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Abstract

A vague graph is a generalized structure of a fuzzy graph that gives more
precision, flexibility, and compatibility to a system when compared with systems
that are designed using fuzzy graphs. In this paper, we introduce the concept of
strong domination numbers of vague graphs. The strong domination numbers of
any complete (bipartite) vague graph are determined, and bounds are obtained
for the strong numbers of vague graphs. Finally, we present some applications of
strong domination numbers.

1 Introduction

In the classical set theory introduced by Cantor, values of elements in a set are either
0 or 1. That is, for any element, there are only two possibilities: the element is
either in the set or it is not. Therefore, Cantor set theory cannot handle data with
ambiguity and uncertainty. In 1965, Zadeh [16], proposed fuzzy theory and introduced
fuzzy set theory. Fuzzy graph theory is defined by Rosenfeld [15] in 1975 as finding
an increasing number of applications in modeling real time systems where the level
of information inherent in the system varies with different levels of precision. Fuzzy
models are becoming useful as they aim to reduce the differences between the traditional
numerical models used in engineering and sciences and the symbolic models used in
expert systems. Since domination of graph measures the influence of each node to the
other nodes, then there exists many applications of domination in graphs. Bhutani and
Rosenfeld [3] in 2003 introduced the concept of strong arc in fuzzy graphs. In addition
Gani and Chandrasekaran [13] in 2006 introduced the concept of domination in fuzzy
graphs using strong arcs, and Manjusha and Sunitha [12] in 2015 defined the strong
domination number of fuzzy graph using the weights of strong arc. In a fuzzy set, each
element is associated with a point value selected from the unit interval [0, 1], which is
termed the grade of membership in the set. Instead of using point-based membership
as in fuzzy sets, interval based membership is used in a vague set. The interval based
membership in vague sets is more flexible in capturing vagueness of data. Gau and
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252 Strong Domination Number of Vague Graphs

Buherer [11] in 1993 proposed the concept of vague set, by replacing the value of an
element in a set with a subinterval of [0, 1]. Namely, a true-membership function tA(x)
and a false membership function fA(x) are used to describe the boundaries of the
membership degree. Ramakrishna [14] in 2009 introduced the concept of vague graph
and studied some of their properties. Borzooei and Rashmanlou [4—10] (2015,2016)
introduce the concepts of cardinality, dominating set, independent, total dominating
number, independent dominating number, regularity, and semi global domination sets
in vague graphs. Akram et al. [1, 2] (2013,2014) defined certain types of vague graphs.
In this paper, we introduced the new concepts of dominating sets in vague graphs and
defined the concepts of strong domination numbers of value graphs using sum of the
membership values of strong arcs in dominating sets and we proved interesting results
of them.

2 Preliminaries

In this section, we introduced some preliminary notions and definitions which are used
in this paper.

DEFINITION 1([14, 11]). A vague set A on a non-empty set X is a pair (tA, fA)
where tA : X → [0, 1] and fA : X → [0, 1] are true and false membership functions,
respectively such that

0 ≤ tA(x) + fA(x) ≤ 1 for any x ∈ X.

Let X and Y be two ordinary non-empty sets. A vague relation R of X to Y is a vague
set R on X × Y , that is R = (tR, fR), where tR : X × Y → [0, 1], fR : X × Y → [0, 1]
which satisfies the condition

0 ≤ tR(x, y) + fR(x, y) ≤ 1 for all (x, y) ∈ X × Y.

Let G∗ = (V,E) be a graph. A pair G = (A,B) is called a vague graph on G∗ or a
vague graph where A = (tA, fA) is a vague set on V and B = (tB , fB) is a vague set
on E ⊆ V × V such that for each xy ∈ E,

tB(xy) ≤ min (tA(x), tA(y)) and fB(xy) ≥ max (fA(x), fA(y)) .

DEFINITION 2([14]). Let G = (A,B) be a vague graph.

(i) An arc uv in G is called a effective if

tB(uv) = fA(u) ∧ fA(v) and fB(uv) = fA(u) ∨ fA(v).

(ii) G is said to be a strong vague graph if for all uv ∈ E, uv is effective arc.

