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Abstract
We analyse the following local average sampling problem for two variables:
Let h be a nonnegative function supported in the rectangle [—%, %] X [—%, %} .

Given a sequence of samples {y;;}i,jez, find a bivariate spline f(z,y) such that
(f xh)(4,4) = vyi;. It is shown that this problem has infinitely many solutions.
Further, under some realistic conditions on A it is shown that the above said
problem has unique solution when both samples {y;;} and the spline f are of
polynomial growth.

1 Introduction

The extension of classical Whittaker-Shannon-Kotel’'nikov sampling formula for k-
dimension may be stated as follows [8, 6, 7]: Any function f bandlimited to the k-
dimensional cube [—1, 1]* can be reconstructed from its sequence of samples { f(n)},, ¢z
using the formula

fltr,ta, ... t,) = Z fla)sinc(t; — aq)sinc(ta — ag) ... sinc(ty — ag),
a€Zk

sin(z)

. Although the bandlimited con-

dition is eminently useful, it is not always realis‘égic, since a bandlimited signal is of
infinite duration. It is natural to investigate other signal classes for which a sampling
theorem holds. The reconstruction has been investigated for non-bandlimited functions
in[1,2,5,6,7, 8,9, 10]. In this paper, we consider the class of bivariate splines of
polynomial growth.

The B-splines with equally spaced knots in two variables is defined [3, 4] as

6(11112 (z,y) = /Bdl (ﬂf)ﬂd2 (¥),
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where the sinc function is defined by sinc(z) =
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48 Reconstruction of Bivariate Cardinal Splines

where 3, is the cardinal central B-spline of degree d in single variable which is given
by

Ba = X[-1,1] *~~'*X[7%,%]7(d+ 1 terms)
and % denotes the convolution. 3, 4, is a tensor-product of two B-splines and its
piecewise pieces are separated by a rectangular partition. Let Sg, 4, be the class of
functions f(x,y) satisfying the following properties:

au+v
Oxvy®

continuous in the entire plane R2.

1. The d;d, partial derivatives flz,y),0<u<ds —1,0<v<dy—1are

2. Let II, , denote set of all polynomials in  and y of degree < (d; + da), i.e.,

di ds

I, = {Z Zawx”y” D yy € R} .
u=0v=0

In each square [i —1,4] x [j — 1, 7], f(z,y) € II; , for both d; and ds odd. If d; is

odd and dy is even, then in each square [i — 1,4 x [+ 3 — 1,5+ 3], f(z,y) € I,.

In each square [i + 3 — 1,i+ 3] X [j — 1,5], f(z,y) € I, for di even and dy odd.

Also, when d; and dy are even, then in each square [i+ % -1, H—%] X [j—i—%— 1,5+ %]7

f(z,y) €1y y.
We note that II, , depends on (dy + 1)(d2 + 1) parameters and we can write

Say.a, = { flz,y) = Zzaijﬁdl(x —1)Bay(y—J) rai; €R

i€Z jET

2 Bivariate Cardinal Spline Interpolation

The bivariate cardinal spline interpolation problem defined in [10] is as follows: Given
a double sequence {y;;}i jez of real numbers, find a bivariate spline f € Sy, 4, such
that

f(i’j):yija i,j € L. (1)

It can be easily checked that for d; = dy = 1, this problem has a unique solution.

LEMMA 1. Let d1,ds > 1. Then given a double sequence {y;; }: jez of real numbers,
there are infinitely many bivariate splines f € Sy, 4, such that f(i,7) = y,;, for 4,5 € Z.
Moreover, the set of all such solutions in Sg, 4, form a linear manifold of dimension
(d1 +1)(d2 + 1) — 4 when both di, ds are odd or d; is odd and ds is even or d; is even
and dy is odd and of dimension (d; + 1)(dz + 1) — 3 when both d;, dy are even.

PROOF. Case (i): dy,d2 are odd. In this case every f(z,y) € S4, 4, can be uniquely
represented in the form

F@,y) =Pay)+ > Y aw@—w)Py—v)P+> D awo(-z—u)P(-y—v)P,

u>0v>0 u>0v>0
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where P(z,y) € I, ,, ay, are constants, and x4 := maxz(0,z). Since f(z,y) = P(z,y)
in [0,1] x [0,1], we have the relations, P(0,0) = yoo, P(1,0) = y10, P(0,1) = yo1
and P(1,1) = y11. The coefficients a,, are uniquely determined by the interpolation
conditions f(i,7) = vij, @,j € Z. Therefore f(x,y) linearly depends on (d; + 1)(d2 +
1) — 4 parameters in P(z,y).

