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Abstract
We study the exact multiplicity of positive solutions and bifurcation diagrams
of the Dirichlet boundary value problem
@)+ AMu—a)(u—b(u—c)=0, —1l<z<]1,
u(-1)=u(1) =0, a<b<eg,
where A > 0 is a bifurcation parameter. We give a complete classification of

totally seven qualitatively different bifurcation diagrams. Our results extend
those in Hung (J. Differential Equations 255 (2013) 3811-3831).

1 Introduction

In this paper we study the exact multiplicity of positive solutions and bifurcation
diagrams of the Dirichlet boundary value problem

u (@) +Au—a)(u—>b)(u—c)=0, —1<x<1, ,
{U(—l)ZU(l)ZO,a<b<c, (1)

where A\ > 0 is a bifurcation parameter. The cubic nonlinearity f(u) = (u — a)(u —
b)(u — ¢) is concave-convex on (0,00). We first observe that any positive solution of
(1) must be symmetric about the origin. Moreover, the value of |luy||,, = ur(0) = p
uniquely identifies the solution pair (A, uy(z)) (i.e. there is at most one A, with at most
one solution uy(z), so that ||u,|l,, = p). Hence we define the bifurcation diagram of
1)

Y ={(\[Juall) : A > 0 and uy is a positive solution of (1)} .
If @ > 0, problem (1) becomes
u(z) + Mu—a)(u—>b)(u—c)=0, —1<z<]1, @)
u(=1)=u(l)=0, 0<a<b<e.

Hung [1] determined completely the exact multiplicity of positive solutions and bifur-
cation diagrams of problem (2). See the following Theorem 1.1 and Fig. 1.
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Fig. 1. The bifurcation diagrams of (2). (i) 2b(a + ¢) > b + 6ac. (ii)
2b(a + ¢) = b + 6ac. (iii) 2b(a + ¢) < b? + 6ac.

Define F(u) = [ f(t)dt.

THEOREM 1.1. Consider problem (2)

{ u(z) + Mu—a)(u—>b)(u—c)=0, —1<z<]1,
u(=1)=u(l)=0, 0<a<b<e.

Then the following assertions (i)—(iii) hold:

(i)

(i)

(iii)

(See Fig. 1(i).) If 2b(a+c) > b*+6ac, then F(b) > 0 and the bifurcation diagram
Y of (2) is broken reversed S-shaped on the (A, ||ul|s)-plane. Moreover, there
exist A > A, > 0 such that (2) has exactly three positive solutions uy, vy, wy
with uy < vy < wy for all A, < A < A, exactly two positive solutions vy, wy
with vy < wy for A = X, and A > A, and exactly one positive solution wy for
0 < A < As. More precisely,

lim, 5= uallee = lluslle = by limy—oo orll = b,
limy o+ [Jwall,, = 00, im0 [Jwall, = €,
where b € (a,b), ¢ € (c,00) satisfying F(b) = 0 and F(¢) = F(b) > 0.
(See Fig. 1(ii).) If 2b(a+c) = b%*+6ac, then F(b) = 0 and the bifurcation diagram
Y of (2) is a monotone decreasing curve on the (A, ||ul|s)-plane. Moreover, (2)
has exactly one positive solution uy for all A > 0. More precisely,

limy o+ [lurll, =00 and limy_.o [Jurll, =,
where ¢ € (¢, 00) satistying F'(¢) = F(b) = 0.

(See Fig. 1(iii).) If 2b(a+c) < b?+6ac, then F(b) < 0 and the bifurcation diagram
¥ of (2) is a monotone decreasing curve on the (A, |[u||)-plane. Moreover, there
exists A > 0 such that (2) has exactly one positive solution uy for 0 < A < A, and
no positive solution for A > X\. More precisely,

limy o+ [[urll = 00 and Tim, 3 flu] o = llusll =&

where ¢ € (¢, 00) satisfying F'(¢) = 0.
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Our results in this paper are extensions of those of Hung [1] from 0 < a < b < ¢
to a < b < c. In Theorem 2.1 stated below, we give a complete classification of totally
seven qualitatively different bifurcation diagrams of (1).