(iii) G is called a complete vague graph if for every u, v ∈ V ,(
tB(uv), fB(uv)

)
=
(
tA(u) ∧ tA(v), fA(u) ∨ fA(v)

)
.

A complete vague graph with n nodes is denoted by Kn.
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DEFINITION 3 ([5, 14]). Let G = (A,B) be a vague graph and u, v ∈ V .

(i) A path ρ in G is a sequence of distinct nodes v0, v1, v2, ..., vk such that

(tB(vi−1vi), fB(vi−1vi)) > 0, i = 1, ..., k.

Here k is called the length of the path ρ.

(ii) If u and v are connected by means of a path of length k such as

ρ : u = u0, u1, ..., uk−1, uk = v,

then tkB(uv) and fkB(uv) are defined by

tkB(uv) = sup {tB(u, u1) ∧ tB(u1, u2) ∧ ... ∧ tB(uk−1, v)} ,

fkB(uv) = inf {fB(u, u1) ∨ fB(u1, u2) ∨ ... ∨ fB(uk−1, v)} .
And the strength of connectedness between two nodes u and v in G is defined as
follows, (

t∞B (uv), f∞B (uv)
)

=
(
supk∈N{tkB(uv)}, infk∈N{fkB(uv)}

)
.

(iii) An arc uv in G is called a strong if

tB(uv) ≥ t∞B (uv) and fB(uv) ≤ f∞B (uv).

(iv) For u, v ∈ V we say that u dominated v in G, if there exists a strong arc between
them.

(n) A subset D of V is called a dominating set in G if for every v ∈ V \D, there exists
u ∈ D such that u dominates v. A dominating set D in G is said to be minimal
dominating set if no proper subsetof D is a dominating set.

3 Strong (Neighborhood) Domination Number

In this section, we define the strong and the strong neighborhood domination numbers
of a vague graph and introduce the concepts of strong size and strong order of a vague
graph. Then we prove that in certain types of vague graphs, the strong domination
number (or the strong neighborhood domination number) is equal to the strong size (or
strong order). Finally, we obtain the upper bounds on strong and strong neighborhood
domination numbers in a vague graph.

DEFINITION 4. Let G = (A,B) be a vague graph and u ∈ V . Then v ∈ V is called
a strong neighbor of u, if uv is a strong arc. The set of strong neighbors of u is called
the strong neighborhood of u and is denoted by Ns(u). The closed strong neighborhood
of u is defined as Ns[u] = Ns(u) ∪ {u}.

DEFINITION 5. Let G = (A,B) be a vague graph and v ∈ V .
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(i) The strong degree and the strong neighborhood degree of v are defined, respectively
as

ds(v) =

 ∑
u∈Ns(v)

tB(uv),
∑

u∈Ns(v)

fB(uv)

 ,

dsN (v) =

 ∑
u∈Ns(v)

tA(u),
∑

u∈Ns(v)

fA(u)

 .

(ii) The strong degree cardinality and the strong neighborhood degree cardinality of v
are defined, respectively as

|ds(v)| =
∑

u∈Ns(v)

tB(uv) +
(
1− fB(uv)

)
2

,

|dsN (v)| =
∑

u∈Ns(v)

tA(u) +
(
1− fA(u)

)
2

.

If Ns(v) = {∅}, then
ds(v) = (0, 1) −→ |ds(v)| = 0

and also
dsN (v) = (0, 1) −→ |dsN (v)| = 0.

(iii) The minimum and maximum strong degree of G are defined, respectively as

δs(G) = ∧{|ds(v)|
∣∣ ∀v ∈ V } and ∆s(G) = ∨{|ds(v)|

∣∣ ∀v ∈ V }.
(iv) The minimum and maximum strong neighborhood degree of G are defined, re-

spectively as

δsN (G) = ∧{|dsN (v)|
∣∣ ∀v ∈ V } and ∆sN (G) = ∨{|dsN (v)|

∣∣ ∀v ∈ V }.
EXAMPLE 6. Consider a vague graph G = (A,B) in Figure 1. We see that ab, bc

and ad are strong arcs and so we get,

ds(a) = (0.4, 1.1) , ds(b) = (0.5, 1.2) , ds(c) = (0.3, 0.7) , ds(d) = (0.2, 0.6)

|ds(a)| = 1.3

2
= 0.65, |ds(b)| =

1.3

2
= 0.65, |ds(c)| =

0.6

2
= 0.3, |ds(d)| = 0.6

2
= 0.3.

