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Abstract
In this paper, we have characterized continuous probability distributions by

considering the conditional expectations of functions of generalized order statistics
conditioned on non-adjacent generalized order statistics. Further, some important
deductions for order statistics and record values are discussed.

1 Introduction

The concept of generalized order statistics (gos) has been introduced and extensively
studied by Kamps [10]. Let n ≥ 2, be a given integer and m̃ = (m1,m2, ...,mn−1) ∈
<n−1, k ≥ 1 be the parameters such that

γi = k + n− i+

n−1∑
j=1

mi for 1 ≤ i ≤ n− 1.

Then X(1, n, m̃, k), X(2, n, m̃, k), ..., X(r, n, m̃, k) are called gos from continuous pop-
ulation with the cummulative distribution function (cdf) F (x) and the probability
density function (pdf) f(x) if their joint pdf has the form

k

n=1∏
j=1

γj

(n=1∏
i=1

[1− F (xi)]
mif(xi)

)
[1− F (xn)]k−1f(xn),

on the cone F−1(0+) < x1 ≤ x2 ≤ ... ≤ xn < F−1(1) of <n. The pdf of r -th m-gos
X(r, n,m, k) is given by Kamps [10],

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F (x)]γr−1gr−1m [F (x)]f(x),

and the joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is given by Kamps
[10],

fX(r,n,m,k),X(s,n,m,k)(x, y)
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=
Cs−1

(r − 1)!(s− r − 1)!
[F̄ (x)]mgr−1m [F (x)]

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(x)f(y), α ≤ x < y ≤ β,

where

F̄ (x) = 1− F (x), γi = k + (n− i) + (m+ 1), Cs−1 =

s∏
i=1

γi,

hm(x) =

{
− 1
m+1 (1− x)m+1 for m 6= −1,

− log(1− x) for m = −1.

and
gm(x) = hm(x)− hm(0) for x ∈ [0, 1).

The conditional pdf of X(s, n,m, k) given X(r, n,m, k) = x, 1 ≤ r < s ≤ n, is given by

fx(r,n,m,k)|x(s,n,m,k)(y | x) =
Cs−1

(s− r − 1)!Cr−1

× [hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)

[1− F (x)]γr+1
.

The gos is reduced to some well known ordered random schemes like order statistics,
record values, sequential order statistics etc. with the proper choice of parameters of
gos (Cf. Kamps [10]). The conditional moments of generalized order statistics are
extensively used in characterizing the probability distributions. Various approaches
are available in the literature. For a detailed survey one may refer to Khan and Alzaid
[2], Khan et al. [6], Beg and Ahsanullah [9], Haque et al. [11] and Khan et al. [5, 6],
Noor et al. [12] amongst others.
In this paper, we consider continuous probability distributions

F (x) = [1− (m− 1)xa]
1

m+1 and F (x) = [1− (m− 1)eax]
1

m+1 ,

and characterize these continuous distributions through conditional expectation of gos.
Throughout the paper, we assume

m1 = m2, ..., mn−1 = m.

2 Characterization of Distributions

THEOREM 2.1. Let X(r, n,m, k), r = 1, 2, ..., n be the rth-gos from a continuous with
the df F (x) and the pdf f(x). Then, for 1 ≤ r < s ≤ n,

E[Xα(r, n,m, k) | X(s, n,m, k) = x] = as|lx
α + bs|l, l = r, r + l,

if and only if
F (x) = [1− (m− 1)xa]

1
m+1 , α > 0, 0 ≤ x ≤ β,
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where
β = (

1

m+ 1
)1/α, a?s|r =

γs
γr

and b?s|r =
1

m+ 1
[1− a?s|r].

PROOF. We have

E[Xα(r, n,m, k)| X(s, n,m, k) = x]

=
Cs−1

Cr−1(s− r − 1)!(m+ 1)s−r−1

×
∫ β

x

yα

[
1−

(
F (y)

F (x)

)m+1]s−r−1 [
F (y)

F (x)

]k+(m+1)(n−s)−1
f(x)

F (x)
dy.

(1)

Set u =
[
F (y)

F (x)

]m+1
. Then the RHS of (1) reduces to

E[Xα(r, n,m, k)| X(s, n,m, k) = x] =
Cs−1

Cr−1(s− r − 1)!(m+ 1)(s− r − 1)

×
∫ 1

0

[1− u (1− (m+ 1)xα)](1− u)s−r−1[u]
k+(m+1)(n−s)

m+1 −1du.

