Three Applications In q^{2}-Analogue Sobolev Spaces*

Ahmed Saoudi ${ }^{\dagger}$, Ahmed Fitouhi ${ }^{\ddagger}$

Received 13 November 2015

Abstract

We study three q-difference-differential operators in q^{2}-analogue Sobolev spaces.

1 Introduction

In this work, we are interested in the study of three q-difference-differential operators in q^{2}-analogue Sobolev and q^{2}-potential spaces introduced by the authors in their recent paper [8].

The outline of this paper is as follows. In section 2, we recall some basic facts from quantum calculus, some properties from the q-Rubin's operator and functional spaces in quantum calculus. We study in section 3 the hypoellipticity of q-Rubin operator. Section 4 is devoted to the existence and regularity of q^{2}-analogue wave equation. In section 5 , we study the solution of q^{2}-analogue-Schrödinger equation.

2 Preliminary

Throughout this paper, we assume $0<q<1$ and we refer the reader to [3, 5] for the definitions and properties of hypergeometric functions. In this section we will fix some notations and recall some preliminary results. We put $\mathbb{R}_{q}=\left\{ \pm q^{n}: n \in \mathbb{Z}\right\}$ and $\tilde{\mathbb{R}}_{q}=\mathbb{R}_{q} \cup\{0\}$. For $a \in \mathbb{C}$, the q-shifted factorials are defined by

$$
(a ; q)_{0}=1 ; \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), n=1,2, \ldots ; \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

We denote also

$$
[a]_{q}=\frac{1-q^{a}}{1-q}, \quad a \in \mathcal{C} \quad \text { and } \quad[n]_{q}!=\frac{(q ; q)_{n}}{(1-q)^{n}}, \quad n \in \mathbb{N}
$$

A q-analogue of the classical exponential function is given by (see $[6,7]$)

$$
e\left(z ; q^{2}\right)=\cos \left(-i z ; q^{2}\right)+i \sin \left(-i z ; q^{2}\right)
$$

[^0]where
$$
\cos \left(z ; q^{2}\right)=\sum_{n=0}^{+\infty} q^{n(n+1)} \frac{(-1)^{n} z^{2 n}}{[2 n] q!} \text { and } \sin \left(z ; q^{2}\right)=\sum_{n=0}^{+\infty} q^{n(n+1)} \frac{(-1)^{n} z^{2 n+1}}{[2 n+1] q!} .
$$

The q-differential-difference operator is defined as (see [6, 7])

$$
\partial_{q} f(z)= \begin{cases}\frac{f\left(q^{-1} z\right)+f\left(-q^{-1} z\right)-f(q z)+f(-q z)-2 f(-z)}{2(1-q) z} & \text { if } z \neq 0, \\ \lim _{z \rightarrow 0} \partial_{q} f(z) \text { in } \mathbb{R}_{q} & \text { if } z=0 .\end{cases}
$$

The q-Jackson integrals are defined by (see [4])

$$
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{+\infty} q^{n} f\left(a q^{n}\right)
$$

and

$$
\int_{-\infty}^{+\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{+\infty} q^{n}\left\{f\left(q^{n}\right)+f\left(-q^{n}\right)\right\}
$$

provided the sums converge absolutely.
The q-Rubin-Fourier transform defined in [6], for all $x \in \tilde{\mathbb{R}}_{q}$ as

$$
\mathcal{F}_{q}(f)(x):=K_{q} \int_{-\infty}^{+\infty} f(t) e\left(-i t x ; q^{2}\right) d_{q} t
$$

where

$$
K_{q}=\frac{(1+q)^{\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right)}, \quad \text { and } \quad \Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}
$$

In the following we denote by

- $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ stands for the q-analogue Schwartz space of smooth functions over \mathbb{R}_{q} whose q-derivatives of all order decay at infinity. $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ is endowed with the topology generated by the following family of semi-norms:

$$
\|u\|_{n, \mathcal{S}_{q}}(f):=\sup _{x \in \mathbb{R}_{q} ; k \leq n}(1+|x|)^{n}\left|\partial_{q}^{k} u(x)\right| \quad \text { for all } \quad u \in \mathcal{S}_{q} \quad \text { and } \quad n \in \mathbb{N} .
$$

