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Abstract

In this paper we study the restricted factorial function ñ!! defined as the prod-
uct of positive integers k not exceeding n and coprime to n. As a corollary, we
consider the asymptotic behaviour of the ratio An

Gn
, where An and Gn denote re-

spectively the arithmetic and geometric means of all members of the least positive
reduced set of residues modulo n.

1 Introduction

Among several questions concerning generalizations of the factorial function in [2],
analogues of Stirling’s approximation for generalized factorials is proposed. In the
present paper we define the restricted factorial function for each integer n > 1 by

ñ!! =
∏

16k6n
(k,n)=1

k,

where (k, n) denotes the greatest common divisor of the integers k and n. We study
the asymptotic growth of ñ!!, and analogue to the well-known asymptotic relation

log n! = n log
(n

e

)
+O(log n),

we obtain
log ñ!! = φ(n) log

(n
e

)
+O(log n).

More precisely we prove the following.

THEOREM 1. We have

log ñ!! = φ(n) log
(n

e

)
+ E(n),

where for n > 7 the remainder term E(n) satisfies

−1

2
log log n 6 E(n) 6 1

2
log
( n

log n

)
.
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To obtain the above explicit bounds, we need some explicit bounds concerning
log n!, as follows.

LEMMA 2. For any integer n > 1 we have

log n! = n log n− n+
1

2
log n+

1

2
log(2π) +R(n), (1)

where

0 6 R(n) 6 1

6n
. (2)

Meanwhile, as an immediate consequence of Theorem 1 we obtain the following
result.

COROLLARY 3. As n→∞, we have(
ñ!!
) 1
φ(n)

=
n

e
+O(log n log log n).

If we denote the arithmetic and geometric means of the positive real numbers
a1, a2, . . . , an, byA(a1, . . . , an) andG(a1, . . . , an), respectively, then the above corollary
gives the asymptotic expansion of Gn := G(%1, . . . , %φ(n)), where Rn = {%1, . . . , %φ(n)}
is the least positive reduced set of residues modulo n. By considering

An := A(%1, . . . , %φ(n)) =
1

φ(n)

∑
16k6n
(k,n)=1

k =
n

2
,

we obtain the following.

COROLLARY 4. As n→∞, we have

An
Gn

=
e

2
+O

( log n log log n

n

)
.

The ratio e
2 appears surprisingly in studying the ratio of the arithmetic to the

geometric means of some number theoretic sequences. For the sequence consisting of
positive integers, Stirling’s approximation for n! implies (see [5] for more details)

A(1, . . . , n)

G(1, . . . , n)
=

e

2
+O

( log n

n

)
.

Regarding to the sequence of prime numbers, in [6] we proved that

A(p1, . . . , pn)

G(p1, . . . , pn)
=

e

2
+O

( 1

log n

)
,
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where pn denotes the nth prime number. Moreover, in [3] we proved validity of the
similar and more precise expansion

A(γ1, . . . , γn)

G(γ1, . . . , γn)
=

e

2

(
1− 1

2 log n
− log log n

2 log2 n
− 1

2 log2 n

)
+O

( (log log n)2

log3 n

)
,

where 0 < γ1 < γ2 < γ3 < · · · denote the consecutive ordinates of the imaginary parts
of non-real zeros of the Riemann zeta-function, which is defined by ζ(s) =

∑∞
n=1 n

−s

for <(s) > 1, and extended by analytic continuation to the complex plane with a simple
pole at s = 1.
On the other hand, the appearance of the similar limit value e

2 in the above re-
sults is not trivial and a global property. As an example, we consider the asymptotic
behaviour of the ratio under study for the values of the Euler function. By using the
asymptotic expansions for A(φ(1), . . . , φ(n)) and G(φ(1), . . . , φ(n)) (see [13] for the
arithmetic mean, and [7] for the geometric mean), we get

A(φ(1), . . . , φ(n))

G(φ(1), . . . , φ(n))
=

3e

π2

∏
p

(
1− 1

p

)− 1
p

+O
( log n

n

)
,

where the product runs over all primes. This gives a limit value different from e
2 , for

the case of Euler function. More generally, we observe that the limit value of the ratio
under study could be any arbitrary real number β > 1, as the following result confirms.

PROPOSITION 5. For each real number β > 1 there exists a real positive sequence
with general term an such that

lim
n→∞

A(a1, . . . , an)

G(a1, . . . , an)
= β.

Regarding to the case β = 1, we show the following.

PROPOSITION 6. Assume that an > 0 with an → ` and ` > 0. Then

lim
n→∞

A(a1, . . . , an)

G(a1, . . . , an)
= 1.

We observe that Proposition 6 is not true for ` = 0. For instance, if we let an = 1
n ,

then by using Stirling’s approximation for n!, we obtain

A(a1, . . . , an)

G(a1, . . . , an)
=

1

e
log n+O(1).

Finally, we note that if d(n) denote the number of positive divisors of n, then in [4] we
proved that for each fixed integer m > 1 one has

A(d(1), . . . , d(n))

G(d(1), . . . , d(n))
= B−1(log n)1−log 2

(
1 +

m∑
k=1

rk

logk n
+O

( 1

logm+1 n

))
,

where B and the coeffi cients rk are computable constants. This provides a number
theoretic example for when the ratio A

G tends to infinity.
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2 Sums Over Reduced Residue Systems

To approximate logGn we need to compute restricted summations running over the
elements of Rn. We follow the same method as in [1] to obtain the following.

