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Abstract

The purpose of the paper is to study the uniqueness problems of difference
polynomials of meromorphic functions sharing a small function. The results of
the paper improve and generalize the recent results due to Liu, et al. [11] and
Liu, et al. [12].

1 Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic functions
in the complex plane.
We adopt the standard notations of value distribution theory (see [6]). For a non-

constant meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic of
f and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as r →∞ possibly outside
a set of finite logarithmic measure. We denote by T (r) the maximum of T (r, F ) and
T (r,G). The notation S(r) denotes any quantity satisfying S(r) = o(T (r)) as r −→∞,
outside of a possible exceptional set of finite logarithmic measure.
A meromorphic function a(z) is called a small function with respect to f , provided

that T (r, a) = S(r, f). The order of f is defined by

σ(f) = lim sup
r−→∞

log T (r, f)

log r
.

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be a small
function with respect to f(z) and g(z). We say that f(z) and g(z) share a(z) CM
(counting multiplicities) if f(z) − a(z) and g(z) − a(z) have the same zeros with the
same multiplicities and we say that f(z), g(z) share a(z) IM (ignoring multiplicities)
if we do not consider the multiplicities.
Recently, the topics of difference equations and difference products in complex plane

C has attracted many mathematicians. Many papers have focused on value distribution
of differences and differences operators analogues of Nevanlinna theory ([2, 4, 9, 10])
and many people dealt with the uniqueness problems related to meromorphic functions
and their shifts or their difference operators and obtained some interesting results
([11, 12, 13, 16]).
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In 2011, K. Liu, X. L. Liu and T. B. Cao studied the uniqueness of the difference
monomials and obtained the following results.

THEOREM A ([11]). Let f(z) and g(z) be two transcendental meromorphic func-
tions with finite order. Suppose that c ∈ C \ {0} and n ∈ N. If n ≥ 14, fn(z)f(z + c)
and gn(z)g(z + c) share 1 CM, then f(z) ≡ tg(z) or f(z)g(z) ≡ t, where tn+1 = 1.

THEOREM B ([11]). Let f(z) and g(z) be two transcendental meromorphic func-
tions with finite order. Suppose that c ∈ C \ {0} and n ∈ N. If n ≥ 26, fn(z)f(z + c)
and gn(z)g(z + c) share 1 IM, then f(z) ≡ tg(z) or f(z)g(z) ≡ t, where tn+1 = 1.

We now explain the notation of weighted sharing as introduced in [8].

DEFINITION 1 ([8]). Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote by
Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is counted m
times if m ≤ k and k+ 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share
the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly
if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that
f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

In 2015, Y. Liu, J. P. Wang and F. H. Liu improved Theorems A, B and obtained
the following results.

THEOREM C ([12]). Let c ∈ C \ {0} and let f(z) and g(z) be two transcendental
meromorphic functions with finite order, and n(≥ 14), k(≥ 3) be two positive integers.
If Ek(1, fn(z)f(z + c)) = Ek(1, gn(z)g(z + c)), then f(z) ≡ t1g(z) or f(z)g(z) ≡ t2 for
some constants t1 and t2 satisfying t

n+1
1 = 1 and tn+12 = 1.

THEOREM D ([12]). Let c ∈ C \ {0} and let f(z) and g(z) be two transcenden-
tal meromorphic functions with finite order, and n(≥ 16) be a positive integer. If
E2(1, f

n(z)f(z + c)) = E2(1, g
n(z)g(z + c)), then f(z) ≡ t1g(z) or f(z)g(z) ≡ t2, for

some constants t1 and t2 satisfying t
n+1
1 = 1 and tn+12 = 1.

THEOREM E ([12]). Let c ∈ C \ {0} and let f(z) and g(z) be two transcenden-
tal meromorphic functions with finite order, and n(≥ 22) be a positive integer. If
E1(1, f

n(z)f(z + c)) = E1(1, g
n(z)g(z + c)), then f(z) ≡ t1g(z) or f(z)g(z) ≡ t2, for

some constants t1 and t2 satisfying t
n+1
1 = 1 and tn+12 = 1.