Hence
δs(G) = 0.3 and ∆s(G) = 0.65.

And also,

dsN (a) = (0.6, 0.9), dsN (b) = (0.5, 1.1), dsN (c) = (0.3, 0.4), dsN (d) = (0.2, 0.4)
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Figure 1: Vague graph G.

|dsN (a)| = 0.85, |dsN (b)| = 0.7, |dsN (c)| = 0.45, |dsN (d)| = 0.4.

Therefore
δsN (G) = 0.4 and ∆sN (G) = 0.85.

PROPOSITION 7. Let G = (A,B) be a vague graph. Then

δs(G) ≤ δsN (G) and ∆s(G) ≥ ∆sN (G).

REMARK 8. Let G be a vague graph. If tA and fA are constant functions, then

δs(G) = δsN (G) and ∆s(G) = ∆sN (G).

DEFINITION 9. The strong size and the strong order of vague graph G are defined
respectively as

Ss(G) =

{∑
uv∈E

tB(uv) +
(
1− fB(uv)

)
2

∣∣∣ uv is a strong arc}

and

Os(G) =

{∑
v∈V

tA(v) +
(
1− fA(v)

)
2

∣∣∣ v is an end node of a strong arc} .
EXAMPLE 10. Consider the vague graph G in Figure 1. For strong arcs ab, bc and

ad in G, we get

Ss(G) =
(0.2 + 0.5) + (0.2 + 0.4) + (0.3 + 0.3)

2
=

1.9

2
= 0.95,

Os(G) =
(0.2 + 0.6) + (0.3 + 0.6) + (0.3 + 0.3) + (0.3 + 0.5)

2
=

3.1

2
= 1.55.
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DEFINITION 11. Let D be a dominating set in a vague graph G. The arc weight
and the node weight of D are defined as follows, respectively

We(D) =
∑

u∈D,v∈Ns(u)

∧{tB(uv)}+
(

1− ∨
{
fB(uv)

2

})
and

Wv(D) =
∑

u∈D,v∈Ns(u)

∧{tA(v)}+
(

1− ∨
{
fA(v)

2

})
.

The strong domination number and the strong neighborhood domination number of G
are defined as the minimum arc weight and minimum node weight of dominating sets
in G and are denoted by γs(G) and γsN (G), respectively.

EXAMPLE 12. Consider the vague graph G in Figure 1. The dominating sets in G
are D1 = {a, b}, D2 = {a, c}, D3 = {b, d}, D4 = {c, d}, D5 = {a, b, c}, D6 = {a, b, d},
D7 = {b, c, d} and D8 = {c, d, a}. Therefore

We(D1) = 0.55, We(D2) = 0.6, We(D3) = 0.55, We(D4) = 0.6,

We(D5) = 0.85, We(D6) = 0.85, We(D7) = 0.85, We(D8) = 0.9.

Then γs(G) = 0.55. In addition, we have

Wv(D1) = 0.65, Wv(D2) = 0.85, Wv(D3) = 0.65, Wv(D4) = 0.85,

Wv(D5) = 1.1, Wv(D6) = 1.05, Wv(D7) = 1.1, Wv(D8) = 1.25.

Then γsN (G) = 0.65

THEOREM 13. Let G = (A,B) be a non trivial vague graph. Then

(i) γs(G) < Ss(G).

(ii) γs(G) = Ss(G) if and only if each node has at most one strong neighbor.

(iii) γsN (G) < Os(G).

(iv) γsN (G) = Os(G) if and only if G has no strong arc.

PROOF. The proofs of (i) and (iii) are trivial. Suppose that, each node has at most
one strong neighbor. Since each arc has two end nodes hence for every u, v ∈ V any
dominating set in G is of the form

D =
{
{u} ∪ {v}

∣∣Ns(u) = {∅}, v is the only one end node of every strong arc
}
.