- $\mathcal{S}^{\prime}{ }_{q}\left(\mathbb{R}_{q}\right)$ the space of tempered distributions on \mathbb{R}_{q}, it is the topological dual of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$.
- $L_{q}^{p}\left(\mathbb{R}_{q}\right)=\left\{f:\left(\int_{-\infty}^{+\infty}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}$.
- $L_{q}^{\infty}\left(\mathbb{R}_{q}\right)=\left\{f: \sup _{x \in I R_{q}}|f(x)|<\infty\right\}$.
- $\mathcal{E}\left(\mathbb{R} ; \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$ the space of C^{∞} functions from \mathbb{R} into $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$.
- $\mathcal{E}\left(\mathbb{R} ; \mathcal{S}^{\prime}{ }_{q}\left(\mathbb{R}_{q}\right)\right)$ the space of C^{∞} functions from \mathbb{R} into $\mathcal{S}^{\prime}{ }_{q}\left(\mathbb{R}_{q}\right)$.
- $\mathcal{S}\left(\mathbb{R} ; \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$ the space of Shawartz functions from \mathbb{R} into $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$.
- $C\left(\mathbb{R} ; \mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)\right)$ the space of continuous functions on \mathbb{R} into $\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)$.

It was shown in $([2,6])$ that \mathcal{F}_{q} verifies the following properties for $f \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$.

1. If $u f(u) \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$ and $\partial_{q} f \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$ then

$$
\partial_{q}\left(\mathcal{F}_{q}\right)(f)(x)=\mathcal{F}_{q}(-i u f(u))(x) \quad \text { and } \quad \mathcal{F}_{q}\left(\partial_{q}(f)\right)(x)=i x \mathcal{F}_{q}(f)(x) .
$$

2. The reciprocity formula

$$
\begin{equation*}
\text { for } t \in \mathbb{R}_{q}, \quad f(t)=K \int_{-\infty}^{+\infty} \mathcal{F}_{q}(f)(x) e\left(i t x ; q^{2}\right) d_{q} x \tag{1}
\end{equation*}
$$

3. The q-Rubin-Fourier transform \mathcal{F}_{q} is an isomorphism from $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ onto itself and we have

$$
\begin{equation*}
\mathcal{F}_{q}^{-1}(f)(x)=\mathcal{F}_{q}(f)(-x)=\overline{\mathcal{F}_{q}(\bar{f})}(x) \text { for } f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right) \tag{2}
\end{equation*}
$$

4. \mathcal{F}_{q} is an isomorphism from $L_{q}^{2}\left(\mathbb{R}_{q}\right)$ onto itself, and we have

$$
\begin{equation*}
\left\|\mathcal{F}_{q}(f)\right\|_{L_{q}^{2}\left(\mathbb{R}_{q}\right)}=\|f\|_{L_{q}^{2}\left(\mathbb{R}_{q}\right)} \text { for } f \in L_{q}^{2}\left(\mathbb{R}_{q}\right) \tag{3}
\end{equation*}
$$

DEFINITION 1. The q-Rubin-Fourier transform of a q-distribution $\nu \in \mathcal{S}^{\prime}\left(\mathbb{R}_{q}\right)$ is defined by

$$
\begin{equation*}
\left\langle\mathcal{F}_{q}(\nu), \phi\right\rangle=\left\langle\nu, \mathcal{F}_{q}(\phi)\right\rangle \text { for } \phi \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right) \tag{4}
\end{equation*}
$$

From the above properties, we have the following result.

PROPOSITION 1. The q-Rubin-Fourier transform is a topological isomorphism from $\mathcal{S}^{\prime}\left(\mathbb{R}_{q}\right)$ onto itself.

Let u be in $\mathcal{S}^{\prime}\left(\mathbb{R}_{q}\right)$. We define the distribution $\partial_{q} u$, by

$$
\begin{equation*}
\left\langle\partial_{q} u, \psi\right\rangle=-\left\langle u, \partial_{q} \psi\right\rangle \text { for } \psi \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right) . \tag{5}
\end{equation*}
$$

Hence, if we denote the q^{2}-analogue Laplace operator by $\Delta_{q}:=\partial_{q}^{2}$ we deduce

$$
\begin{equation*}
\left\langle\Delta_{q} u, \psi\right\rangle=\left\langle u, \Delta_{q} \psi\right\rangle \text { for } \psi \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right) . \tag{6}
\end{equation*}
$$

