Uniqueness And Value Distribution Of Differences Of Meromorphic Functions*

Sujoy Majumder ${ }^{\dagger}$

Received 14 June 2016

Abstract

The purpose of the paper is to study the uniqueness problems of difference polynomials of meromorphic functions sharing a small function. The results of the paper improve and generalize the recent results due to Liu, et al. [11] and Liu, et al. [12].

1 Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic functions in the complex plane.

We adopt the standard notations of value distribution theory (see [6]). For a nonconstant meromorphic function f, we denote by $T(r, f)$ the Nevanlinna characteristic of f and by $S(r, f)$ any quantity satisfying $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$ possibly outside a set of finite logarithmic measure. We denote by $T(r)$ the maximum of $T(r, F)$ and $T(r, G)$. The notation $S(r)$ denotes any quantity satisfying $S(r)=o(T(r))$ as $r \longrightarrow \infty$, outside of a possible exceptional set of finite logarithmic measure.

A meromorphic function $a(z)$ is called a small function with respect to f, provided that $T(r, a)=S(r, f)$. The order of f is defined by

$$
\sigma(f)=\limsup _{r \longrightarrow \infty} \frac{\log T(r, f)}{\log r} .
$$

Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions. Let $a(z)$ be a small function with respect to $f(z)$ and $g(z)$. We say that $f(z)$ and $g(z)$ share $a(z)$ CM (counting multiplicities) if $f(z)-a(z)$ and $g(z)-a(z)$ have the same zeros with the same multiplicities and we say that $f(z), g(z)$ share $a(z)$ IM (ignoring multiplicities) if we do not consider the multiplicities.

Recently, the topics of difference equations and difference products in complex plane \mathbb{C} has attracted many mathematicians. Many papers have focused on value distribution of differences and differences operators analogues of Nevanlinna theory ($[2,4,9,10]$) and many people dealt with the uniqueness problems related to meromorphic functions and their shifts or their difference operators and obtained some interesting results ($[11,12,13,16])$.

[^0]In 2011, K. Liu, X. L. Liu and T. B. Cao studied the uniqueness of the difference monomials and obtained the following results.

THEOREM A ([11]). Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with finite order. Suppose that $c \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$. If $n \geq 14, f^{n}(z) f(z+c)$ and $g^{n}(z) g(z+c)$ share 1 CM , then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z) \equiv t$, where $t^{n+1}=1$.

THEOREM B ([11]). Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with finite order. Suppose that $c \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$. If $n \geq 26, f^{n}(z) f(z+c)$ and $g^{n}(z) g(z+c)$ share 1 IM , then $f(z) \equiv t g(z)$ or $f(z) g(z) \equiv t$, where $t^{n+1}=1$.

We now explain the notation of weighted sharing as introduced in [8].
DEFINITION $1([8])$. Let $k \in \mathbb{N} \cup\{0\} \cup\{\infty\}$. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

In 2015, Y. Liu, J. P. Wang and F. H. Liu improved Theorems A, B and obtained the following results.

THEOREM C ([12]). Let $c \in \mathbb{C} \backslash\{0\}$ and let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with finite order, and $n(\geq 14), k(\geq 3)$ be two positive integers. If $E_{k}\left(1, f^{n}(z) f(z+c)\right)=E_{k}\left(1, g^{n}(z) g(z+c)\right)$, then $f(z) \equiv t_{1} g(z)$ or $f(z) g(z) \equiv t_{2}$ for some constants t_{1} and t_{2} satisfying $t_{1}^{n+1}=1$ and $t_{2}^{n+1}=1$.

THEOREM $\mathrm{D}([12])$. Let $c \in \mathbb{C} \backslash\{0\}$ and let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with finite order, and $n(\geq 16)$ be a positive integer. If $E_{2}\left(1, f^{n}(z) f(z+c)\right)=E_{2}\left(1, g^{n}(z) g(z+c)\right)$, then $f(z) \equiv t_{1} g(z)$ or $f(z) g(z) \equiv t_{2}$, for some constants t_{1} and t_{2} satisfying $t_{1}^{n+1}=1$ and $t_{2}^{n+1}=1$.