Hence for every dominating set as D in G we get,

γs(G) =
∑

u∈D,v∈Ns(u)

tB(uv) +
(
1− fB(uv)

)
2

= Ss(G).
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Conversely, suppose that γs(G) = Ss(G) and there exists one node as w in G that has
exactly two strong neighbors. Hence w is in the dominating sets of G and so

γs(G) =
∑

v∈D,u∈Ns(v)

∧{tB(uv)}+
(
1− ∨{fB(uv)}

)
2

< |ds(w)|+
∑

u,v 6=w,uv∈E

tB(uv) +
(
1− fB(uv)

)
2

= Ss(G).

Then γs(G) < Ss(G), that is a contradiction. So (iii) holds. It is clear that if G hasn’t
any strong arcs, then D = G is the only dominating set of G therefore γsN (G) =
Os(G) = 0. Conversely, suppose that γsN (G) = Os(G) and there exists one strong arc
uv in G. Then

D1 = {w
∣∣u 6= w ∈ V } and D2 = {w

∣∣v 6= w ∈ V }

are dominating sets of G, so

γsN (G) = wv(D1) =
tA(u) +

(
1− fA(u)

)
2

or

γsN (G) = wv(D2) =
tA(v) +

(
1− fA(v)

)
2

.

And also

Os(G) =
tA(u) +

(
1− fA(u)

)
2

+
tA(v) +

(
1− fA(v)

)
2

.

Hence γsN (G) < Os(G) that is a contradiction. So (iv) holds.

THEOREM 14. Let D be a dominating set in vague graph G. Then

(i) γs(G) < γsN (G).

(ii) if G is a strong vague graph and for every u ∈ D and v ∈ Ns(u), tA(u) ≥ tA(v)

and fA(u) ≤ fA(v), then γs(G) = γsN (G).

PROOF. (i) Since

tB(uv) ≤ tA(u) ∧ tA(v) and fB(uv) ≥ fA(u) ∨ fA(v) for u, v ∈ V,

we see that γs(G) < γsN (G). (ii) Since G is a strong vague graph, then each arc in G
is strong. Suppose that D is a dominating set in G and

tA(u) ≥ tA(v), fA(u) ≤ fA(v) for u ∈ D, v ∈ Ns(u).

So by Definition 13, we get

We(D) =
∑

u∈D,v∈Ns(u)

∧{tB(uv)}+
(
1− ∨{fB(uv)}

)
2

=
∑

u∈D,v∈Ns(u)

∧{tA(v)}+
(
1− ∨{fA(v)}

)
2
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and also

Wv(D) =
∑

u∈D,v∈Ns(u)

∧{tA(v)}+
(
1− ∨{fA(v)}

)
2

.

Therefore We(D) = Wv(D) and γs(G) = γsN (G).

LEMMA 15. Any effective arc in a vague graph G = (A,B) is a strong arc.

PROOF. Suppose that uv is a effective arc in G. Then(
tB(uv), fB(uv)

)
=
(
tA(u) ∧ tA(v), fA(u) ∨ fA(v)

)
.

So by Definition 3, we get

t∞B (uv) = sup{tkB(uv)
∣∣ k = 1, 2, ...}

=
(
tB(uv)

)∨(
t2B(uv)

)∨(
t3B(uv)

)∨
...

=
(
tB(uv)

)∨(
∨
(
tB(uu1) ∧ tB(u1v)

))∨
...

=
(
tA(u) ∧ tA(v)

)∨(
tA(u) ∧ tA(u1) ∧ tA(v)

)∨
...

≤
(
tA(u) ∧ tA(v)

)∨(
tA(u) ∧ tA(v)

)∨(
tA(u) ∧ tA(v)

)∨
...

=
(
tA(u) ∧ tA(v)

)
= tB(uv).

And similarly we have fB(uv) ≥ f∞B (uv). Therefore

tB(uv) ≥ t∞B (uv) and fB(uv) ≤ f∞B (uv).

By Definition 3, uv is strong arc.

THEOREM 16. If G = (A,B) be a complete vague graph. Then

γs(G) =
∧{tA(v)}+

(
1− ∨{fA(v)}

)
2

= γsN (G) for v ∈ V.