A dual problem of (1) is

() +AMu—a)(u—>b)(c—u)=0, —1<z<]l, 3
{u(—l):u(l)zo,a<b<c. (3)

The cubic nonlinearity f(u) = (u — a)(u — b)(c — u) is convex-concave on (0,00). In
a celebrated paper [6, Section 2], Smoller and Wasserman first systematically studied
bifurcation diagrams of positive solutions of problem (3). For the case

a<b<0<c and (a+b+c)/3 >0,

Smoller and Wasserman [6, p. 277, lines 18-19] stated that “This case is rather difficult,
and requires some new estimates.” They proved partial results and left the remaining
part as an open problem. Recently, Hung and Wang [2, Theorem 2.5] proved this open
problem completely. For another case

0<a<b<e,

this case arises from the studies of dynamics of the FitzHugh-Nagumo equation and
population biology. Smoller and Wasserman [6, Theorem 2.1] succeeded in solving
problem (3) for a = 0. For a > 0, Wang [7] and Korman, Li and Ouyang [4] indepen-
dently proved partial results by using the techniques of time-mapping and techniques
of bifurcation theory under different conditions, respectively. Further investigations
are needed to prove the exact shape of the bifurcation curves without any restriction.

2 Main Result

Our results in this paper are extensions of those of Hung [1] from 0 < a < b < ¢ to
a < b < c. In the following theorem, we give a complete classification of totally seven
qualitatively different bifurcation diagrams of (1). See Figs. 1 and 2. Note that Fig.
1(ii) is the same as Fig. 2(iii) and Fig. 1(iii) is the same as Fig. 2(iv).

THEOREM 2.1. Consider problem (1). Then the following assertions (i)—(vii) hold:

(i) (See Fig. 1(i)—(iii).) If 0 < @ < b < ¢, then all the results in Theorem 1.1 hold.

(ii) (See Fig. 2(i).) If a = 0 < b < ¢, then the bifurcation diagram ¥ of (1) is broken
S-shaped on the (X, ||u||o)-plane. Moreover, there exists A = ZTQC such that (1)

has exactly two positive solutions Ux, Ux with uy < vy for all A > A, and exactly
one positive solution vy for 0 < A < A. More precisely,

lim, ¢+ luallo = 0, Hmy—oo flurf, =,

limy o+ [[uallee = 00, Timr—oo [[oallo = €,

where ¢ € (¢, 00) satisfying F'(¢) = F'(b) > 0.
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(iii)

(vii)

A Complete Classification of Bifurcation Diagrams

(See Fig. 2(ii).) If a < 0 < b < ¢, then the bifurcation diagram X of (1) is
broken D-shaped on the (A, ||ul|o)-plane. Moreover, (1) has exactly two positive
solutions uy, vy with uy < vy for all A > 0. More precisely,

lim)\HOJr ||u>\||oo = O, hm)\_,oo ”u)\”oo = b,
limy o+ [[oall oo = 00, imr—oo [[Ualloy = €
where ¢ € (¢, 00) satisfying F'(¢) = F(b) > 0.

(See Fig. 2(iii) and Fig. 1(ii).) If a < b = 0 < ¢, then all the results in Theorem
1.1(ii) hold.

(See Fig. 2(iv) and Fig. 1(iii).) If a < b < 0 < ¢, then all the results in Theorem
1.1(iii) hold.

(See Fig. 2(v).) If a < b < ¢ = 0, then the bifurcation diagram ¥ of (1) is
a monotone decreasing curve on the (A, ||u||o)-plane. Moreover, there exists
A= %jb such that (1) has exactly one positive solution uy for 0 < A < A, and no
positive solution for A > A. More precisely,

limy o+ ||ua|l o, = o0 and lim, - [lurll, = 0.

(See Fig. 2(vi).) If a < b < ¢ < 0, then the bifurcation diagram ¥ of (1) is
D-shaped on the (A, ]|u||s)-plane. Moreover, there exist A* > 0 such that (1)
has exactly two positive solutions uy, vy with uy < vy for 0 < A < \*, exactly
one positive solution uy for A = \*, and no positive solution for A > \*. More
precisely,

hInA—>0Jr ||U)\||oo =00 and lim,\_,0+ ||u)\||oo =0.