Thus

E[Xα(r, n,m, k) | X(s, n,m, k) = x] =
1

m+ 1
− 1

m+ 1
[1− (m+ 1)xα]

γs
γr
, (2)

and hence the necessary part. To prove the suffi ciency part, we have from Khan et al.
[6],

if E[Xα(r, n,m, k) | X(s, n,m, k) = x] = gs|r(x),

then
f(x)

F (x)
= − 1

γr+1

g′s|r(x)

[gs|r+1(x)− gs|r(x)]
.

Now,

gs|r+1(x)− gs|r(x) = (as|r+1 − as|r)
(
xα − 1

m+ 1

)
.

Thus,
f(x)

F (x)
=

αxα−1

[(m+ 1)xα − 1]

implies
F (x) = [1− (m+ 1)xα]

1
m+1 , α > 0 and 0 ≤ x ≤ β,

and hence the proof is complete.

REMARK 2.1. When m = 0 and k = 1, Theorem 2.1 reduces for order statistics:
For 1 ≤ r < s ≤ n,

E[Xα
s:n | Xr:n = x] = a?s|rx

α + b?s|r,
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if and only if
F (x) = xα for 0 < x < 1 and α > 0,

where

a?s|r =

(
n− s− 1

n− r − 1

)
and b?s|r =

(
s− r

n− r − 1

)
as obtained by Khan and Abu-Salih [4], Franco and Ruiz [9], Dembinska andWesolowski
[1], Khan and Abouammoh [3] and Khan and Alzaid [2].

REMARK 2.2. When m = −1, k = 1, Theorem 2.1 reduces for order statistics:
For 1 ≤ r < s ≤ n,

E[Xα
U(s) | XU(r) = x] = xα with a?s|r = 1 and b?s|r = 0,

if and only if
F (x) = e−x

α

for 0 < x <∞ and α > 0,

as obtained by Franco and Ruiz [9] and Athar et al. [8].

THEOREM 2.2. Let X(r, n,m, k), r = 1, 2, ..., n, be the rth-gos from a continuous
population with the df F (x) and the f(x), then, for 1 ≤ r < s ≤ t ≤ n,

E[Xα(t, n,m, k)| X(r, n,m, k) = x]

= a?t|sE[Xα(s, n,m, k) | X(r, n,m, k) = x] + b?t|s, (3)

if and only if

F (x) = [1− (m+ 1)xα]
1

m+1 for α > 0 and 0 ≤ x ≤ β, (4)

where
β = (

1

m+ 1
)1/α, a?t|s =

γt
γs
, and b?t|s =

1

m+ 1
[1− a?t|s].

PROOF. It is easy to see that (4) implies (3) and hence the necessary part. For the
suffi ciency part, we have

Ct−1
Cr−1(t− r − 1)!(m+ 1)t−r−1

×
∫ β

x

1

[F (y)]γr+1
yα[(F (x))m+1 − (F (x))m+1]t−r−1[F (y)]γt−1f(x)dy

= αt|s
Cs−1

Cr−1(s− r − 1)!(m+ 1)s−r−1

×
∫ β

x

1

[F (y)]γr+1
yα[(F (x))m+1 − (F (y))m+1]s−r−1[F (y)]γs−1f(x)dy + bt|s. (5)

Differentiating both the sides of (5) (s− r) times w.r.t. x, we get

Ct−1
Cs−1(t− r − 1)!(m+ 1)t−s−1
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×
∫ β

x

1

[F (y)]γs+1
yα[(F (x))m+1 − (F (x))m+1]t−r−1[F (y)]γt−1f(y)dy

= at|sx
α + bt|s

i.e.
gt|s(x) = at|sx

α + bt|s.

Using the result in Khan et al. [6], we get

f(x)

F (x)
=

αxα−1

[(m+ 1)xα − 1]

and hence the proof is complete.

REMARK 2.3. When s = r, Theorem 2.2 reduces to Theorem 2.1.

THEOREM 2.3. Under the conditions given in Theorem 2.1 and, for 1 ≤ r < s ≤ n,

E[eαX(s,n,m,k) | X(r, n,m, k) = x] = as|l e
αx + bs|l for l = r and r + 1,

if and only if
F (x) = [1− (m+ 1)eαx]

1
m+1 for −∞ < x ≤ lnβ, (6)

where
β = (

1

m+ 1
)1/α, a?s|r =

γs
γr

and b?s|r =
1

m+ 1
[1− a?s|r].