THEOREM $\mathrm{E}([12])$. Let $c \in \mathbb{C} \backslash\{0\}$ and let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with finite order, and $n(\geq 22)$ be a positive integer. If $E_{1}\left(1, f^{n}(z) f(z+c)\right)=E_{1}\left(1, g^{n}(z) g(z+c)\right)$, then $f(z) \equiv t_{1} g(z)$ or $f(z) g(z) \equiv t_{2}$, for some constants t_{1} and t_{2} satisfying $t_{1}^{n+1}=1$ and $t_{2}^{n+1}=1$.

Now it is quite natural to ask the following question.
QUESTION 1. What can be said if the sharing value 1 in Theorems C, D and E is replaced by a nonzero polynomial ?

Now taking the possible answer of the above question into background we obtain the following results.

THEOREM 1. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ be such that $n \geq 14$. Let $p(z)(\not \equiv 0)$ be a polynomial such that $\operatorname{deg}(p)<(n-1) / 2$. If $f^{n}(z) f(z+c)-p(z)$ and $g^{n}(z) g(z+c)-p(z)$ share $(0,2)$, then one of the following two cases holds:
(1) $f(z) \equiv \operatorname{tg}(z)$ for some constant t such that $t^{n+1}=1$,
(2) $f(z) g(z) \equiv t$, where $p(z)$ reduces to a nonzero constant c and t is a constant such that $t^{n+1}=c^{2}$

THEOREM 2. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ be such that $n \geq 16$. Let $p(z)(\not \equiv 0)$ be a polynomial such that $\operatorname{deg}(p)<(n-1) / 2$. Suppose $f^{n}(z) f(z+c)-p(z)$ and $g^{n}(z) g(z+c)-p(z)$ share $(0,1)$. Then conclusion of Theorem 1 holds.

THEOREM 3. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ be such that $n \geq 26$. Let $p(z)(\not \equiv 0)$ be a polynomial such that $\operatorname{deg}(p)<(n-1) / 2$. Suppose $f^{n}(z) f(z+c)-p(z)$ and $g^{n}(z) g(z+c)-p(z)$ share $(0,0)$. Then conclusion of Theorem 1 holds.

We now make the following definitions and notations which are used in the paper.
DEFINITION $2([7])$. Let $a \in \mathbb{C} \cup\{\infty\}$. For $p \in \mathbb{N}$ we denote by $N(r, a ; f \mid \leq$ p) the counting function of those a-points of f (counted with multiplicities) whose multiplicities are not greater than p. By $\bar{N}(r, a ; f \mid \leq p)$ we denote the corresponding reduced counting function.

In an analogous manner we can define $N(r, a ; f \mid \geq p)$ and $\bar{N}(r, a ; f \mid \geq p)$.
DEFINITION 3 ([8]). Let $k \in \mathbb{N} \cup\{\infty\}$. We denote by $N_{k}(r, a ; f)$ the counting function of a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and k times if $m>k$. Then

$$
N_{k}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)+\ldots+\bar{N}(r, a ; f \mid \geq k)
$$

Clearly $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.

2 Lemma

In this section we present the lemma which will be needed in the sequel.
Let F, G be two non-constant meromorphic functions. Henceforth we shall denote by H the following function

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{1}
\end{equation*}
$$

LEMMA 1 ([14]). Let f be a non-constant meromorphic function and let $a_{n}(z)(\not \equiv$ $0), a_{n-1}(z), \ldots, a_{0}(z)$ be meromorphic functions such that $T\left(r, a_{i}(z)\right)=S(r, f)$ for $i=0,1,2, \ldots, n$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

LEMMA 2 ([2]). Let $f(z)$ be a meromorphic function of finite order σ, and let $c \in \mathbb{C} \backslash\{0\}$ be fixed. Then for each $\varepsilon>0$, we have

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)+m\left(r, \frac{f(z)}{f(z+c)}\right)=O\left(r^{\sigma-1+\varepsilon}\right)
$$

The following lemma is a slight modifications of the original version (Theorem 2.1 of [2])

LEMMA 3. Let $f(z)$ be a transcendental meromorphic function of finite order, $c \in \mathbb{C} \backslash\{0\}$ be fixed. Then

$$
T(r, f(z+c))=T(r, f)+S(r, f)
$$

LEMMA 4 ([3]). Let f be a non-constant meromorphic function of finite order and $c \in \mathbb{C}$. Then

$$
\begin{aligned}
& N(r, 0 ; f(z+c)) \leq N(r, 0 ; f(z))+S(r, f), \quad N(r, \infty ; f(z+c)) \leq N(r, \infty ; f)+S(r, f) \\
& \bar{N}(r, 0 ; f(z+c)) \leq \bar{N}(r, 0 ; f(z))+S(r, f), \quad \bar{N}(r, \infty ; f(z+c)) \leq \bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