‘ML “HulkoL 4+ ” u ”oo
gl---"TT=m==— gl---TTm===—=
bl------zzooc=s cl----—T=====—
A
0 § 0 ’
(ii) (iii)
4 lulloo 4 lulloo
1 1
! A A ! A
0 X 0 i 0 o
(iv) W) (vi)

Fig. 2. The bifurcation diagrams of (1). i) a=0<b<e. (ii) a <0< b < e. (iii)

a<b=0<c (iv)a<b<0<ec (v)a<b<c=0. (vija<b<c<O.
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3 Lemmas

First, we give the time map formula as follows:

(p) forpel, 4)

f/ \/7du_

where the set I C (0,00) is the set of p € (0, 00) such that G(p) is well defined; that is,
I={pe(0,00): F(p) > F(u) for all u € (0,p) and G(p) € (0,00)}.

It is easy to check

(0,b)U(¢,0) ifa<0<b<e,
I (¢, 0) ifa<b=0<eg,
) [6,00) ifa<b<0<eg,
(0, 00) ifa<b<c<O.

We omit the case 0 < a < b < ¢ since it was full discussed in [1]. Note that G(p) is a
continuous function on I, and positive solutions uy of (1) correspond to

lurlloo = p € I and G(p) = VA, (5)

Thus, studying of the exact number of positive solutions of (1) is equivalent to studying
the shape of the time map G(p) on I.

To prove Theorem 2.1, we need the following four lemmas.

In the following Lemma 3.1, we determine the limits of G(p) on I; that is, we
determine the boundary behaviors of the bifurcation diagram ¥ of (1). The proofs
of Lemma 3.1 are easy but tedious, and hence we omit them. See also Laetsch [5,
Theorems 2.5-2.10].

LEMMA 3.1. Consider (4). Then the following assertions (i)—(vi) hold:
(i) lim,—o G(p) = 0.
(i) If f(0) = —abc > 0, lim,_,o+ G(p) = 0.

(iii) If f(0) = —abc = 0 and f'(0) = ab + bc+ ca > 0, lim,_g+ G(p) =
(0, 00).

T
2v/ab+bc+ca €

(iv) If a <0 < cand f(0) = —abc > 0, then lim, .+ G(p) = oc.

(v) If a <0 < ¢ and f(0) = —abc < 0, then lim, ..+ G(p) = G(¢) € (0,00) and
lim, .+ G'(p) = —oo.

(vi) If @ <0 < b, then lim,_,,- G(p) = oco.
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In the following two lemmas, we give sufficient conditions for the monotonicity of

G(p).
LEMMA 3.2. Consider (4). Assume that, for some 5 > 0, either
f(u) = uf'(u) >0 on(0,8) C 1,
or the opposite inequality holds. Then G(p) is a monotone function on (0, 3).

PROOF. 1t is easy to verify by

L U =)= [ — ],
Gle) = 2\/5/)/0 F(p) — F(u)]*? du for p & (0.5).

The proof of Lemma 3.2 is complete.

Lemma 3.3 is due to [3, Theorem 2.1] which was proved by applying generalized
averages.

LEMMA 3.3. Counsider (4). Assume that, for some g > 0,

f(B)=0 and f(u), f"(u) >0 on (B,00).

Then G(p) is a monotone function on the set J C (3, 00), where J is the set of p €
(8, 00) such that G(p) is well defined.

The following lemma mainly follows by applying [5, Theorem 3.2]. We omit the
proofs.

LEMMA 3.4. Consider (4). Assume that f(u) is positive and convex on [0, 00).
Then G(p) is either monotone increasing on (0, c0), or G(p) is monotone increasing on
(0,7) and monotone decreasing on (v, c0) for some v € (0, 00).

4 Proof of Main Result

In this section, we prove Theorem 2.1. To the end, we consider the next seventh cases.
Case (i): If 0 < a < b < ¢, the results was proved by [1] and hence we omit the
proofs.
Case (ii): If a = 0 < b < ¢, we obtain the boundary behaviors by Lemma 3.1.

(1) lim,_o+ G(p) = v € (0,00), lim,_,- G(p) = oo, lim,_z+ G(p) = oo, and
lim,_, G(p) = 0, where ¢ € (c, 00) satisfying F'(¢) = F'(b) > 0.