These distributions satisfy the following properties

$$
\begin{equation*}
\mathcal{F}_{q}\left(\partial_{q}^{n} u\right)=(i y)^{n} \mathcal{F}_{q}(u), \quad n \in \mathbb{N} \tag{7}
\end{equation*}
$$

The q-translation operator $\tau_{q ; x}, \quad x \in \mathbb{R}_{q}$ is defined on $L_{q}^{1}\left(\mathbb{R}_{q}\right)$ by (see [6])

$$
\begin{gathered}
\tau_{q, y}(f)(x)=K \int_{-\infty}^{+\infty} \mathcal{F}_{q}(f)(t) e\left(i t x ; q^{2}\right) e\left(i t y ; q^{2}\right) d_{q} t, \quad y \in \mathbb{R}_{q} \\
\tau_{q, 0}(f)(x)=f(x)
\end{gathered}
$$

DEFINITION 2. For $f \in L_{q}^{2}\left(\mathbb{R}_{q}\right)$ and $g \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, the q-convolution product is given by

$$
f * g(y)=K \int_{-\infty}^{+\infty} \tau_{q, y} f(x) g(x) d_{q} x
$$

PROPOSITION 2. For $f \in L_{q}^{n}\left(\mathbb{R}_{q}\right), g \in L_{q}^{p}\left(\mathbb{R}_{q}\right)$ and $1 \leq n, p, r \leq \infty$ such that $\frac{1}{n}+\frac{1}{p}-\frac{1}{r}=1$ we have

$$
\begin{equation*}
\|f * g\|_{L_{q}^{r}\left(\mathbb{R}_{q}\right)} \leq\|f\|_{L_{q}^{n}\left(\mathbb{R}_{q}\right)}\|g\|_{L_{q}^{p}\left(\mathbb{R}_{q}\right)} \tag{8}
\end{equation*}
$$

DEFINITION 3. The q^{2}-analogue Sobolev spaces introduced in [8] for $s \in \mathbb{R}$ and $1 \leq p<\infty$ are

$$
\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right):=\left\{u \in \mathcal{S}_{q}^{\prime}\left(\mathbb{R}_{q}\right):\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \mathcal{F}_{q}(u) \in L_{q}^{P}\left(\mathbb{R}_{q}\right)\right\}
$$

provided with the norm

$$
\|u\|_{\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}:=\left(\int_{-\infty}^{+\infty}\left(1+\xi^{2}\right)^{\frac{s p}{2}}\left|\mathcal{F}_{q}(u)(\xi)\right|^{p} d_{q} \xi\right)^{\frac{1}{p}}
$$

DEFINITION 4. For $u \in \mathcal{S}_{q}^{\prime}\left(\mathbb{R}_{q}\right)$ and $s \in \mathbb{R}$, the q^{2}-potential operator \mathcal{P}_{q}^{s} of order s is defined in [1] as

$$
\begin{aligned}
\mathcal{P}_{q}^{s}: \mathcal{S}_{q}^{\prime}\left(\mathbb{R}_{q}\right) & \longrightarrow \mathcal{S}_{q}^{\prime}\left(\mathbb{R}_{q}\right) \\
u & \longmapsto\left(\mathcal{F}_{q}\right)^{-1}\left(\left(1+\xi^{2}\right)^{-\frac{s}{2}} \mathcal{F}_{q}(u)\right) .
\end{aligned}
$$

DEFINITION 5. For all $(s, p) \in \mathbb{R} \times\left[1,+\infty\left[\right.\right.$, the q^{2}-potential space is defined in [8] as

$$
\mathcal{B}_{q}^{s, p}\left(\mathbb{R}_{q}\right)=\left\{u \in \mathcal{S}_{q}^{\prime}\left(\mathbb{R}_{q}\right), \mathcal{P}_{q}^{-s}(u) \in L^{p}\left(\mathbb{R}_{q}\right)\right\}
$$

provided with the norm

$$
\|u\|_{\mathcal{B}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}=\left\|\mathcal{P}_{q}^{-s}(u)\right\|_{L_{q}^{p}(\mathbb{R})} .
$$