Taking $m=0$ in Lemma 2.4 [11], we obtain the following lemma.
LEMMA 5. Let $f(z)$ be a transcendental meromorphic function of finite order, $c \in \mathbb{C} \backslash\{0\}$ be fixed and let $\Phi(z)=f^{n}(z) f(z+c)$, where $n \in \mathbb{N}$. Then we have

$$
(n-1) T(r, f) \leq T(r, \Phi)+S(r, f)
$$

LEMMA 6. Let $f(z), g(z)$ be two transcendental meromorphic functions of finite order, $c \in \mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}$ such that $n \geq 2$. Let $p(z)$ be a nonzero polynomial such that $\operatorname{deg}(p)<(n-1) / 2$. Then
(1) if $\operatorname{deg}(p) \geq 1$, then $f^{n}(z) f(z+c) g^{n}(z) g(z+c) \not \equiv p^{2}(z)$;
(2) if $p(z)=c \in \mathbb{C} \backslash\{0\}$, then the relation $f^{n}(z) f(z+c) g^{n}(z) g(z+c) \equiv p^{2}(z)$ always implies that $f g=t$, where t is a constant such that $t^{n+1}=c^{2}$.

PROOF. Suppose

$$
\begin{equation*}
f^{n}(z) f(z+c) g^{n}(z) g(z+c) \equiv p^{2}(z) . \tag{2}
\end{equation*}
$$

Let $h_{1}=f g$. Then by (2), we have

$$
\begin{equation*}
h_{1}^{n}(z) \equiv \frac{p^{2}(z)}{h_{1}(z+c)} . \tag{3}
\end{equation*}
$$

We now consider following two cases.
Case 1. Suppose h_{1} is a transcendental meromorphic function. Now by Lemmas 1,2 and 4 , we get

$$
\begin{aligned}
n T\left(r, h_{1}\right)=T\left(r, h_{1}^{n}\right)+S\left(r, h_{1}\right) & =T\left(r, \frac{p^{2}}{h_{1}(z+c)}\right)+S\left(r, h_{1}\right) \\
& \leq N\left(r, 0 ; h_{1}(z+c)\right)+m\left(r, \frac{1}{h_{1}(z+c)}\right)+S\left(r, h_{1}\right) \\
& \leq N\left(r, 0 ; h_{1}(z)\right)+m\left(r, \frac{1}{h_{1}(z)}\right)+S\left(r, h_{1}\right) \\
& \leq T\left(r, h_{1}\right)+S\left(r, h_{1}\right),
\end{aligned}
$$

which is a contradiction.
Case 2. Suppose h_{1} is a rational function. Let

$$
\begin{equation*}
h_{1}=\frac{h_{2}}{h_{3}}, \tag{4}
\end{equation*}
$$

where h_{2} and h_{3} are two nonzero relatively prime polynomials. By (4), we have

$$
\begin{equation*}
T\left(r, h_{1}\right)=\max \left\{\operatorname{deg}\left(h_{2}\right), \operatorname{deg}\left(h_{3}\right)\right\} \log r+O(1) . \tag{5}
\end{equation*}
$$

Now by (3)-(5), we have

$$
\begin{align*}
& n \max \left\{\operatorname{deg}\left(h_{2}\right), \operatorname{deg}\left(h_{3}\right)\right\} \log r \tag{6}\\
= & T\left(r, h_{1}^{n}\right)+O(1) \\
\leq & T\left(r, h_{1}(z+c)\right)+2 T(r, p)+O(1) \\
= & \max \left\{\operatorname{deg}\left(h_{2}\right), \operatorname{deg}\left(h_{3}\right)\right\} \log r+2 \operatorname{deg}(p) \log r+O(1) .
\end{align*}
$$

We see that $\max \left\{\operatorname{deg}\left(h_{2}\right), \operatorname{deg}\left(h_{3}\right)\right\} \geq 1$. Now by (6), we deduce that $(n-1) / 2 \leq \operatorname{deg}(p)$, which contradicts our assumption that $\operatorname{deg}(p)<(n-1) / 2$. Hence h_{1} must be a nonzero constant. Let

$$
\begin{equation*}
h_{1}=t \in \mathbb{C} \backslash\{0\} . \tag{7}
\end{equation*}
$$

Now when $\operatorname{deg}(p) \geq 1$, by (3) and (7), we arrive at a contradiction. Therefore in this case we have $f^{n}(z) f(z+c) g^{n} g(z+c) \not \equiv p^{2}(z)$. Suppose $p(z)=c \in \mathbb{C} \backslash\{0\}$. So by (3) we see that $h_{1}^{n+1} \equiv c^{2}$. By (7) we get $t^{n+1} \equiv c^{2}$. This completes the proof.