PROOF. We have

E[eαX(r,n,m,k)| X(s, n,m, k) = x]

=
Cs−1

Cr−1(s− r − 1)!(m+ 1)(s−r−1)

×
∫ ln β

x

eαy

[
1−

(
F (y)

F (x)

)m+1]s−r−1 [
F (y)

F (x)

]k+(m+1)(n−s)−1
f(x)

F (x)
dy.

(7)

Set u =
[
F (y)

F (x)

]m+1
. Then the RHS of (7) reduces to

E[eαX(r,n,m,k)| X(s, n,m, k) = x]

=
Cs−1

Cr−1(s− r − 1)!(m+ 1)s − r − 1

×
∫ 1

0

[1− u (1− (m+ 1)eαx)](1− u)s−r−1[u]
k+(m+1)(n−s)

m+1 −1du.

Then

E[eαX(r,n,m,k) | X(s, n,m, k) = x] =
1

(m+ 1)
− 1

(m+ 1)
[1− (m+ 1)eαx]

γs
γr
.
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and hence the proof of necessity is complete. For the suffi ciency part we use the result
in Khan et al. [6] to get,

f(x)

F (x)
=

αeαx

[(m+ 1)eαx − 1]
,

which implies

F (x) = [1− (m+ 1)eαx]
1

m+1 for −∞ < x ≤ lnβ.

REMARK 2.4. When m = 0, k = 1, Theorem 2.3 reduces for order statistics: For
1 ≤ r < s ≤ n,

E[eαXs:n | Xr:n = x] = a?s|re
αx + b?s|r.

if and only if
F (x) = eαx for −∞ < x < 0 and α > 0,

where

a?s|r =

(
n− s+ 1

n− r + 1

)
and b?s|r =

(
s− r

n− r + 1

)
,

as obtained by Franco and Ruiz [9].

REMARK 2.5. When m = −1 and k = 1, Theorem 2.3 reduces for record statistics:
For 1 ≤ r < s,

E[eαXU(s) | XU(r) = x] = eαx for a?s|r = 1 and b?s|r = 0

if and only if
F̄ (x) = e−e

αx
for −∞ < x < 0 and α > 0,

as obtained by Franco and Ruiz [9].

THEOREM 2.4. Under the conditions given in Theorem 2.2 and for 1 ≤ r < s <
t ≤ n,

E[eαX(s,n,m,k) | X(r, n,m, k) = x] = at|sE[eαX(s,n,m,k) | X(r, n,m, k) = x] + bt|s,

if and only if
F̄ (x) = [1− (m+ 1)eαx]

1
m+1 for −∞ < x ≤ lnβ,

where
β = (

1

m+ 1
)1/α, a?t|s =

γt
γs

and b?t|s =
1

m+ 1
[1− a?t|s].

PROOF. The necessity is obvious. For the suffi ciency part, we have

Ct−1
Cr−1(t− r − 1)!(m+ 1)t−r−1

×
∫ ln β

x

1

[F (y)]γs+1
eαy[(F (x))m+1 − (F (y))m+1]t−r−1[F (y)]γt−1f(y)dy
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= at|s
Cs−1

Cr−1(s− r − 1)!(m+ 1)s−r−1

∫ ln β

x

1

[F (y)]γs+1
eαy

×[(F (x))m+1 − (F (y))m+1]s−r−1[F (y)]γs−1f(y)dy + bt|s. (8)

Differentiating both sides of (8) (s-r) times w.r.t. x, we get

Ct−1
Cs−1(t− r − 1)!(m+ 1)t−s−1

×
∫ ln β

x

1

[F (y)]γs+1
eαy[(F (x))m+1 − (F (y))m+1]t−s−1[F (y)]γt−1f(y)dy

= at|se
αx + bt|s,

i.e.,
gt|s(x) = at|se

αx + bt|s.

Using the result in Khan et al. [6], we get

f(x)

F (x)
=

αeαx

[(m+ 1)eαx − 1]

which implies
F (x) = [1− (m+ 1)eαx]

1
m+1 .

REMARK 2.5. When s = r, Theorem 2.4 reduces to Theorem 2.3.
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