3 Hypoellipticity of q-Rubin Operator

In this section, we will present the hypoellipticity of q-Rubin operator.
THEOREM 1. Let $P(\partial q)=\sum_{j=0}^{n} \alpha_{j}\left(\partial_{q}\right)^{j}, \quad \alpha_{n} \neq 0$, a q-differential-difference operator with constant coefficient α_{j} and symbol $P(\lambda)=\sum_{j=0}^{n} \alpha_{j}(i \lambda)^{j} \neq 0, \quad \lambda \in \mathbb{R}$. If $u \in L_{q}^{2}\left(\mathbb{R}_{q}\right), \quad P\left(-\partial_{q}\right) u=f$ and $f \in L_{q}^{2}\left(\mathbb{R}_{q}\right)$, then $u \in \mathcal{B}_{q}^{n, 2}\left(\mathbb{R}_{q}\right)$.

PROOF. One can easily show that there exists $R>0$ and a positive constant C such that

$$
\begin{equation*}
|P(\xi)| \geq C|\xi|^{n}, \quad|\xi| \geq R . \tag{9}
\end{equation*}
$$

Let $u \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$

$$
\|u\|_{\mathcal{B}_{q}^{n, 2}\left(\mathbb{R}_{q}\right)}^{2}=\int_{\mathbb{R}_{q}}\left(\xi^{2}+1\right)^{n / 2}\left|\mathcal{F}_{q} u(\xi)\right|^{2} d_{q} \xi .
$$

Taking $R \geq 1$, we have

$$
\|u\|_{\mathcal{B}_{q}^{n, 2}\left(\mathbb{R}_{q}\right)}^{2}=\int_{-R}^{R}\left(\xi^{2}+1\right)^{n / 2}\left|\mathcal{F}_{q} u(\xi)\right|^{2} d_{q} \xi+\int_{|\xi| \geq R}\left(\xi^{2}+1\right)^{n / 2}\left|\mathcal{F}_{q} u(\xi)\right|^{2} d_{q} \xi .
$$

Now, when $|\xi| \leq R$, we have $\left(\xi^{2}+1\right)^{n / 2} \leq\left(R^{2}+1\right)^{n / 2}$ and if $|\xi| \geq R,\left(\xi^{2}+1\right)^{n / 2} \leq 2|\xi|^{n}$, we have

$$
\|u\|_{\mathcal{B}_{q}^{n, 2}\left(\mathbb{R}_{q}\right)}^{2} \leq C\left(R^{2}+1\right)^{n / 2} \int_{-R}^{R}\left|\mathcal{F}_{q} u(\xi)\right|^{2} d_{q} \xi+C \int_{|\xi| \geq R}|\xi|^{2 n}\left|\mathcal{F}_{q} u(\xi)\right|^{2} d_{q} \xi .
$$

According to the relations (3), (7) and (9) we obtain

$$
\begin{aligned}
\|u\|_{\mathcal{B}_{q}^{n, 2}\left(\mathbb{R}_{q}\right)}^{2} & \leq C\left(\int_{\mathbb{R}_{q}}|u(x)|^{2} d_{q} x+\int_{\mathbb{R}_{q}}|\xi|^{2 n}\left|\mathcal{F}_{q} u(\xi)\right|^{2} d_{q} \xi\right) \\
& \leq C\left(\|u\|_{L_{q}^{2}\left(\mathbb{R}_{q}\right)}^{2}+\int_{\mathbb{R}_{q}}\left|P(\xi) \mathcal{F}_{q} u(\xi)\right|^{2} d_{q} \xi\right) \\
& \leq C\left(\|u\|_{L_{q}^{2}\left(\mathbb{R}_{q}\right)}^{2}+\int_{\mathbb{R}_{q}}\left|\mathcal{F}_{q}\left(P\left(\partial_{q}\right)\right) g(\xi)\right|^{2} d_{q} \xi\right) \\
& \leq C\left(\|u\|_{L_{q}^{2}\left(\mathbb{R}_{q}\right)}^{2}+\left\|P\left(\partial_{q}\right) u\right\|_{L_{q}^{2}\left(\mathbb{R}_{q}\right)}^{2}\right) .
\end{aligned}
$$

The proof is completed by using the density of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ in $\mathcal{B}_{q}^{n, 2}\left(\mathbb{R}_{q}\right)$.

