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Abstract

We study three g-difference-differential operators in ¢g*-analogue Sobolev spaces.

1 Introduction

In this work, we are interested in the study of three g-difference-differential operators in
q*-analogue Sobolev and ¢2-potential spaces introduced by the authors in their recent
paper [8].

The outline of this paper is as follows. In section 2, we recall some basic facts from
quantum calculus, some properties from the g-Rubin’s operator and functional spaces
in quantum calculus. We study in section 3 the hypoellipticity of g-Rubin operator.
Section 4 is devoted to the existence and regularity of g>-analogue wave equation. In
section 5, we study the solution of g?-analogue-Schrédinger equation.

2 Preliminary

Throughout this paper, we assume 0 < ¢ < 1 and we refer the reader to [3, 5] for
the definitions and properties of hypergeometric functions. In this section we will fix
some notations and recall some preliminary results. We put R, = {£¢" : n € Z} and
Rq =R, U{0}. For a € C, the g-shifted factorials are defined by

n—1 0
(@qo=1 (6:0)n=]]0-0ag")n=12.; (0=]][01-ad").
k=0 k=0

We denote also

[a], = =——, acC and [n]q!:m, n € N.

1—¢q

A g-analogue of the classical exponential function is given by (see [6, 7])

e(z;¢%) = cos(—iz; ¢°) + isin(—iz; ¢°),
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where
2n ( 1)n 2n+1

n(n+1 nZ d si . n(n+1)
COS zZ; and sin(z;
v) Z 1 2n]q! (5:0°) nz:O ¢ [2n + 1]q!

The g-differential-difference operator is defined as (see [6, 7])

Fla 2)+f(—q '2)—flq2)+f(—qz)—2f(—z)
(g (=q 2)(17((;1)2) qz) ) if #£0,

8qf(z) =
lim, ,00,f(2) in R, if z=0.

The g-Jackson integrals are defined by (see [4])

a +o0
/0 f@)dgr = (1= q)a S 0" flag")
n=0

and

+o0 too
/ f@dg =(1—q) S @) + F(—a)},

- n=-—o00

provided the sums converge absolutely. R
The g-Rubin-Fourier transform defined in [6], for all z € R, as

+oo
Fo( K/ (—itz; ¢*)dyt,

where

: (¢:9)
= , and T (z) = 222 (1 —q)t .
T e()) 1) = g0
In the following we denote by

e S,(R,) stands for the g-analogue Schwartz space of smooth functions over R,
whose g-derivatives of all order decay at infinity. S,(R,) is endowed with the
topology generated by the following family of semi-norms:

|u|ln,s,(f) ;= sup (14 |x|)"\8§u(m)\ forall weS; and neN.
r€RyE<n

o §';(R,) the space of tempered distributions on Ry, it is the topological dual of
Sq(Rq).

e 1) = {1+ (I U@pae) <o),

o LP(Ry) = {f i 5up,erp, |f(@)] < oo}
o E£(R;S,(R,)) the space of C*° functions from R into S;(Ry).
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o £(R;S'4(Ry)) the space of C* functions from R into &'y (Ry).
o S(R;S,4(R,)) the space of Shawartz functions from R into S,(R,).
o C(R;W;P(R,)) the space of continuous functions on R into W;P(R,).
It was shown in ([2, 6]) that F, verifies the following properties for f € L}(R,).
L If uf(u) € Ly(R,) and 9, f € L}(R,) then
OuF))(@) = Fol—iuf(@)(@) and  Fy(0,()(x) = iaFy(F)(@)

2. The reciprocity formula

“+oo
forteR,, f(t)=K Fo(f)(w)e(ite; ¢*)d . (1)

— 00

3. The g-Rubin-Fourier transform F; is an isomorphism from S, (RR,) onto itself and
we have

Fo (D) = Fo(f)(—2) = Fy(f)(@) for [ € Sy(Ry). (2)

4. Fq is an isomorphism from LZ(R,) onto itself, and we have

H]:q(f)HLZ(Rq) = ||f||Lg(1Rq) for f € Li(Rq)- (3)

DEFINITION 1. The g-Rubin-Fourier transform of a ¢-distribution v € S’(R,) is
defined by
(Fo(v), ) = (v, F4(9)) for ¢ € 5(Ry). (4)

From the above properties, we have the following result.

PROPOSITION 1. The g-Rubin-Fourier transform is a topological isomorphism
from S'(R,) onto itself.