PROOF. Since G is a complete vague graph, then all arcs in G are effective and so
by Lemma 15 are strong. In complete vague graphs every node is adjacent to the other
nodes. Hence every dominating set in G contains only one node. Therefore for every
v ∈ V

γs(G) = γsN (G) =
∧{tA(v)}+

(
1− ∨{fA(v)}

)
2

.

DEFINITION 17. A vague graph G = (A,B) is said to be a complete bipartite
vague graph if the set V can be partitioned into two non-empty sets V1 and V2 such
that (

tB(v1v2), fB(v1v2)
)

= (0, 1) for v1, v2 ∈ V1 or v1, v2 ∈ V2.
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Moreover,(
tB(uv), fB(uv)

)
=
(
tA(u) ∧ tA(v), fA(u) ∨ fA(v)

)
for u ∈ V1 and v ∈ V2.

REMARK 18. Let G = (A,B) be a complete bipartite vague graph with k ≥ 3
nods. If V1 or V2 has only one node as u, then

γs(G) =
∧{tA(v) | ∀v ∈ V }+

(
1− ∨{fA(v) | ∀v ∈ V }

)
2

and

γsN (G) =
∧{tA(v) | ∀u 6= v ∈ V }+

(
1− ∨{fA(v) | ∀u 6= v ∈ V }

)
2

.

4 Strong Perfect Domination Number

In this section, we define the perfect dominating set and strong perfect domination
number of a vague graph. Then we prove that under proper conditions, the strong and
the strong perfect domination number in a vague graph are equal. We finally, obtain
an upper bound for strong perfect domination numbers in vague graphs.

DEFINITION 19. Let G = (A,B) be a vague graph. A subset D of V is called
a perfect dominating set (or Dp) in G, if for every node v ∈ V \D, there exists only
one node u ∈ D such that u dominates v. A set Dp is said to be minimal perfect
dominating set if for each v ∈ Dp, Dp\{v} is not a perfect dominating set in G.

EXAMPLE 20. Consider the vague graph G = (A,B) in Figure 2. We see that ad,

Figure 2: Vague graph G.
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bc and bd are strong arcs and so

Dp
1 = {a, c}, Dp

2 = {b, d}, Dp
3 = {a, b, d} and Dp

4 = {b, c, d}

are perfect dominating sets in G where Dp
1 and D

p
2 are minimal.

PROPOSITION 21. Any perfect dominating set in vague graph G is a dominating
set.

REMARK 22. The converse of Proposition 21 is not correct in general. For this
consider the vague graph G in Figure 2, we see that D = {a, b} is a dominating set in
G, but it is not a perfect dominating set. Because d has two strong neighbors in D.

DEFINITION 23. The strong perfect domination number of a vague graph G is
defined as the minimum arc weight of perfect dominating sets of G, which is denoted
by γsp(G).

EXAMPLE 24. Consider the vague graph G = (A,B) in Figure 2. For perfect
dominating sets Dp

1 , D
p
2 , D

p
3 and D

p
4 in G, we get

We(D
p
1) = 0.6, We(D

p
2) = 0.6, We(D

p
3) = 0.9, We(D

p
4) = 0.9.

Then γsp(G) = 0.6.

THEOREM 25. Let G = (A,B) be a vague graph. If each node has at most one
strong neighbor, then γsp(G) = γs(G).

PROOF. Let G be a vague graph. Since each node in G has at most one strong
neighbor, therefore for every u, v ∈ V , any dominating set in G is of the form

D =
{
{u} ∪ {v}

∣∣Ns(u) = {∅} and v is the only end node of every strong arc
}
.

Hence D is a perfect dominating set and so γsp(G) =
∑

v∈D |ds(v)| = γs(G).

THEOREM 26. Let G = (A,B) be a complete (bipartite) vague graph. Then
γsp(G) = γs(G).