Now it is quite natural to ask the following question.

QUESTION 1. What can be said if the sharing value 1 in Theorems C, D and E is
replaced by a nonzero polynomial ?

Now taking the possible answer of the above question into background we obtain
the following results.
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THEOREM 1. Let f(z) and g(z) be two transcendental meromorphic functions of
finite order, c ∈ C \ {0} and n ∈ N be such that n ≥ 14. Let p(z)( 6≡ 0) be a polynomial
such that deg(p) < (n − 1)/2. If fn(z)f(z + c) − p(z) and gn(z)g(z + c) − p(z) share
(0, 2), then one of the following two cases holds:

(1) f(z) ≡ tg(z) for some constant t such that tn+1 = 1,

(2) f(z)g(z) ≡ t, where p(z) reduces to a nonzero constant c and t is a constant such
that tn+1 = c2

THEOREM 2. Let f(z) and g(z) be two transcendental meromorphic functions of
finite order, c ∈ C \ {0} and n ∈ N be such that n ≥ 16. Let p(z)( 6≡ 0) be a polynomial
such that deg(p) < (n− 1)/2. Suppose fn(z)f(z + c)− p(z) and gn(z)g(z + c)− p(z)
share (0, 1). Then conclusion of Theorem 1 holds.

THEOREM 3. Let f(z) and g(z) be two transcendental meromorphic functions of
finite order, c ∈ C \ {0} and n ∈ N be such that n ≥ 26. Let p(z)( 6≡ 0) be a polynomial
such that deg(p) < (n− 1)/2. Suppose fn(z)f(z + c)− p(z) and gn(z)g(z + c)− p(z)
share (0, 0). Then conclusion of Theorem 1 holds.

We now make the following definitions and notations which are used in the paper.

DEFINITION 2 ([7]). Let a ∈ C ∪ {∞}. For p ∈ N we denote by N(r, a; f |≤
p) the counting function of those a-points of f (counted with multiplicities) whose
multiplicities are not greater than p. By N̄(r, a; f |≤ p) we denote the corresponding
reduced counting function.
In an analogous manner we can define N(r, a; f |≥ p) and N̄(r, a; f |≥ p).

DEFINITION 3 ([8]). Let k ∈ N ∪ {∞}. We denote by Nk(r, a; f) the counting
function of a-points of f , where an a-point of multiplicity m is counted m times if
m ≤ k and k times if m > k. Then

Nk(r, a; f) = N̄(r, a; f) + N̄(r, a; f |≥ 2) + ...+ N̄(r, a; f |≥ k).

Clearly N1(r, a; f) = N̄(r, a; f).

2 Lemma

In this section we present the lemma which will be needed in the sequel.

Let F , G be two non-constant meromorphic functions. Henceforth we shall denote
by H the following function

H =

(
F

′′

F ′ −
2F

′

F − 1

)
−
(
G

′′

G′ −
2G

′

G− 1

)
. (1)
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LEMMA 1 ([14]). Let f be a non-constant meromorphic function and let an(z)( 6≡
0), an−1(z), ... , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for
i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

LEMMA 2 ([2]). Let f(z) be a meromorphic function of finite order σ, and let
c ∈ C \ {0} be fixed. Then for each ε > 0, we have

m(r,
f(z + c)

f(z)
) +m(r,

f(z)

f(z + c)
) = O(rσ−1+ε).

The following lemma is a slight modifications of the original version (Theorem 2.1
of [2])

LEMMA 3. Let f(z) be a transcendental meromorphic function of finite order,
c ∈ C \ {0} be fixed. Then

T (r, f(z + c)) = T (r, f) + S(r, f).

