Engineering, Kalavakkam-603 110, Tamil Nadu, India, E-mail: mathsyugesh@gmail.com, yugeshs@ssn.edu.in
 \ddagger School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India, E-mail: devarajp@iisertvm.ac.in