PROPOSITION 7. Assume that f is an arbitrary arithmetic function. Then, we
have ∑

16k6n
(k,n)=1

f(k) =
∑
d|n

µ(d)
∑

16q6n
d

f(dq). (3)

PROOF. The result is valid for n = 1. We assume that n > 1, and we use the
known identity

∑
d|m µ(d) = [ 1m ] to write

∑
16k6n
(k,n)=1

f(k) =

n−1∑
k=1

f(k)

[
1

(k, n)

]
=

n−1∑
k=1

f(k)
∑
d|(k,n)

µ(d) =

n−1∑
k=1

∑
d|k,d|n

µ(d)f(k).

By taking k = dq, we get

n−1∑
k=1

∑
d|k,d|n

µ(d)f(k) =
∑

16dq<n

∑
d|n

µ(d)f(dq)

=
∑

16q<n
d

∑
d|n

µ(d)f(dq) =
∑
d|n

µ(d)
∑

16q<n
d

f(dq).

Now, we note that if q = n
d , then f(dq) = f(n), and since n > 1, we imply that∑

d|n µ(d)f(n) = f(n)[ 1n ] = 0. Thus, we obtain (3), and the proof is complete.

3 Proofs

PROOF OF LEMMA 2. We apply Euler—Maclaurin summation formula (see [12]) with
f(k) = log k to write

log n! = n log n− n+
1

2
log n+ 1− 1

12
+

1

12n
+ Tn,

where

Tn =

∫ ∞
1

B2({x})
2x2

dx−
∫ ∞
n

B2({x})
2x2

dx,

and B2({x}) is the Bernoulli function of order 2. Also, {x} denotes the fractional part
of the real x. Thus, we obtain

log n! = n log n− n+
1

2
log n+ C +

1

12n
− I,

with

C =
11

12
+

∫ ∞
1

B2({x})
2x2

dx,
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and

I =

∫ ∞
n

B2({x})
2x2

dx.

Since I � 1
n as n→∞, we get

C = lim
n→∞

(
log n!−

(
n log n− n+

1

2
log n

))
= log lim

n→∞
Dn,

where

Dn =
n!(

n
e

)n
n
1
2

.

We apply Wallis product formula for π (see [14] for an elementary proof), to get

D2 = lim
n→∞

(
DnDn

D2n

)2
= lim
n→∞

∏n
k=1(2k)2∏n

k=1(2k − 1)2 (2n+ 1)

2(2n+ 1)

n
= 2π.

Thus, we obtain D =
√

2π, and consequently C = logD = log
√

2π. Also, we have

|I| 6
∫ ∞
n

|B2({x})|
2x2

dx 6 1

12

∫ ∞
n

dx

x2
=

1

12n
.

This completes the proof.

PROOF OF THEOREM 1. By using (3) we have

log ñ!! =
∑

16k6n
(k,n)=1

log k =
∑
d|n

µ(d)
∑

16q6n
d

log(dq) =
∑
d|n

µ(d)
(n
d

log d+ log
((n

d

)
!
))

.

We apply the known relation
∑
d|n µ(d) log d = −Λ(n), where Λ(n) is the Mangoldt

function, to obtain

log ñ!! = φ(n) log
(n

e

)
+ E(n),

with
E(n) =

1

2
Λ(n) +

∑
d|n

µ(d)R
(n
d

)
,

and R(n) is defined in (1). We have 0 6 Λ(n) 6 log n. Also, by using the triangle
inequality, and considering the bounds (2), we obtain∣∣∣∣∣∣

∑
d|n

µ(d)R
(n
d

)∣∣∣∣∣∣ 6
∑
d|n

∣∣∣R(n
d

)∣∣∣ 6 1

6

∑
d|n

d

n
=
σ(n)

6n
<

1

2
log log n,

where for deducing the last bound we use the inequality σ(n) < 2.59n log log n, which
is valid for n > 7 (see [8]). Hence, for each n > 7 we get

−1

2
log log n 6 E(n) 6 1

2
log
( n

log n

)
.
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This completes the proof.

PROOF OF COROLLARY 3. Theorem 1 implies that

(ñ!!)
1

φ(n) =
(n

e

)
e
E(n)
φ(n) .

For any n > 1 we have φ(n) 6 n. Also, the inequality

φ(n) >
n

eγ log log n+ 2.50637
log logn

,

is valid for n > 3 (see [10]). Thus, we get

E(n)

φ(n)
� log n

n
log logn

=
log n log log n

n
,

from which we obtain

e
E(n)
φ(n) = 1 +O

( log n log log n

n

)
.

This completes the proof.

PROOF OF PROPOSITION 5. For each real number η > 0, we set an = nη. It is
known [9] that

lim
n→∞

A(a1, . . . , an)

G(a1, . . . , an)
=

eη

η + 1
:= `(η),

say. We note that d
dη `(η) = `(η) η

η+1 . Hence `(η) is strictly increasing for η > 0. Also
`(0) = 1 and limη→∞ `(η) = ∞. Thus, for any real number β > 1 there exists a real
number η > 0 such that `(η) = β, as desired. This completes the proof.

PROOF OF PROPOSITION 6. For the sequence an addressed in the statement of
theorem, it is known that A(a1, . . . , an) → ` (see [11], page 80). Also, since log an →
log ` as n→∞, we obtain

logG(a1, . . . , an) = A(log a1, . . . , log an)→ log `,

and consequently, G(a1, . . . , an)→ `. This concludes the proof.
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