Case(ii): dy is odd and dj is even. Every f(z,y) € Sq, 4, has a unique representation
of the form

flz,y) = P(x’yHZZauv(x—u)il(<y+;>_v>d2

u>0v>0 +
153) S PR B

O—y—n(—T —U) Y Y 5 v
u>0v>0 +

Therefore if f(x,y) satisfies equation (1), then P(0,0) = yoo, P(1,0) = y10, P(0,1) =
yo1 and P(1,1) = y11. As in the previous case the coefficients a,, are calculated from
the interpolation conditions 1. Hence f(z,y) linearly depends on (dy + 1)(de + 1) — 4
parameters.

Case(iii): dy is even and dy is odd. In this case every f(z,y) € Sg, .4, can be
uniquely written in the form

o) = Pan s X an ((e+5) ) w-ut

u>0v>0
dy
1
+ S (< (s43) ~u) oot
u>00v>0 +

In this case also P(0,0) = yoo, P(1,0) = y10, P(0,1) = yo1 and P(1,1) = y11. As in
the previous cases, f(z,y) linearly depends on (d; + 1)(d2 + 1) — 4 parameters.

Case(iv): Both dy and ds are even. Every f(z,y) € Sq, 4, has unique representation
of the form

fla,y) = Pa,y)+ Y > bu ((x+;)_u>il ((ZH_;)_U)@

u>0v>0 +

1 dy 1 do
BB ()
u>0v>0 + +
where P(xz,y) € Il . Then P(z,y) satisfies the relations P(0,0) = yoo, P(1,0) = y10
and P(0,1) = yo1. Thus three coefficients in P(z,y) can be uniquely found from these
relations. The coefficients b, are uniquely determined using the conditions f(i,7) =
Yij, 1,7 € Z. Therefore, in this case f(x,y) linearly depends on (di + 1)(d2 +1) — 3
parameters.

In order to obtain uniqueness of solution Schoenberg [10] has applied the following
power growth condition on the bivariate cardinal spline and the bi-infinite samples:

Sy ={f(z,y) € Saya, = f(w,y) = O(lz| + |y| +1)7},
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Dy = {{yijijez s yi; = O(i] + [5] +1)7}.

Further, he has shown in [10] that for v > 0 and for a given double sequence of real
numbers {y;;}ijcz € D, there exists a unique bivariate spline f € S, such that
fi,7) =iz, 4,5 € L.

In practice, the available samples are not always exact. The samples of f are the
local averages of the function f at (m,n). i.e.,

m+2
/ / h(n —x,m — y)dzdy,

1
2

where h is suitable weight function which reflects the characteristic of the measurement
process.

Average sampling problem:

Given a sequence of real numbers{y;;}; jez , find a bivariate spline f € Sy, 4, such
that f % h(i,j) = vij, ©,J € Z, where the averaging function h satisfies

supp(h) C {—;ﬂ x {—;ﬂ and h(z,y) >0, 2)

()</ / h(z,y)dzdy < oo and 0</ / (z,y)dzdy < 0. (3)
373

We show that this average sampling problem has infinitely many solutions for every
d. Further, by applying the polynomial growth conditions as that of [10], the uniqueness
is obtained.

LEMMA 2. If the averaging function h satisfies (2) and (3), then for a given
double sequence of real numbers {y;;}; jez, there are infinitely many bivariate splines
f € 84, 4, such that

f*h(Z,]):y”, ’L,_]EZ (4)
The set of such solutions in Sy, 4, form a linear manifold of dimension (dy + 1)(dz + 1)

if dq,ds are odd and of dimension (d; + 1)(d2 + 1) — 1 for the other three cases.

PROOF. Case(i): Both di and ds are odd. In this case, the functions f € Sy, 4,
can be uniquely represented in the form

f( y $y +Zzauv dl dz“‘zza—u v z_u)il( Z/—v)fif

u>0v>0 u>0v>0
with appropriate coefficients a,, and P(z,y) = f(x,y) in [0, 1] %[0, 1]. If f(x,y) satisfies
(4), then fxh(1,1) =y 1. L€,

h*f(1,1):h*P(1,1)+au/§/l Bl — 2,1 — )@ — 1) (y — 1) ddy

2 2
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and ff ff h(l—2,1—y)(z—1)"(y — 1)%dady > 0. From this the coefficient a;; can
be uniquely determined such that fxh(1,1) =y 1. Similarly the other coefficients a;;
can be uniquely determined using the other conditions of f % h(i,7) = y; ;. Thus the
solutions linearly depends on (dy + 1)(d2 + 1) parameters.

Case(ii): d; is odd and dy is even. Then every f(z,y) € Sq, 4, can be uniquely
written in the form

1 @

faw) = P+ 3 Y ante -t (645 -0)
u>0v>0 +
a —z—u)" (- 1 - dz.