LEMMA 4 ([3]). Let f be a non-constant meromorphic function of finite order and
c ∈ C. Then

N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N̄(r, 0; f(z + c)) ≤ N̄(r, 0; f(z)) + S(r, f), N̄(r,∞; f(z + c)) ≤ N̄(r,∞; f) + S(r, f).

Taking m = 0 in Lemma 2.4 [11], we obtain the following lemma.

LEMMA 5. Let f(z) be a transcendental meromorphic function of finite order,
c ∈ C \ {0} be fixed and let Φ(z) = fn(z)f(z + c), where n ∈ N. Then we have

(n− 1) T (r, f) ≤ T (r,Φ) + S(r, f).

LEMMA 6. Let f(z), g(z) be two transcendental meromorphic functions of finite
order, c ∈ C \ {0} and n ∈ N such that n ≥ 2. Let p(z) be a nonzero polynomial such
that deg(p) < (n− 1)/2. Then

(1) if deg(p) ≥ 1, then fn(z)f(z + c)gn(z)g(z + c) 6≡ p2(z);

(2) if p(z) = c ∈ C \ {0}, then the relation fn(z)f(z+ c)gn(z)g(z+ c) ≡ p2(z) always
implies that fg = t, where t is a constant such that tn+1 = c2.
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PROOF. Suppose

fn(z)f(z + c)gn(z)g(z + c) ≡ p2(z). (2)

Let h1 = fg. Then by (2), we have

hn1 (z) ≡ p2(z)

h1(z + c)
. (3)

We now consider following two cases.
Case 1. Suppose h1 is a transcendental meromorphic function. Now by Lemmas

1, 2 and 4, we get

n T (r, h1) = T (r, hn1 ) + S(r, h1) = T (r,
p2

h1(z + c)
) + S(r, h1)

≤ N(r, 0;h1(z + c)) +m(r,
1

h1(z + c)
) + S(r, h1)

≤ N(r, 0;h1(z)) +m(r,
1

h1(z)
) + S(r, h1)

≤ T (r, h1) + S(r, h1),

which is a contradiction.
Case 2. Suppose h1 is a rational function. Let

h1 =
h2
h3
, (4)

where h2 and h3 are two nonzero relatively prime polynomials. By (4), we have

T (r, h1) = max{deg(h2),deg(h3)} log r +O(1). (5)

Now by (3)—(5), we have

n max{deg(h2),deg(h3)} log r (6)

= T (r, hn1 ) +O(1)

≤ T (r, h1(z + c)) + 2 T (r, p) +O(1)

= max{deg(h2),deg(h3)} log r + 2 deg(p) log r +O(1).

We see thatmax{deg(h2),deg(h3)} ≥ 1. Now by (6), we deduce that (n−1)/2 ≤ deg(p),
which contradicts our assumption that deg(p) < (n−1)/2. Hence h1 must be a nonzero
constant. Let

h1 = t ∈ C \ {0}. (7)

Now when deg(p) ≥ 1, by (3) and (7), we arrive at a contradiction. Therefore in this
case we have fn(z)f(z + c)gng(z + c) 6≡ p2(z). Suppose p(z) = c ∈ C \ {0}. So by (3)
we see that hn+11 ≡ c2. By (7) we get tn+1 ≡ c2. This completes the proof.

LEMMA 7 ([8]). Let f and g be two non-constant meromorphic functions sharing
(1, 2). Then one of the following holds:
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(i) T (r, f) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r, f) + S(r, g),

(ii) fg ≡ 1,

(iii) f ≡ g.

LEMMA 8 ([1]). Let F and G be two non-constant meromorphic functions sharing
(1, 1) and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +
1

2
N̄(r, 0;F )

+
1

2
N̄(r,∞;F ) + S(r, F ) + S(r,G).

LEMMA 9 ([1]). Let F and G be two non-constant meromorphic functions sharing
(1, 0) and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2 N̄(r, 0;F )

+N̄(r, 0;G) + 2 N̄(r,∞;F ) + N̄(r,∞;G) + S(r, F ) + S(r,G).