LEMMA 7 ([8]). Let f and g be two non-constant meromorphic functions sharing $(1,2)$. Then one of the following holds:
(i) $T(r, f) \leq N_{2}(r, 0 ; f)+N_{2}(r, 0 ; g)+N_{2}(r, \infty ; f)+N_{2}(r, \infty ; g)+S(r, f)+S(r, g)$,
(ii) $f g \equiv 1$,
(iii) $f \equiv g$.

LEMMA 8 ([1]). Let F and G be two non-constant meromorphic functions sharing $(1,1)$ and $H \not \equiv 0$. Then

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+\frac{1}{2} \bar{N}(r, 0 ; F) \\
& +\frac{1}{2} \bar{N}(r, \infty ; F)+S(r, F)+S(r, G)
\end{aligned}
$$

LEMMA 9 ([1]). Let F and G be two non-constant meromorphic functions sharing $(1,0)$ and $H \not \equiv 0$. Then

$$
\begin{aligned}
T(r, F) \leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+2 \bar{N}(r, 0 ; F) \\
& +\bar{N}(r, 0 ; G)+2 \bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+S(r, F)+S(r, G)
\end{aligned}
$$

LEMMA 10 ([15]). Let H be defined as in (1). If $H \equiv 0$ and

$$
\limsup _{r \longrightarrow \infty} \frac{\bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)}{T(r)}<1, \quad r \in I
$$

where I is a set of infinite linear measure, then $F \equiv G$ or $F . G \equiv 1$.

3 Proofs of the Theorems

PROOF OF THEOREM 1. Let

$$
F(z)=\frac{f^{n}(z) f(z+c)}{p(z)} \text { and } G(z)=\frac{g^{n}(z) g(z+c)}{p(z)}
$$

Then F and G share $(1,2)$ except for the zeros of $p(z)$. Now by Lemma 7 , we see that one of the following three cases holds.

Case 1. Suppose

$$
T(r, F) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+S(r, F)+S(r, G)
$$

Now by applying Lemmas 1 and 4, we have

$$
\begin{aligned}
& T(r, F) \\
\leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+S(r, f)+S(r, g) \\
= & N_{2}\left(r, 0 ; f^{n} f(z+c)\right)+N_{2}\left(r, 0 ; g^{n} g(z+c)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +N_{2}\left(r, \infty ; f^{n} f(z+c)\right)+N_{2}\left(r, \infty ; g^{n} g(z+c)\right)+S(r, f)+S(r, g) \\
\leq & N_{2}\left(r, 0 ; f^{n}\right)+N_{2}(r, 0 ; f(z+c))+N_{2}\left(r, 0 ; g^{n}\right)+N_{2}(r, 0 ; g(z+c)) \\
& +N_{2}\left(r, \infty ; f^{n}\right)+N_{2}(r, \infty ; f(z+c))+N_{2}\left(r, \infty ; g^{n}\right)+N_{2}(r, \infty ; g(z+c)) \\
& +S(r, f)+S(r, g) \\
\leq & 2 N(r, 0 ; f)+N(r, 0 ; f(z+c))+2 N(r, 0 ; g)+N(r, 0 ; g(z+c))+2 N(r, \infty ; f) \\
& +N(r, \infty ; f(z+c))+2 N(r, \infty ; g)+N(r, \infty ; g(z+c))+S(r, f)+S(r, g) \\
\leq & 4 T(r, f)+N(r, 0 ; f)+N(r, \infty ; f)+4 T(r, g)+N(r, 0 ; g)+N(r, \infty ; g) \\
& +S(r, f)+S(r, g) \\
\leq & 6 T(r, f)+6 T(r, g)+S(r, f)+S(r, g) .
\end{aligned}
$$