$4 \quad q^{2}$-Analogue Wave Equation

LEMMA 1. For all $p, n \in[1, \infty], \frac{1}{r}=\frac{1}{p}+\frac{1}{n}-1 \geq 0, s, s^{\prime} \in \mathbb{R}, \quad f \in \mathcal{B}_{q}^{s, p}\left(\mathbb{R}_{q}\right)$ and $g \in \mathcal{B}_{q}^{s^{\prime}, n}\left(\mathbb{R}_{q}\right)$, we have

$$
f * g \in \mathcal{B}_{q}^{s+s^{\prime}, r}\left(\mathbb{R}_{q}\right) \quad \text { and } \quad\|f * g\|_{\mathcal{B}_{q}^{s, s^{s}, r}\left(\mathbb{R}_{q}\right)} \leq C_{q}\|f\|_{\mathcal{B}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}\|g\|_{\mathcal{B}_{q}^{s^{\prime}, n}\left(\mathbb{R}_{q}\right)} .
$$

PROOF. The results are given by the inequality (8) and the definition of the q^{2} potential spaces.

We consider the q^{2}-analogue wave equation where the unknown u is a real-valued function such that

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta_{q} u=0^{\prime} \\
u_{\mid t=0}=u_{0} \in \mathcal{B}_{q}^{s, p}\left(\mathbb{R}_{q}\right)^{\prime}, \\
\partial_{t} u_{\mid t=0}=u_{1} \in \mathcal{B}_{q}^{s^{\prime}, n}\left(\mathbb{R}_{q}\right)^{\prime},
\end{array} \quad(t, x) \in \mathbb{R} \times \mathbb{R}_{q}\right.
$$

COROLLARY 1. Let $\mathcal{C}:=\left\{\xi \in \mathbb{R}_{q}, r \leq|\xi| \leq R\right\}$ for some positive reals r and R such that $r<R$. We assume that u_{0} and u_{1} are two functions satisfying

$$
\text { supp } \mathcal{F}_{q}\left(u_{j}\right) \subset \mathcal{C}
$$

1. For $p=n=2, u \in \mathcal{B}_{q}^{a+s, \infty}\left(\mathbb{R}_{q}\right)+\mathcal{B}_{q}^{b+s^{\prime}, \infty}\left(\mathbb{R}_{q}\right)$. For $a+s=b+s^{\prime}=c$,

$$
\|u\|_{\mathcal{B}_{q}^{c, \infty}\left(\mathbb{R}_{q}\right)} \leq C\left(\left\|u_{0}\right\|_{\mathcal{B}_{q}^{s, 2}\left(\mathbb{R}_{q}\right)}+\left\|u_{1}\right\|_{\mathcal{B}_{q}^{s^{\prime}, 2}\left(\mathbb{R}_{q}\right)}\right)
$$

2. For $p \neq 2$ and $n \neq 2, \quad u \in \mathcal{B}_{q}^{a+s, \frac{p}{2-p}}\left(\mathbb{R}_{q}\right)+\mathcal{B}_{q}^{b+s^{\prime}, \frac{n}{2-n}}\left(\mathbb{R}_{q}\right)$. For $a+s=b+s^{\prime}=c$,

$$
\|u\|_{\mathcal{B}_{q}^{c, \frac{p}{2-p}}\left(\mathbb{R}_{q}\right)} \leq C\left(\left\|u_{0}\right\|_{\mathcal{B}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}+\left\|u_{1}\right\|_{\mathcal{B}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}\right) .
$$

PROOF. According to the Duhamel expression for the solution and Lemma 1 we obtain the results.

$5 \quad q^{2}$-Analogue-Schrödinger Equation

Now we consider the following equation where the unknown u is a complex-valued function

$$
\left\{\begin{array}{l}
\partial_{t} u-i \Delta_{q} u=0, \\
u_{t \mid=0}=g,
\end{array} \quad(t, x) \in \mathbb{R} \times \mathbb{R}_{q}\right.
$$

THEOREM 2. Let $g \in \mathcal{S}^{\prime}{ }_{q}\left(\mathbb{R}_{q}\right)$. There exists a unique solution $u \in \mathcal{E}\left(\mathbb{R} ; \mathcal{S}^{\prime}{ }_{q}\left(\mathbb{R}_{q}\right)\right)$ such that

$$
\left\{\begin{array}{l}
\partial_{t} u-i \Delta_{q} u=0, \quad \text { in } D^{\prime}\left(\mathbb{R} \times \mathbb{R}_{q}\right), \\
u_{t \mid=0}=g
\end{array}\right.
$$