PROOF. Suppose that G is a complete vague graph. Then each dominating set in
G such as D contains only one node and so for every node v ∈ V \D there exists exactly
one strong neighbor in D, hence each dominating set in G is a perfect dominating set.
Therefore γsp(G) = γs(G). Now, suppose that G is a complete bipartite vague graph.
We consider the following cases:
Case 1: If V1 (or V2) has one node as v, then D = {v} is the only dominating set

in G.
Case 2: If V1 and V2 have at most two nodes, then each dominating set in G contains

two nodes, V1 and V2.
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Hence in both cases, each dominating set in G is perfect. Therefore γsp(G) = γs(G).

COROLLARY 27. Let G = (A,B) be a vague graph where each node has at most
one strong neighbor. Then γsp(G) = Ss(G).

REMARK 28. Let G = (A,B) be a vague graph with n nodes and every node in
G has exactly one strong neighbor. Then

n
(
δs(G)

)
≤ γsp(G) = γs(G) ≤ n

(
∆s(G)

)
.

THEOREM 29. Let G = (A,B) be a vague graph. Then a perfect dominating set
Dp is a minimal perfect dominating set in G if and only if for each node v ∈ Dp, either

(i) Ns(v) ∩Dp = {∅} or

(ii) there is a node u ∈ V \Dp such that Ns(u) ∩Dp = {v}.

PROOF. Let Dp be a minimal perfect dominating set and v ∈ Dp. Suppose that
(i) and (ii) are not established. Then there exists a node u ∈ Dp such that uv is strong
and v has no strong neighbors in V \Dp. Therefore Dp\ {v} is a perfect dominating set
in G, which is a contradiction by the minimality of Dp.
Conversely, suppose that (i) or (ii) is established and Dp is not a minimal perfect dom-
inating set in G. Then there exists v ∈ Dp such that Dp\ {v} is a perfect dominating
set. Hence v has a strong neighbor in Dp and so (i) is not established. Then there is a
node u ∈ V \Dp such that u is a strong neighbor of v and since Dp\{v} is a dominating
set, then u has a strong neighbor in Dp\{v}. Therefore u ∈ V \Dp has two strong
neighbors in Dp and so Dp is not a perfect dominating set, that is a contradiction.
Then Dp is a minimal perfect dominating set in G.

COROLLARY 30. A dominating set D in a vague graph G = (A,B) is a minimal
dominating set if and only if for each node v ∈ D, either

(i) Ns(v) ∩D = {∅} or

(ii) there is a node u ∈ V \D such that Ns(u) ∩D = {v}.

THEOREM 31. Let G be a vague graph which every its node has at least one strong
neighbor. If Dp is a minimal perfect dominating set in G, then V \Dp is a dominating
set.

PROOF. Suppose that Dp is a minimal perfect dominating set in vague graph G
and v ∈ V \(V \Dp) = Dp. If there is no u ∈ V \Dp such that Ns(u)∩Dp = {v}. Then
by Theorem 29, Ns(v) ∩Dp = {∅}. Therefore there exists a node in G which has no
strong neighbors tThat is a contradiction. This implies that V \Dp is a dominating set.

COROLLARY 32. Let G = (A,B) be a vague graph every node of which has at
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least one strong neighbor. If D is a minimal dominating set in G, then V \D is a
dominating set in G.

THEOREM 33. Let G = (A,B) be a vague graph every node of which has exactly
one strong neighbor. If Dp is a minimal perfect dominating set in G, then V \Dp is a
perfect dominating set in G.

PROOF. Suppose that Dp is a minimal perfect dominating set in the vague graph
G. Then by Theorem 31, V \Dp is a dominating set and since every node in G has
exactly one strong neighbor, V \Dp is a perfect dominating set in G.

THEOREM 34. Let G = (A,B) be a vague graph where each node in G has exactly
one strong neighbor. Then

γsp(G) ≤ Ss(G)

2
.

PROOF. Suppose that D is a minimal dominating set in G. Then

γsp(G) ≤We(D) ≤ Ss(G).

By Theorem 33, V \D is a perfect dominating set in G. So

γsp(G) ≤We(V \D) ≤ Ss(G)

and

2
(
γsp(G)

)
≤ Ss(G) −→ γsp(G) ≤ Ss(G)

2
.

REMARK 35. Let G = (A,B) be a vague graph where each node in G has at least
one strong neighbor. Then

γs(G) ≤ Ss(G)

2
.