+u§z:ov§:20 —u—u( )4 ( (y+ 2) >+

If f(z,y) satisfies equation (4), then in this case

hx £(0,0) = /7 /7 h(—z, —y) P(z, y)dzdy.

The coefficients a,, can be found from the conditions (4). Hence f(z,y) linearly
depends on (d; + 1)(dy + 1) — 1 parameters.

Case(iii): dy is even and dy is odd. In this case every function f € Sy, 4, has a
unique representation of the form

1 4
fa = Pea)+ XY o @ty -u) G0
+

u>0v>0

2D amu (—(x +3)- u)dl (—y — o).

u>0v>0 +

In this case the condition (4) implies P(x,y) satisfies

hx f£(0,0) = /jl /il h(—z,—y)P(z,y)dzdy.

Therefore f(x,y) linearly depends on (dy 4+ 1)(d2 + 1) — 1 coefficients.
Case(iv): Suppose that both dy and dy are even. Then every function f € Sy, 4,
can be uniquely represented in the form

f@y) = Pl@y)+>. > bu <<x +3)- “)i ((y ) ) ;

u>0v>0 +

P b (o - u)dl (~o+3)- v)d2 (5)

u>00v>0 + +
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with appropriate coefficients b,,. Since

B /7 7 h(=x,—y) P(z,y)dady

and f(z,y) satisfies h x f(0,0) = yoo, the solutions f(z,y) linearly depends on (d; +
1)(d2 + 1) — 1 parameters.
3 Average Sampling Theorem

THEOREM 1. [Main Theorem] Let dy,dy € N and h(x,y) = hi(x)ha(y) satisfy the
conditions (2) and (3). Then for a given double sequence of real numbers {y;;}i jez €
D, , there exists a unique bivariate spline f € S, such that

f*h(l,]) :ylj Za] € Z.

In order to prove this theorem, we introduce the vector

Gn (27 ’LU) = (Ghl,dl (Z), Ghz,dQ (w))7

where Gy, 4,(2) and G}, 4, (w) are Laurent polynomials defined by

Ghan(z) = / ha (2)Y 2 a, (2)d,

2

[

1
2

Ghz,d2<w) = /;1 h2(y)Tw,d2(y)dy7
Yo (z) = Zz_iﬁdl(i—x),
€L
Tua(y) = Y w B0 —y).
JEZ

For the proof we also need the following properties [9]:

LEMMA 3 ([9]). For d; € Nyn € Z and z € C\ {0} we have

(i) Toor g (—2) =T, (2).
(i) Y.g (x+n)=2""7,4 ().
(iii) Y% 4 q(2) = (1—2)T.a, (@ + ).
(iv) Y14, (x) is even, Ty 4,(3) =0 and T_y 4, (z) > 0 for z € (5, 3).
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THEOREM 2. Consider the linear space
/\ = {f(x7y) € Sd17d2 : h*f(zv.7> = OV’L,j S Z}

If 21, 29, .. ., zp are the simple roots of G, 4, (2) and w1, wy, ..., w, are the simple roots
of G, 4, (w) then the set of functions

{Tz;1d1 ~Tw;1d2:1§r§p,1§s§q}
forms a basis of A.

PROOF. We have to find [ linearly independent functions in A related to the roots
of Gp(z,w). The dimension of A is

(di +1)(d2 +1) if both dy and dy are odd,

L (d1 + 1)(d2) if d; is odd and dy are even,
) di(da+1) if d; is even and dy are odd,
dids if both d; and dy are even,

Now
Tzfl,(h ' Tw_:l,dQ * h(Z7])
= T, g xhi(i)- Ty g % ha(j)

1 1
_ / Tz;l,dl(i—u)hl(u)du-/rz Ty o1 4, (i — 0)ha(v)dv

1
2

W=

=

= z;/ Tzr_17dl(—u)h1(u)du~wg 'I' wota, (V) h2(v)dv

_ g
74/

= ZZ‘Ghl,dl (ZT) : nghz,d2 (ws)
= Oforr=1,2,...,pand s =1,2,...,¢q

N

D=
[SIE

T,y (Whi(u)du - wl / T -1 4, (V)h2(v)dv

[N

Now we prove Tz;1 4 ngl 4, are linearly independent. For, suppose that

53 e [T ) T 0] =0

r=1

—

')

Then
P q
Z Z Crs Z Ziﬁdl (Z - LE) Z wgﬁdz (.7 - y) =0.
r=1s=1 1€EZL JEZ
ie.,

[ZZCNZ w ] By, (i — x)Bg,(j —y) = 0.

r=1s=1

N

1E€EZL jE
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As B4, (i — x)Bq,(j — y) are linearly independent, > | 37 ¢, ziwd = 0V i,j €
Z. The above system is a set of linear equations in c¢;; with coeﬁiment matrix, the
Vandermonde’s matrix. Since the Vandermonde determinant is not zero, ¢,.s = O.
Therefore the functions T_-1 ;, - T, -1 ; form a basis of A.