By Lemma 5, we have

$$
\begin{equation*}
(n-1) T(r, f) \leq 6 T(r, f)+6 T(r, g)+S(r, f)+S(r, g) \leq 12 T_{1}(r)+S_{1}(r) \tag{8}
\end{equation*}
$$

where $T_{1}(r)$ is the maximum of $T(r, f)$ and $T(r, g)$ and $S_{1}(r)$ denotes any quantity satisfying $S_{1}(r)=o\left(T_{1}(r)\right)$ as $r \longrightarrow \infty$, outside of a possible exceptional set of finite logarithmic measure. Similarly we have

$$
\begin{equation*}
(n-1) T(r, g) \leq 12 T_{1}(r)+S_{1}(r) \tag{9}
\end{equation*}
$$

Combining (8) and (9) we get $(n-1) T_{1}(r) \leq 12 T_{1}(r)+S_{1}(r)$, which contradicts with $n \geq 14$.

Case 2. $F \equiv G$. Then we have

$$
\begin{equation*}
f^{n}(z) f(z+c) \equiv g^{n}(z) g(z+c) \tag{10}
\end{equation*}
$$

Let $h=\frac{f}{g}$. Then by (10), we have

$$
\begin{equation*}
h^{n}(z) \equiv \frac{1}{h(z+c)} \tag{11}
\end{equation*}
$$

Now by Lemmas 1, 2 and 4, we get

$$
\begin{aligned}
n T(r, h)=T\left(r, h^{n}\right)+S(r, h) & =T\left(r, \frac{1}{h(z+c)}\right)+S(r, h) \\
& \leq N(r, 0 ; h(z+c))+m\left(r, \frac{1}{h(z+c)}\right)+S(r, h) \\
& \leq N(r, 0 ; h(z))+m\left(r, \frac{1}{h(z)}\right)+S(r, h) \\
& \leq T(r, h)+S(r, h)
\end{aligned}
$$

Since $n \geq 2$, we see that h is a constant. By (11), we have $h^{n+1}=1$. Thus $f(z)=\operatorname{tg}(z)$ and $t^{n+1}=1$.

Case 3. $F . G \equiv 1$. Then we have $f^{n}(z) f(z+c) g^{n}(z) g(z+c) \equiv p^{2}(z)$. Hence Theorem 1 follows by Lemma 6. This completes the proof.

PROOF OF THEOREM 2. Let $F(z)=\frac{f^{n}(z) f(z+c)}{p(z)}$ and $G(z)=\frac{g^{n}(z) g(z+c)}{p(z)}$. Then F and G share $(1,1)$ except for the zeros of $p(z)$. We now consider the following two cases.

Case 1. $H \not \equiv 0$. By Lemma 3, we have

$$
\begin{aligned}
\bar{N}(r, 0 ; F)=\bar{N}\left(r, 0 ; f^{n} f(z+c)\right) & \leq \bar{N}\left(r, 0 ; f^{n}\right)+\bar{N}(r, 0 ; f(z+c)) \\
& \leq \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; f(z+c)) \\
& \leq N(r, 0 ; f)+N(r, 0 ; f(z+c)) \leq 2 T(r, f)+S(r, f)
\end{aligned}
$$

Similarly we have $\bar{N}(r, \infty ; F) \leq 2 T(r, f)+S(r, f)$. Now by applying Lemmas 1, 4 and 8 we have

$$
\begin{aligned}
& T(r, F) \\
\leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+\frac{1}{2} \bar{N}(r, 0 ; F) \\
& +\frac{1}{2} \bar{N}(r, \infty ; F)+S(r, f)+S(r, g) \\
\leq & 6 T(r, f)+6 T(r, g)+T(r, f)+T(r, f)+S(r, f)+S(r, g) \\
\leq & 8 T(r, f)+6 T(r, g)+S(r, f)+S(r, g)
\end{aligned}
$$

By Lemma 5, we have

$$
\begin{equation*}
(n-1) T(r, f) \leq 8 T(r, f)+6 T(r, g)+S(r, f)+S(r, g) \leq 14 T_{1}(r)+S_{1}(r) \tag{12}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
(n-1) T(r, g) \leq 14 T_{1}(r)+S_{1}(r) \tag{13}
\end{equation*}
$$

Combining (12) and (13) we get $(n-1) T_{1}(r) \leq 14 T_{1}(r)+S_{1}(r)$, which contradicts with $n \geq 16$.