LEMMA 10 ([15]). Let H be defined as in (1). If H ≡ 0 and

lim sup
r−→∞

N̄(r, 0;F ) + N̄(r, 0;G) + N̄(r,∞;F ) + N̄(r,∞;G)

T (r)
< 1, r ∈ I,

where I is a set of infinite linear measure, then F ≡ G or F.G ≡ 1.

3 Proofs of the Theorems

PROOF OF THEOREM 1. Let

F (z) =
fn(z)f(z + c)

p(z)
and G(z) =

gn(z)g(z + c)

p(z)
.

Then F and G share (1, 2) except for the zeros of p(z). Now by Lemma 7, we see that
one of the following three cases holds.
Case 1. Suppose

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + S(r, F ) + S(r,G).

Now by applying Lemmas 1 and 4, we have

T (r, F )

≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + S(r, f) + S(r, g)

= N2(r, 0; fnf(z + c)) +N2(r, 0; gng(z + c))
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+N2(r,∞; fnf(z + c)) +N2(r,∞; gng(z + c)) + S(r, f) + S(r, g)

≤ N2(r, 0; fn) +N2(r, 0; f(z + c)) +N2(r, 0; gn) +N2(r, 0; g(z + c))

+N2(r,∞; fn) +N2(r,∞; f(z + c)) +N2(r,∞; gn) +N2(r,∞; g(z + c))

+S(r, f) + S(r, g)

≤ 2 N(r, 0; f) +N(r, 0; f(z + c)) + 2 N(r, 0; g) +N(r, 0; g(z + c)) + 2 N(r,∞; f)

+N(r,∞; f(z + c)) + 2 N(r,∞; g) +N(r,∞; g(z + c)) + S(r, f) + S(r, g)

≤ 4T (r, f) +N(r, 0; f) +N(r,∞; f) + 4T (r, g) +N(r, 0; g) +N(r,∞; g)

+S(r, f) + S(r, g)

≤ 6 T (r, f) + 6 T (r, g) + S(r, f) + S(r, g).

By Lemma 5, we have

(n− 1) T (r, f) ≤ 6 T (r, f) + 6 T (r, g) + S(r, f) + S(r, g) ≤ 12 T1(r) + S1(r), (8)

where T1(r) is the maximum of T (r, f) and T (r, g) and S1(r) denotes any quantity
satisfying S1(r) = o(T1(r)) as r −→ ∞, outside of a possible exceptional set of finite
logarithmic measure. Similarly we have

(n− 1) T (r, g) ≤ 12 T1(r) + S1(r). (9)

Combining (8) and (9) we get (n− 1) T1(r) ≤ 12 T1(r) +S1(r), which contradicts with
n ≥ 14.
Case 2. F ≡ G. Then we have

fn(z)f(z + c) ≡ gn(z)g(z + c). (10)

Let h = f
g . Then by (10), we have

hn(z) ≡ 1

h(z + c)
. (11)

Now by Lemmas 1, 2 and 4, we get

n T (r, h) = T (r, hn) + S(r, h) = T (r,
1

h(z + c)
) + S(r, h)

≤ N(r, 0;h(z + c)) +m(r,
1

h(z + c)
) + S(r, h)

≤ N(r, 0;h(z)) +m(r,
1

h(z)
) + S(r, h)

≤ T (r, h) + S(r, h).

Since n ≥ 2, we see that h is a constant. By (11), we have hn+1 = 1. Thus f(z) = tg(z)
and tn+1 = 1.

Case 3. F.G ≡ 1. Then we have fn(z)f(z + c)gn(z)g(z + c) ≡ p2(z). Hence
Theorem 1 follows by Lemma 6. This completes the proof.
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PROOF OF THEOREM 2. Let F (z) = fn(z)f(z+c)
p(z) and G(z) = gn(z)g(z+c)

p(z) . Then
F and G share (1, 1) except for the zeros of p(z). We now consider the following two
cases.
Case 1. H 6≡ 0. By Lemma 3, we have

N̄(r, 0;F ) = N̄(r, 0; fnf(z + c)) ≤ N̄(r, 0; fn) + N̄(r, 0; f(z + c))

≤ N̄(r, 0; f) + N̄(r, 0; f(z + c))

≤ N(r, 0; f) +N(r, 0; f(z + c)) ≤ 2T (r, f) + S(r, f).