5 Strong Semi Global Domination Number

In this section, we introduce the concept of semi complementary vague graph and
semi global dominating set in vague graphs. Also, we define the strong semi global
domination number of a vague graph and obtain some interesting results on these new
parameters.

DEFINITION 36. Let G = (A,B) be a vague graph, then semi complementary
vague graph of G or Gsc = (V sc, Esc) is defined by

(i) tscA (v) = tA(v) and fscA (v) = fA(v)

(ii) Esc = {uv 6∈ E, ∃w; uw,wv ∈ E} where for any uv ∈ Esc, tscB (uv) = tA(u) ∧
tA(v) and fsc(uv) = fA(u) ∨ fA(v).
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Figure 3: Vague graphs G and Gsc.

EXAMPLE 37. Consider vague graphs G and Gsc in the Figure 3.

DEFINITION 38. Let G = (A,B) be a vague graph.

(i) The subset D ⊆ V is said to be a semi global dominating set (or Dsg) in G if D
is a dominating set for both G and Gsc.

(ii) A semi global dominating set Dsg is said to be minimal semi global dominating
set if for each v ∈ Dsg, Dsg\{v} is not a global dominating set in G.

DEFINITION 39. Let G be a vague graph. The strong semi global domination
number of a vague graph G is defined as the minimum arc weight of semi global
dominating sets in G and it is denoted by γsg(G).

EXAMPLE 40. Consider vague graph G and Gsc in the Figure 3, We see that

D1 = {a, d} and D2 = {b, c}

are minimal semi global dominating sets in G. Then

We(D1) =
(0.2 + 0.3)

2
+

(0.1 + 0.3)

2
= 0.45,

We(D2) =
(0.1 + 0.3)

2
+

(0.1 + 0.3)

2
= 0.4

and γsg(G) = 0.4.

THEOREM 41. If G is a complete vague graph with n nodes, then

γsg(G) = n
(
γs(G)

)
.
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PROOF. Since all arcs in G are strong and each node is adjacent to other nodes,
we see that Gsc has no arc, hence only semi global dominating set in G is Dsg = G.
Then by Theorem 18, we get

γsg(G) =
∑
uv∈E

∧{tB(uv)}+
(
1− ∨{fB(uv)}

)
2

= n
(∧{tA(v)}+ (1− ∨{fA(v)})

2

)
= n

(
γs(G)

)
.

REMARK 42. We observe that γsg(G) ≤ Ss(G) for any vague graph G = (A,B).

6 Some Applications of Strong Domination Num-
bers

A vague set is an extension of Zadeh’s fuzzy set theory whose range of membership
degree is [0, 1]. The vague graph is a generalized structure of a fuzzy graph which
gives more precision, flexibility, and compatibility with a system when compared with
the fuzzy graphs. These days, graph models are finding many applications in different
fields of science and technology. Domination is a rapidly developing area of research
in graph theory, and there are many origins to the domination theory. The earliest
ideas of dominating sets date back to the origin of game of Chess in India. In society,
as well as in administration, the influence of the individual depends on the strength
that he derives from his supporters, and these effects may be not effective. Besides,the
individual has to depend more on his supporters thanon himself.
Now, we express an application of dominating set. An offi ce consists of 7 employees

and elections are being held to determine the new head. We show that a few employees
can select person g (who do not have considerable influence on all employees) as the
head by using domination set of a vague graph. First we represent the offi ce with a
vague graph G as in Figure 4.

In this vague graph, the nodes and the arcs represent employees and friendships
between them, respectively. True membership function for each node is considered as
the significance of the node in the offi ce, including level of education, work experience,
etc., and false membership function for each node is evaluated as lack of compatibility
between educational major and occupation, lack of ability, and other cases. In this
example, we see that ac, cd, bd, de, cf and cg are strong arcs, and there is a strong
relationship between them. Hence, D1 = {c, d}, D2 = {c, b, d} and D3 = {c, d, e} are
dominating sets in this vague graph and weights are
We(D1) = (0/2 + 0/5) + (0/5 + 0/6) = 1/8
We(D2) = (0/2 + 0/5) + (0/5 + 0/6) + (0/5 + 0/8) = 3/1
We(D3) = (0/2 + 0/5) + (0/5 + 0/6) + (0/5 + 0/6) = 2/9.
And so D1 is a minimal domination set in this example. Since the nodes in dominating
set have the most influence on the other members who are not in D1, therefore by this
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Figure 4: Vague graphs G and Gsc.