Let h(u) = 2F (u) —uf(u), then b/ (u) = f(u) —uf’(u) and A" (u) = —uf”(u). Since
h(0) = h'(0) =0, W' (b) = —bf’(b) > 0, and h(u) is convex-concave on (0,00) (f(u) is
concave-convex on (0,00)). It can be proved that h'(v) = f(u) — uf'(u) > 0 on (0,b).
Then by property (1) and Lemma 3.2, we have
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(2) G(p) is monotone increasing on (0, b).

Since f(¢) =0 and f(u), f”(u) > 0 on (¢,00), by property (1) and Lemma 3.3, we
have

(3) G(p) is monotone decreasing on (¢, 00).

Thus by (5) and properties (1)—(3), we immediately obtain the results in case (ii).
The bifurcation diagram ¥ is depicted in Fig. 2(i).
Case (iii): If a < 0 < b < ¢, we obtain the boundary behaviors by Lemma 3.1.

(1) lim,_o+ G(p) = 0, lim,_,,- G(p) = oo, lim,_,z+ G(p) = oo, and lim, ... G(p) =
0, where ¢ € (¢, 00) satisfying F(¢) = F(b) > 0.

By the same analysis in case (ii), it can be proved that h'(u) = f(u) — uf'(u) > 0
on (0,b). Then by property (1) and Lemma 3.2, we have

(2) G(p) is monotone increasing on (0, b).

Since f(¢) =0 and f(u), f”(u) > 0 on (¢, 00), by property (1) and Lemma 3.3, we
have

(3) G(p) is monotone decreasing on (¢, 00).

Thus by (5) and properties (1)—(3), we immediately obtain the results in case (iii).
The bifurcation diagram ¥ is depicted in Fig. 2(ii).
Case (iv): If a < b = 0 < ¢, we obtain the boundary behaviors by Lemma 3.1.

(1) lim, s+ G(p) = oo and lim,_.o G(p) = 0, where ¢ € (c, 00) satisfying F(¢) =
F(b) =0.

Since f(¢) =0 and f(u), f”(u) > 0 on (¢, 00), by property (1) and Lemma 3.3, we
have

(2) G(p) is monotone decreasing on (¢, 00).

Thus by (5) and properties (1) and (2), we immediately obtain the results in case
(iv). The bifurcation diagram ¥ is depicted in Fig. 2(iii).
Case (v): If a < b < 0 < ¢, we obtain the boundary behaviors by Lemma 3.1.

(1) lim,_z+ G(p) = G(¢) € (0,00), lim,_,z+ G'(p) = —o0, and lim, .o, G(p) = 0,
where ¢ € (¢, 00) satisfying F'(¢) = 0.

Since f(c) =0 and f(u), f”(u) > 0 on (¢,00), by property (1) and Lemma 3.3, we
have

(2) G(p) is monotone decreasing on [¢, 00).

Thus by (5) and properties (1) and (2), we immediately obtain the results in case
(v). The bifurcation diagram X is depicted in Fig. 2(iv).
Case (vi): If a < b < ¢ =0, we obtain the boundary behaviors by Lemma 3.1.
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(1) lim,_o+ G(p) = 2\7;% € (0,00) and lim,_, G(p) = 0.

Since f(0) = 0 and (f(u) —uf'(u)) = —uf”(u) < 0 on (0,00), it can be proved
that f(u) — uf’(u) < 0 on (0,00). Then by property (1) and Lemma 3.2, we have

(2) G(p) is monotone decreasing on (0, 00).

Thus by (5) and properties (1) and (2), we immediately obtain the results in case
(vi). The bifurcation diagram ¥ is depicted in Fig. 2(v).
Case (vii): If a < b < ¢ < 0, we obtain the boundary behaviors by Lemma 3.1.

(1) lim,_o+ G(p) = lim,_.o G(p) = 0.

Since f(u) is positive and convex on [0, 00), then by property (1) and Lemma 3.4,
we have

(2) G(p) is monotone increasing on (0,v) and monotone decreasing on (v, 00) for
some v € (0, 00).

Thus by (5) and properties (1) and (2), we immediately obtain the results in case
(vii). The bifurcation diagram ¥ is depicted in Fig. 2(vi).
The proof of Theorem 2.1 is now complete.
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