Let u be in S’(R,). We define the distribution d,u, by
(Oqu, ) = —(u, 04¢) for ¢ € S;(R,). (5)
Hence, if we denote the g?-analogue Laplace operator by A, := 83 we deduce
(Agqu, )y = (u, Agp) for ¢ € S4(Ry). (6)
These distributions satisfy the following properties

Fq(0gu) = (iy)"Fq(u), n €N (7)
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The g-translation operator 74z, 2 € Ry is defined on L} (R,) by (see [6])

+oo
Tey(f)(@) =K Fo(f)@)elita; ¢*)e(ity; ¢*)dgt, y € Ry,

— 00

Tq0(f)(2) = f(2).

DEFINITION 2. For f € LZ(R,) and g € L}(R,), the g-convolution product is
given by

+oo
Frow) =K [ ruuf@alada

PROPOSITION 2. For f € Ly(R,), g€ LE(R,) and 1 < n,p,r < oo such that
I 1

s =1we have

1
p

S|

If *9lloyy) <y @pllgllzye,)- (8)

DEFINITION 3. The g?-analogue Sobolev spaces introduced in [8] for s € R and
1 <p<ooare

WrP(Rg) = {u € S3(Ry) : (1 +€") 5 Fy(u) € Lg (R},

provided with the norm

1

+oo 9. 52 D
lllwsr @, = ( | ase )ZIfq(U)(ﬁ)”dq£> .

— 00

DEFINITION 4. For u € S)(R,) and s € R, the g*-potential operator P; of order
s is defined in [1] as

P SH(R,) — SL(Ry)
ur— (F) 7ML+ €))7 Fy(w)).

DEFINITION 5. For all (s,p) € R x [1,+00], the ¢g*>-potential space is defined in
[8] as

ByP(Ry) = {u € S3(Ry), Py "(u) € LP(Ry)}

provided with the norm

lullssr®y) = IPg * (W]l e ®)-
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3 Hypoellipticity of ¢-Rubin Operator
In this section, we will present the hypoellipticity of ¢-Rubin operator.

THEOREM 1. Let P(dq) = > 7, a;j(0y), an # 0, a g-differential-difference
operator with constant coefficient a; and symbol P(A) = >°7_j a;(iA)7 #0, A € R.If
ue L2(R,), P(—0,)u=fand f e LZ(R,), then u € B}"*(R,).

PROOF. One can easily show that there exists R > 0 and a positive constant C
such that
[P = ClEl", ¢l = R (9)

Let u € §;(R,)

[l

5w, = /R (€ + 1)™2|Fu(€)Pdy.

Taking R > 1, we have

lullgn2 @, = / ) (€ + 1)"2| Fyu(€)Pdgé + / (& + 1)"2|Fpu(€)Pdgé.
Bq’(Rq) —R

lEI=R

Now, when [¢| < R, we have (¢241)"/% < (R*+1)"/2 and if [¢] > R, (§*+1)"/2 < 2J¢|",

we have

R
Ilyoe, < OO+ 177 [ IFu(@P e +C [ e 7 )P

According to the relations (3), (7) and (9) we obtain

c(/ (e |da:+/ P Fyul€) P q§>
c<|u||Lz(R>+/ P F,u(®)] dg)

¢ I\UIIL2R>+/ [ Fq(P(94))9(8)] dq£>

C (Jlullfsz,) + ||P<aq>u||Lg<Rq>) :

The proof is completed by using the density of S;(R,) in BJ*(R,).

[[ul

2 2
By R,)

IA

IA

IN

4 ¢*-Analogue Wave Equation

LEMMA 1. Forall p,n € [l,00], =245 -1>0, 55 €R, feBy?(R,) and
gE BS/’"(Rq), we have

frge BT (R,) and ||f *g]

BT T (Ry) < CquHBZ”’(]Rq)Hm B ™M (Ry)
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PROOF. The results are given by the inequality (8) and the definition of the ¢2-
potential spaces.

We consider the ¢g2-analogue wave equation where the unknown u is a real-valued
function such that

O2u— Agu =10,
uj=0 = uo € ByP(Ry)’, (t,x) € R x R,.
at’u,‘t:() =u € B; ’n(Rq)/,

COROLLARY 1. Let C := {¢ € Ry, r <[] < R} for some positive reals r and R
such that » < R. We assume that ug and u; are two functions satisfying
supp Fq(uj;) C C.

1. Forp=mn=2, u € BIt>>°(R,) + BZJFS/’“(R(I). Fora+s=b+s =c,

lellgg =,y < € (lwollsy e,y + gy 2, ) -

!
a+s,% bts', 5

2. Forp#2andn#2, ueb, (Rg)+By  *"(Ry). Fora+s=b+s" =¢,

ull . <C’(u
ol 22, o, < € (o)

s @) + unllggoge, )

PROOF. According to the Duhamel expression for the solution and Lemma 1 we
obtain the results.