THEOREM 3. Suppose that di,ds € N,+v > 0 and h is in the separable form
satisfying conditions (2) and (3). If the roots of G, 4, (2),Gh,,d, (w) are simple and no
roots on the unit circles |z| = 1,|w| = 1 respectively, then for a given double sequence
of real numbers {y;;}; jez € D~ the problem, of finding a bivariate spline f € S,
satisfying

f*h<27]) = Yij» ’L,] €z
has a unique solution. The solution is of the form

y> = Z Zyithlvdl (.CI? - i)Lhz,dQ (y - .7)7

i€ jETL

where L, 4, (.T}) = EiEZ Ciﬂdl ($ - 7;)’ Lh27d2(y) = ZjeZ dj/Bdg(y - .7)7 ¢; and dj are
coefficients of the Laurent expansion of Ggll 4, () and G,:Ql 4, (W) respectively. The
spline Ly, 4, and Ly, 4,have exponential decay.

PROOF. The coefficients ¢;,d; are given by C(z) = G,:lldl( ) = ez iz " and
D(w) = G,;l dz( w) = Zjezd w~7. These coefficients have exponential decay. There-

fore ¢; = O((;Sh1 dl) ((;Slifl,dz), where ¢, 4,0, 4, € (0,1). Hence Ly, 4, =
O( ‘hzll’dl) and Ly, 4, = O((b‘é"@). For |x| > 2,|y| > 2 consider,

Siez Xjez (il + 131+ 17el ol )

(e + Tyl + 1)
. . i|—1 j|—1
o SieaSenlle — i 4y =i+ 1+ 10500 8,
- (Il + Tyl + 1)
1 1
< DD WG g 0, < oo

i€EZL JEL

Therefore from the order of y;; we get

f(xa y) = Z Zyithh(h (I - i)Lhmd'z (y - ])

i€Z jET

= DN (il i+ 1 e

I€EZL JEL
K(lz] + |yl +1)7 ¥ (z,y) € R%

IN

Hence
f(@,y) = O(lz| + |yl + 1) V(z,y) € R*.
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Now
f@y) = D yiilna (@ =) Lnga,(y — )
icZ jel
Y [t zﬂ [z Bty j>]
i€Z JEL u€EZ VEZ

= Y I vijcuiduj| Bay(x —u)Bg,(y — v).

UEZVEL | i€EL JEL

From this we conclude that f € S,. As C(2)Gh, 4, (2) =1 and D(w)Gh,,q4,(w) =1 we
obtain

th,dl *hl(i) = Zcu[hl *Bdl](i - U) =9,

UEL
Liya % ha(f) =Y dulho * B4,)(j —v) = 6.
VEL

Hence we get

Fxh(id) = D03 Yiilnyar (v — ) Lnga, (y — 5) % b, )
i€l jEL
= > i [Lnyay (x = ) % b ()] [Ty a5 (y — 5) % ha ()] -
i€Z jEL

Clearly f h(i,7) = vij 9,j € Z. We conclude that f(z,y) is a solution. Now we shall
show the uniqueness. If the bivariate spline f,g € S, are two solutions, then by the
Theorem 2 we have

P

f(xay) - g(xa y) = Z ZCTS {Tzfl,dl (x) : T’w;l,dz (y) )

r=1s=1

for some constants c,s. Using the behaviour of ¥ -1 ; (z)-T -1 4 (y) at © — +oo and
y — oo we get that ¢,.; = 0. Therefore f = g.

PROOF OF THEOREM 1. In view of Theorem 3, it is sufficient to prove that the
roots of G, 4,(2) and G}, 4, (w) are simple and none of them is on the unit circles
|z| =1 and |w| = 1 respectively. We can write

P(Z) = Zgthdl(z)

= hy*fy, (g)wu*ﬁdl (gfl>z+h1*6dl (272)22

Foo+ % By, (7%)21,’

where
L dl +1 if d1 is Odd7
p= di if d; is even.
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Also
Qw) = w?Ghya,(w)
= hax B (3) +ha By, (3= 1)wt han iy, (5 -2) w?
Foothox By, (,g) W,
where

do +1 if dy is odd,
d2 if d2 is odd.

It is shown in [5] that the roots of Gj, 4, (2) and G}, 4, (w) are simple and none of them
is on the unit circles |z| = 1 and |w| = 1 respectively.
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