influence, they can select one of their own as g or anyone else as head of offi ce. (But
we see that the crisp graph which is made up of employees and relationships between
them, D = {c, e} is a minimal domination set, that has less influence on the other
members as compared to D1)
In the following, we have some more applications of strong domination numbers in

everyday life.

6.1 Mobile Adhoc Networks

A mobile ad hoc network (MANET) is a continuously self-configuring, infrastructure-
less network of mobile devices connected without wires where each device is free to move
independently in any direction and will, therefore, change its links to other devices
frequently. Each must forward traffi c unrelated to its own use and, thus be a router.
The primary challenge in building a MANET is equipping each device to continuously
maintain the information required to properly route traffi c. The dominating sets are
useful for the computation of routing in mobile ad hoc networks such that a small
dominating set is used as a backbone for communications. The node that is not in this
set communicates by passing messages through neighbors in the set.
If the devices and passing of messages between them have value by importance,

security, unrelated forward traffi c and routing, then a mobile ad hoc network can be
represented by a vague graph such that nodes represent devices, and arcs represent
pattern of messaging between them and the other network. Since dominating set in a
vague graph uses strong arcs, hence the node that is not in dominating set has a strong
neighbor in the set and can be faster passing message to its neighbors in the set. So,
by the strong domination number the smallest dominating set can be obtained as the
smallest and the strongest backbone in this network (compared to the crisp graph). In
so doing, we can improve the routing and increase speed of passing of message, and we
can also reduce the cost in the mobile ad hoc network.
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6.2 Wireless Sensor Network

A wireless sensor network is a group of specialized transducers with a communication
infrastructure for monitoring and recording conditions at diverse locations. Commonly
monitored parameters are temperature, humidity, pressure, wind direction and speed,
illumination intensity, vibration intensity, sound intensity, power-line voltage, chemical
concentrations, pollutant levels, and vital body functions. The wireless sensor networks
are built of sensor nodes which are widely distributed in the network, and they collect
the information of nodes and other networks. Topology control is a fundamental issue
in wireless sensor networks. Due to intrinsic characteristic of flatness, hierarchical
topology can achieve the scalability and effi ciency of a wireless network. To solve this
problem, we should represent the network as a vague graph since the place of each
node is indefinite and can convey every piece of information, even destructive, to other
nodes and, therefore induce intervention in the network. As a result, we can define true
(regarding level of importance, necessity, effect, pace of conveyance, etc.) and false
(regarding the degree of intervention, vagueness, etc.) membership functions and also
valuates each arcs considering importance and necessity of conveyance of information,
etc. Accordingly, since each dominating set in a vague graph is gained using strong arcs,
we can, in so doing, make the smallest and the most effective minimal backbone set by
gaining minimal dominating set (by using minimum arc weight). Virtual backbone is
necessary for fault tolerance and routing flexibility.

7 Conclusion

Graph theory has wide applications in computer science and engineering, especially
genetic and economics. The importance of this field of mathematics is palpable and
undeniable. Since most of the time the aspects of graph problems are uncertain and
vague, therefore in these cases, we should respectively make use of fuzzy and vague
sets. There are some interesting features for handling vague data that are unique to
vague sets. Vague sets allow us to have a better analysis of the relationships among
data, defects, and similarity measures by applying a visual-graphic representation of
vague data. The notion of vague sets was initially incorporated into relations. Hence,
vague graphs may be more important than fuzzy graphs.

The concept of domination in graph is very rich both in theoretical developments
and applications. Research in the area of domination theory is interesting due to
the diversity of applications and wide variety of domination parameters that can be
defined. In this paper, the concept of new type domination number such as, strong
neighborhood, strong global and strong perfect domination number are introduced,
and some bounds on them are established. Other strong domination parameters can
be defined and investigated in future works.
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