5 ¢’>-Analogue-Schrédinger Equation

Now we consider the following equation where the unknown u is a complex-valued
function

{ O — ihqu =0, (t,z) € R x R,.

ut|:0 =9,

THEOREM 2. Let g € §’4(R,). There exists a unique solution u € £(R; S, (R,))

such that
{ Ou—iAu=0, in D'(R xR,),

Ut]=0 = 9-

PROOF. Let us prove the existence first. For ¢t € R, we write

w = (F) e " £ (g)). (10)
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According to (4) we have

(ue, @) = (Fy(g), e M (F) 72 (9)).

Therefore we deduce that u, € E(R;S'4(R,)), and Fy(uy) € E(R; S’y (Ry)). We recall
that u is defined by

(6) = [ fur it e, b € SRS, (Ry)).
R
Then, using (6), we have for any ¢ in S(R; S;(R,))

(Oru — iAqu, ) = —(u, 0(t,.) + iAg(t,.))
. —/R<ut,at¢(t,.) FiA(L, )t

- / (Fyue), (Fy) (0t ) + i (2, ))) dt
- / (& Fy(g), (B — il 2)(Fo) i, )t

Since

O (P (F) 10, 8)) = [0 — 1EPF) (1, )] e

we see that
u 4 tAqu = — ) et qil -
Outidgt) = = [(Ffo).0 (I FE) )
- - / O Fy(g), e~ (F)~10(t, ))dt = 0.

Hence the existence of a solution w is shown. Let us now prove the uniqueness, which
is equivalent to show that u = 0 is the solution of the following problem

{ Ou—iAu=0 in ER;S,(R,)),
Ut|:0 = 0

In fact, for all ¢ in S(R; S, (R,)) we have

(Byu — iDqu, ) = — /]R(ut, (B +iA ) (t, )t = 0.

Although
< e p(t,.9) = D, 900, ) + s D1, ),

therefrom

—/R%wt,z/}(tw)}dt—%/R [<u§1>,¢(t,.)>—z‘<ut,Aqw(t,~)>] dt = 0. (11)
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Since (—00,.) = (0, .), we obtain
[ [ ) = i A, )] e = o (12

Besides, using the fact that fq(ugl)) = (F,(u))® and the relations (7) and (12) we
deduce that

/R [(Fa @)D, (Fo) bl D) + i Fo (), |BF) Mol D] de =0 (13)

for 1 € S(R; S,(R,)). If we choose ¢ such that (F,)"t(t, &) = etlé” p(€)x(t) where
¢ in S§4(R,), x in S(R), we have

[ [ ) i . LB ) eyt = 0 (14)

for x € S(R). Hence we deduce that

d

7 (Falun) 7 0) = (Fy (), o) +i(Fy(wn), | P ) =0 (15)

for € S4(R,). Thus for all ¢ in S4(R,), the function ¢ — (Fy(uy), e“Hng) is constant.
Finally, as ug = 0 then

(Fo(up), € 0) = (Fy(ug), ) = 0 for t € R and ¢ € Sy(Ry).
Then we deduce that v = 0.

THEOREM 3. Let g be in W, P(R,), s € R and 1 < p < oo, the solution given by

the Theorem 2 belongs to C(R; W, ?(R,)). For m € N, (uS’”)) € C(RyW;—2mP(R,))
and we have for t € R

(16)

||UE||1;V§'P(RQ) = ||g||W§*P(1Rq)7
g™ ||w;—2’”vp(]Rq) < CmHgHW?”(Rq) for m € N*.

PROOF. By the formula (10), we have for all ¢ in R

Folug) = e F (),

so, it is easy to deduce (16). Now, we will prove that for m = 1,2, ...,ugm) belongs to

C(R;Wi=2™P(Ry)). In fact, let (¢,), be a sequence that converge to o in R, we have

e Hnlel — el P (g) ()P

sp
Jut, = o Bznce,y = [ (1+161)%

Rq

According to the dominated convergence theorem, we obtain

. 2 =
o e, =t g e,y =0
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Elsewhere, from (10) we have

Foluf™) = (—ilé2)yme e F, (g).

Hence, we obtain

m m 2P ity |€|? —ito|€]? m
|MR—QW%WM=AU+Mmﬁetm—emMWWPMMMW%a

Finally, the dominated convergence theorem leads to the result.
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