Similarly we have N̄(r,∞;F ) ≤ 2T (r, f) + S(r, f). Now by applying Lemmas 1, 4 and
8 we have

T (r, F )

≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +
1

2
N̄(r, 0;F )

+
1

2
N̄(r,∞;F ) + S(r, f) + S(r, g)

≤ 6 T (r, f) + 6 T (r, g) + T (r, f) + T (r, f) + S(r, f) + S(r, g)

≤ 8 T (r, f) + 6 T (r, g) + S(r, f) + S(r, g)

By Lemma 5, we have

(n− 1) T (r, f) ≤ 8 T (r, f) + 6 T (r, g) + S(r, f) + S(r, g) ≤ 14 T1(r) + S1(r). (12)

Similarly, we have
(n− 1) T (r, g) ≤ 14 T1(r) + S1(r). (13)

Combining (12) and (13) we get (n − 1) T1(r) ≤ 14T1(r) + S1(r), which contradicts
with n ≥ 16.
Case 2. H ≡ 0. In view of Lemmas 4 and 5, we get

N̄(r, 0;F ) + N̄(r, 0;G) + N̄(r,∞;F ) + N̄(r,∞;G)

≤ 4 T (r, f) + 4 T (r, g) + S(r, f) + S(r, g)

≤ 4

n− 1
T (r, F ) +

4

n− 1
T (r,G) + S(r, F ) + S(r,G) ≤ 8

n− 1
T (r) + S(r).

Since n > 12, we have

lim sup
r−→∞

N̄(r, 0;F ) + N̄(r, 0;G) + N̄(r,∞;F ) + N̄(r,∞;G)

T (r)
< 1

and so by Lemma 10, we have either F ≡ G or F.G ≡ 1. Hence Theorem 2 follows by
the proof of Theorem 1. This completes the proof.

PROOF OF THEOREM 3. Let F (z) = fn(z)f(z+c)
p(z) and G(z) = gn(z)g(z+c)

p(z) . Then
F and G share (1, 0) except for the zeros of p(z). We now consider the following two
cases.
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Case 1. H 6≡ 0. By Lemma 3, we have

N̄(r, 0;F ) ≤ 2T (r, f) + S(r, f), N̄(r,∞;F ) ≤ 2T (r, f) + S(r, f),

N̄(r, 0;G) ≤ 2T (r, g) + S(r, g) and N̄(r,∞;G) ≤ 2T (r, g) + S(r, g).

Now by Lemmas 1, 4 and 9, we have

T (r, F )

≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2 N̄(r, 0;F ) + N̄(r, 0;G)

+2 N̄(r,∞;F ) + N̄(r,∞;G) + S(r, f) + S(r, g)

≤ 6 T (r, f) + 6 T (r, g) + 4T (r, f) + 2T (r, g) + 4T (r, f) + 2T (r, g) + S(r, f) + S(r, g)

≤ 14 T (r, f) + 10 T (r, g) + S(r, f) + S(r, g)

By Lemma 5, we have

(n− 1) T (r, f) ≤ 14 T (r, f) + 10 T (r, g) + S(r, f) + S(r, g) ≤ 24 T1(r) + S1(r). (14)

Similarly we have
(n− 1) T (r, g) ≤ 24 T1(r) + S1(r). (15)

Combining (14) and (15) we get (n − 1) T1(r) ≤ 24T1(r) + S1(r), which contradicts
with n ≥ 26.

Case 2. H ≡ 0. Hence Theorem 3 follows from the proof of Theorems 1 and 2.
This completes the proof.
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