PROOF. Let us prove the existence first. For $t \in \mathbb{R}$, we write

$$
\begin{equation*}
u_{t}=\left(\mathcal{F}_{q}\right)^{-1}\left(e^{-i t|\xi|^{2}} \mathcal{F}_{q}(g)\right) \tag{10}
\end{equation*}
$$

According to (4) we have

$$
\left\langle u_{t}, \phi\right\rangle=\left\langle\mathcal{F}_{q}(g), e^{-i t|\xi|^{2}}\left(\mathcal{F}_{q}\right)^{-1}(\phi)\right\rangle
$$

Therefore we deduce that $u_{t} \in \mathcal{E}\left(\mathbb{R} ; \mathcal{S}^{\prime}{ }_{q}\left(\mathbb{R}_{q}\right)\right)$, and $\mathcal{F}_{q}\left(u_{t}\right) \in \mathcal{E}\left(\mathbb{R} ; \mathcal{S}^{\prime}{ }_{q}\left(\mathbb{R}_{q}\right)\right)$. We recall that u is defined by

$$
\langle u, \psi\rangle=\int_{\mathbb{R}}\left\langle u_{t}, \psi(t, .)\right\rangle d t, \quad \psi \in \mathcal{S}\left(\mathbb{R} ; \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)
$$

Then, using (6), we have for any ψ in $\mathcal{S}\left(\mathbb{R} ; \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$

$$
\begin{aligned}
\left\langle\partial_{t} u-i \Delta_{q} u, \psi\right\rangle & =-\left\langle u, \partial_{t} \psi(t, .)+i \Delta_{q} \psi(t, .)\right\rangle \\
& =-\int_{\mathbb{R}}\left\langle u_{t}, \partial_{t} \psi(t, .)+i \Delta_{q} \psi(t, .)\right\rangle d t \\
& =-\int_{\mathbb{R}}\left\langle\mathcal{F}_{q}\left(u_{t}\right),\left(\mathcal{F}_{q}\right)^{-1}\left(\partial_{t} \psi(t, .)+i \Delta_{q} \psi(t, .)\right)\right\rangle d t \\
& =-\int_{\mathbb{R}}\left\langle e^{-i t|\cdot|^{2}} \mathcal{F}_{q}(g),\left(\partial_{t}-i|.|^{2}\right)\left(\mathcal{F}_{q}\right)^{-1} \psi(t, .)\right\rangle d t
\end{aligned}
$$

Since

$$
\left.\partial_{t}\left(e^{-i t|\xi|^{2}}\left(\mathcal{F}_{q}\right)^{-1} \psi(t, \xi)\right)=\left[\partial_{t}-i|\xi|^{2} \mathcal{F}_{q}\right)^{-1} \psi(t, \xi)\right] e^{-i t|\xi|^{2}}
$$

we see that

$$
\begin{aligned}
\left\langle\partial_{t} u+i \Delta_{q} u, \psi\right\rangle & =-\int_{\mathbb{R}}\left\langle\mathcal{F}_{q}(g), \partial_{t}\left(e^{-i t|\cdot|^{2}}\left(\mathcal{F}_{q}\right)^{-1} \psi(t, .)\right)\right\rangle d t \\
& =-\int_{\mathbb{R}} \partial_{t}\left\langle\mathcal{F}_{q}(g), e^{-i t|\cdot|^{2}}\left(\mathcal{F}_{q}\right)^{-1} \psi(t, .)\right\rangle d t=0
\end{aligned}
$$

Hence the existence of a solution u is shown. Let us now prove the uniqueness, which is equivalent to show that $u \equiv 0$ is the solution of the following problem

$$
\left\{\begin{array}{l}
\partial_{t} u-i \Delta_{q} u=0 \text { in } \mathcal{E}\left(\mathbb{R} ; \mathcal{S}_{q}^{\prime}\left(\mathbb{R}_{q}\right)\right) \\
u_{t \mid=0}=0
\end{array}\right.
$$

In fact, for all ψ in $\mathcal{S}\left(\mathbb{R} ; \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$ we have

$$
\left\langle\partial_{t} u-i \Delta_{q} u, \psi\right\rangle=-\int_{\mathbb{R}}\left\langle u_{t},\left(\partial_{t}+i \Delta_{q}\right) \psi(t, .)\right\rangle d t=0
$$