Case 2. $H \equiv 0$. In view of Lemmas 4 and 5 , we get

$$
\begin{aligned}
& \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G) \\
\leq & 4 T(r, f)+4 T(r, g)+S(r, f)+S(r, g) \\
\leq & \frac{4}{n-1} T(r, F)+\frac{4}{n-1} T(r, G)+S(r, F)+S(r, G) \leq \frac{8}{n-1} T(r)+S(r)
\end{aligned}
$$

Since $n>12$, we have

$$
\limsup _{r \longrightarrow \infty} \frac{\bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)}{T(r)}<1
$$

and so by Lemma 10, we have either $F \equiv G$ or $F . G \equiv 1$. Hence Theorem 2 follows by the proof of Theorem 1. This completes the proof.

PROOF OF THEOREM 3. Let $F(z)=\frac{f^{n}(z) f(z+c)}{p(z)}$ and $G(z)=\frac{g^{n}(z) g(z+c)}{p(z)}$. Then F and G share $(1,0)$ except for the zeros of $p(z)$. We now consider the following two cases.

Case 1. $H \not \equiv 0$. By Lemma 3, we have

$$
\begin{gathered}
\bar{N}(r, 0 ; F) \leq 2 T(r, f)+S(r, f), \quad \bar{N}(r, \infty ; F) \leq 2 T(r, f)+S(r, f), \\
\bar{N}(r, 0 ; G) \leq 2 T(r, g)+S(r, g) \text { and } \bar{N}(r, \infty ; G) \leq 2 T(r, g)+S(r, g)
\end{gathered}
$$

Now by Lemmas 1, 4 and 9, we have

$$
\begin{aligned}
& T(r, F) \\
\leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+2 \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G) \\
& +2 \bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+S(r, f)+S(r, g) \\
\leq & 6 T(r, f)+6 T(r, g)+4 T(r, f)+2 T(r, g)+4 T(r, f)+2 T(r, g)+S(r, f)+S(r, g) \\
\leq & 14 T(r, f)+10 T(r, g)+S(r, f)+S(r, g)
\end{aligned}
$$

By Lemma 5, we have

$$
\begin{equation*}
(n-1) T(r, f) \leq 14 T(r, f)+10 T(r, g)+S(r, f)+S(r, g) \leq 24 T_{1}(r)+S_{1}(r) \tag{14}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
(n-1) T(r, g) \leq 24 T_{1}(r)+S_{1}(r) \tag{15}
\end{equation*}
$$

Combining (14) and (15) we get $(n-1) T_{1}(r) \leq 24 T_{1}(r)+S_{1}(r)$, which contradicts with $n \geq 26$.

Case 2. $H \equiv 0$. Hence Theorem 3 follows from the proof of Theorems 1 and 2. This completes the proof.

Acknowledgment. The author wishes to thank the referee for his/her valuable comments and suggestions towards the improvement of the paper.

References

[1] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci., 22(2005), 3587-3598.
[2] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in complex plane, Ramanujan J., 16(2008), 105-129.
[3] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. L. Zhang, Value sharing results for shifts of meromorphic function, and sufficient conditions for periodicity, J. Math. Anal. Appl., 355(2009), 352-363.
[4] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314(2006), 477-487.
[5] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31(2006), 463-478.
[6] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[7] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28 (2001), 83-91.
[8] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl., 46(2001), 241-253.
[9] I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci., 83(2007), 148-151.
[10] K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math., 92 (2009), 270-278.
[11] K. Liu, X. L. Liu and T. B. Cao, Value distributions and uniqueness of difference polynomials, Adv. Difference Equ., 2011 Article ID 234215, 12 pages.
[12] Y. Liu, J. P. Wang and F. H. Liu, Some results on value distribution of the difference operator, Bull. Iranian Math. Soc., 41(2015), 603-611.
[13] X. G. Qi, L. Z. Yang and K. Liu, Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl., 60(2010), 17391746.
[14] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125(1972), 107-112.
[15] H. X. Yi, Meromorphic functions that share one or two values, Complex Variables Theory Appl., 28(1995), 1-11.
[16] J. L. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl., 367(2010), 401-408.

[^0]: *Mathematics Subject Classifications: 35C20, 35D10.
 ${ }^{\dagger}$ Department of Mathematics, Raiganj University, Raiganj, West Bengal-733134, India