Although

$$
\frac{d}{d t}\left\langle u_{t}, \psi(t, .)\right\rangle=\left\langle u_{t}^{(1)}, \psi(t, .)\right\rangle+\left\langle u_{t}, \partial_{t} \psi(t, .)\right\rangle
$$

therefrom

$$
\begin{equation*}
-\int_{\mathbb{R}} \frac{d}{d t}\left\langle u_{t}, \psi(t, .)\right\rangle d t+\int_{\mathbb{R}}\left[\left\langle u_{t}^{(1)}, \psi(t, .)\right\rangle-i\left\langle u_{t}, \Delta_{q} \psi(t, .)\right\rangle\right] d t=0 \tag{11}
\end{equation*}
$$

Since $\psi(-\infty,)=.\psi(\infty,$.$) , we obtain$

$$
\begin{equation*}
\int_{\mathbb{R}}\left[\left\langle u_{t}^{(1)}, \psi(t, .)\right\rangle-i\left\langle u_{t}, \Delta_{q} \psi(t, .)\right\rangle\right] d t=0 \tag{12}
\end{equation*}
$$

Besides, using the fact that $\mathcal{F}_{q}\left(u_{t}^{(1)}\right)=\left(\mathcal{F}_{q}\left(u_{t}\right)\right)^{(1)}$ and the relations (7) and (12) we deduce that

$$
\begin{equation*}
\left.\int_{\mathbb{R}}\left[\left\langle\left(\mathcal{F}_{q}\left(u_{t}\right)\right)^{(1)},\left(\mathcal{F}_{q}\right)^{-1} \psi(t, .)\right\rangle+i\left\langle\mathcal{F}_{q}\left(u_{t}\right),\right| .\left.\right|^{2}\left(\mathcal{F}_{q}\right)^{-1} \psi(t, .)\right\rangle\right] d t=0 \tag{13}
\end{equation*}
$$

for $\psi \in \mathcal{S}\left(\mathbb{R} ; \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$. If we choose ψ such that $\left(\mathcal{F}_{q}\right)^{-1} \psi(t, \xi)=e^{i t|\xi|^{2}} \varphi(\xi) \chi(t)$ where φ in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, χ in $\mathcal{S}(\mathbb{R})$, we have

$$
\begin{equation*}
\left.\int_{\mathbb{R}}\left[\left\langle\left(\mathcal{F}_{q}\left(u_{t}\right)\right)^{(1)}, e^{i t|\cdot|^{2}} \varphi\right\rangle+i\left\langle\mathcal{F}_{q}\left(u_{t}\right),\right| \cdot| |^{2} e^{i t|\cdot|^{2}} \varphi\right\rangle\right] \chi(t) d t=0 \tag{14}
\end{equation*}
$$

for $\chi \in \mathcal{S}(\mathbb{R})$. Hence we deduce that

$$
\begin{equation*}
\left.\frac{d}{d t}\left\langle\mathcal{F}_{q}\left(u_{t}\right), e^{i t|\cdot|^{2}} \varphi\right\rangle=\left\langle\left(\mathcal{F}_{q}\left(u_{t}\right)\right)^{(1)}, e^{i t|\cdot|^{2}} \varphi\right\rangle+\left.i\left\langle\mathcal{F}_{q}\left(u_{t}\right),\right| \cdot\right|^{2} e^{i t|\cdot|^{2}} \varphi\right\rangle=0 \tag{15}
\end{equation*}
$$

for $\in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$. Thus for all φ in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, the function $t \mapsto\left\langle\mathcal{F}_{q}\left(u_{t}\right), e^{i t|\cdot|^{2}} \varphi\right\rangle$ is constant. Finally, as $u_{0}=0$ then

$$
\left\langle\mathcal{F}_{q}\left(u_{t}\right), e^{i t|\cdot|^{2}} \varphi\right\rangle=\left\langle\mathcal{F}_{q}\left(u_{0}\right), \varphi\right\rangle=0 \text { for } t \in \mathbb{R} \text { and } \varphi \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)
$$

Then we deduce that $u=0$.
THEOREM 3. Let g be in $\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right), \quad s \in \mathbb{R}$ and $1 \leq p<\infty$, the solution given by the Theorem 2 belongs to $C\left(\mathbb{R} ; \mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)\right)$. For $m \in \mathbb{N}, \quad\left(u_{t}^{(m)}\right) \in C\left(\mathbb{R} ; \mathcal{W}_{q}^{s-2 m, p}\left(\mathbb{R}_{q}\right)\right)$ and we have for $t \in \mathbb{R}$

$$
\left\{\begin{array}{l}
\left\|u_{t}\right\|_{\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}=\|g\|_{\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)} \tag{16}\\
\left\|u_{t}^{(m)}\right\|_{\mathcal{W}_{q}^{s-2 m, p}}^{\left(\mathbb{R}_{q}\right)} \\
\leq C_{m}\|g\|_{\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)} \quad \text { for } m \in \mathbb{N}^{*}
\end{array}\right.
$$

PROOF. By the formula (10), we have for all t in \mathbb{R}

$$
\mathcal{F}_{q}\left(u_{t}\right)=e^{-i t|\xi|^{2}} \mathcal{F}_{q}(g)
$$

so, it is easy to deduce (16). Now, we will prove that for $m=1,2, \ldots, u_{t}^{(m)}$ belongs to $C\left(\mathbb{R} ; \mathcal{W}_{q}^{s-2 m, p}\left(\mathbb{R}_{q}\right)\right)$. In fact, let $\left(t_{n}\right)_{n}$ be a sequence that converge to t_{0} in \mathbb{R}, we have

$$
\left\|u_{t_{n}}-u_{t_{0}}\right\|_{\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}^{2}=\int_{\mathbb{R}_{q}}\left(1+|\xi|^{2}\right)^{\frac{s p}{2}}\left|e^{-i t_{n}|\xi|^{2}}-e^{-i t_{0}|\xi|^{2}}\right|^{p}\left|\mathcal{F}_{q}(g)(\xi)\right|^{p} d_{q} \xi
$$

According to the dominated convergence theorem, we obtain

$$
\lim _{n \rightarrow \infty}\left\|u_{t_{n}}-u_{t_{0}}\right\|_{\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}^{2}=0
$$

Elsewhere, from (10) we have

$$
\mathcal{F}_{q}\left(u_{t}^{(m)}\right)=\left(-i|\xi|^{2}\right)^{m} e^{-i t|\xi|^{2}} \mathcal{F}_{q}(g) .
$$

Hence, we obtain

$$
\left\|u_{t_{n}}^{(m)}-u_{t_{0}}^{(m)}\right\|_{\mathcal{W}_{q}^{s, p}\left(\mathbb{R}_{q}\right)}^{p}=\int_{\mathbb{R}_{q}}\left(1+|\xi|^{2}\right)^{\frac{s p}{2}}\left|e^{-i t_{n}|\xi|^{2}}-e^{-i t_{0}|\xi|^{2}}\right|^{p}|\xi|^{2 m p}\left|\mathcal{F}_{q}(g)(\xi)\right|^{p} d_{q} \xi
$$

Finally, the dominated convergence theorem leads to the result.

References

[1] N. Bettaibi, M. M. Chaffar and A. Fitouhi, Sobolev type spaces associated with the q-Rubin's operator, Le Matematiche, 69(2014), 36-56.
[2] A. Fitouhi and R. H. Bettaieb, Wavelet transforms in the q^{2}-analogue Fourier analysis, Math. Sci. Res. J., 12(2008), 202-214.
[3] G. Gasper and M. Rahman, Basic Hypergeometric Series, vol. 96, Cambridge university press, 2004.
[4] F. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41(1910), 193203.
[5] V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
[6] R. L. Rubin, Duhamel solutions of non-homogeneous q^{2}-analogue wave equations, Proc. Amer. Math. Soc., 135(2007), 777-785.
[7] R. L. Rubin, A q^{2}-analogue operator for q^{2}-analogue Fourier analysis, J. Math. Anal. Appl., 212(1997), 571-582.
[8] A. Saoudi and A. Fitouhi, On q^{2}-analogue Sobolev type spaces, Le Matematiche, 70(2015), 63-77.

[^0]: *Mathematics Subject Classifications: 35H10, 35L05.
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Sciences of Tunis, Tunis-El Manar University, Tunisia
 \ddagger Department of Mathematics, Faculty of Sciences of Tunis, Tunis-El Manar University, Tunisia

