Restricted Factorial And A Remark On The Reduced Residue Classes*

Mehdi Hassani ${ }^{\dagger}$

Received 26 March 2016

Abstract

In this paper we study the restricted factorial function $\widetilde{n}!!$ defined as the product of positive integers k not exceeding n and coprime to n. As a corollary, we consider the asymptotic behaviour of the ratio $\frac{A_{n}}{G_{n}}$, where A_{n} and G_{n} denote respectively the arithmetic and geometric means of all members of the least positive reduced set of residues modulo n.

1 Introduction

Among several questions concerning generalizations of the factorial function in [2], analogues of Stirling's approximation for generalized factorials is proposed. In the present paper we define the restricted factorial function for each integer $n \geqslant 1$ by

$$
\widetilde{n!!}=\prod_{\substack{1 \leqslant k \leqslant n \\(k, n)=1}} k
$$

where (k, n) denotes the greatest common divisor of the integers k and n. We study the asymptotic growth of $\widetilde{n}!!$, and analogue to the well-known asymptotic relation

$$
\log n!=n \log \left(\frac{n}{\mathrm{e}}\right)+O(\log n)
$$

we obtain

$$
\log \widetilde{n!!}=\phi(n) \log \left(\frac{n}{\mathrm{e}}\right)+O(\log n)
$$

More precisely we prove the following.
THEOREM 1. We have

$$
\log \tilde{n}!!=\phi(n) \log \left(\frac{n}{\mathrm{e}}\right)+E(n)
$$

where for $n \geqslant 7$ the remainder term $E(n)$ satisfies

$$
-\frac{1}{2} \log \log n \leqslant E(n) \leqslant \frac{1}{2} \log \left(\frac{n}{\log n}\right) .
$$

[^0]To obtain the above explicit bounds, we need some explicit bounds concerning $\log n!$, as follows.

LEMMA 2. For any integer $n \geqslant 1$ we have

$$
\begin{equation*}
\log n!=n \log n-n+\frac{1}{2} \log n+\frac{1}{2} \log (2 \pi)+R(n) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leqslant R(n) \leqslant \frac{1}{6 n} \tag{2}
\end{equation*}
$$

Meanwhile, as an immediate consequence of Theorem 1 we obtain the following result.

COROLLARY 3. As $n \rightarrow \infty$, we have

$$
(\widetilde{n}!!)^{\frac{1}{\phi(n)}}=\frac{n}{\mathrm{e}}+O(\log n \log \log n)
$$

If we denote the arithmetic and geometric means of the positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$, by $A\left(a_{1}, \ldots, a_{n}\right)$ and $G\left(a_{1}, \ldots, a_{n}\right)$, respectively, then the above corollary gives the asymptotic expansion of $G_{n}:=G\left(\varrho_{1}, \ldots, \varrho_{\phi(n)}\right)$, where $\mathcal{R}_{n}=\left\{\varrho_{1}, \ldots, \varrho_{\phi(n)}\right\}$ is the least positive reduced set of residues modulo n. By considering

$$
A_{n}:=A\left(\varrho_{1}, \ldots, \varrho_{\phi(n)}\right)=\frac{1}{\phi(n)} \sum_{\substack{1 \leqslant k \leqslant n \\(k, n)=1}} k=\frac{n}{2}
$$

we obtain the following.
COROLLARY 4. As $n \rightarrow \infty$, we have

$$
\frac{A_{n}}{G_{n}}=\frac{\mathrm{e}}{2}+O\left(\frac{\log n \log \log n}{n}\right)
$$

The ratio $\frac{e}{2}$ appears surprisingly in studying the ratio of the arithmetic to the geometric means of some number theoretic sequences. For the sequence consisting of positive integers, Stirling's approximation for n ! implies (see [5] for more details)

$$
\frac{A(1, \ldots, n)}{G(1, \ldots, n)}=\frac{\mathrm{e}}{2}+O\left(\frac{\log n}{n}\right)
$$

Regarding to the sequence of prime numbers, in [6] we proved that

$$
\frac{A\left(p_{1}, \ldots, p_{n}\right)}{G\left(p_{1}, \ldots, p_{n}\right)}=\frac{\mathrm{e}}{2}+O\left(\frac{1}{\log n}\right)
$$

where p_{n} denotes the nth prime number. Moreover, in [3] we proved validity of the similar and more precise expansion

$$
\frac{A\left(\gamma_{1}, \ldots, \gamma_{n}\right)}{G\left(\gamma_{1}, \ldots, \gamma_{n}\right)}=\frac{\mathrm{e}}{2}\left(1-\frac{1}{2 \log n}-\frac{\log \log n}{2 \log ^{2} n}-\frac{1}{2 \log ^{2} n}\right)+O\left(\frac{(\log \log n)^{2}}{\log ^{3} n}\right)
$$

where $0<\gamma_{1}<\gamma_{2}<\gamma_{3}<\cdots$ denote the consecutive ordinates of the imaginary parts of non-real zeros of the Riemann zeta-function, which is defined by $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ for $\Re(s)>1$, and extended by analytic continuation to the complex plane with a simple pole at $s=1$.

On the other hand, the appearance of the similar limit value $\frac{e}{2}$ in the above results is not trivial and a global property. As an example, we consider the asymptotic behaviour of the ratio under study for the values of the Euler function. By using the asymptotic expansions for $A(\phi(1), \ldots, \phi(n))$ and $G(\phi(1), \ldots, \phi(n))$ (see [13] for the arithmetic mean, and [7] for the geometric mean), we get

$$
\frac{A(\phi(1), \ldots, \phi(n))}{G(\phi(1), \ldots, \phi(n))}=\frac{3 \mathrm{e}}{\pi^{2}} \prod_{p}\left(1-\frac{1}{p}\right)^{-\frac{1}{p}}+O\left(\frac{\log n}{n}\right)
$$

where the product runs over all primes. This gives a limit value different from $\frac{e}{2}$, for the case of Euler function. More generally, we observe that the limit value of the ratio under study could be any arbitrary real number $\beta \geqslant 1$, as the following result confirms.

PROPOSITION 5. For each real number $\beta \geqslant 1$ there exists a real positive sequence with general term a_{n} such that

$$
\lim _{n \rightarrow \infty} \frac{A\left(a_{1}, \ldots, a_{n}\right)}{G\left(a_{1}, \ldots, a_{n}\right)}=\beta
$$

Regarding to the case $\beta=1$, we show the following.
PROPOSITION 6. Assume that $a_{n}>0$ with $a_{n} \rightarrow \ell$ and $\ell>0$. Then

$$
\lim _{n \rightarrow \infty} \frac{A\left(a_{1}, \ldots, a_{n}\right)}{G\left(a_{1}, \ldots, a_{n}\right)}=1
$$

We observe that Proposition 6 is not true for $\ell=0$. For instance, if we let $a_{n}=\frac{1}{n}$, then by using Stirling's approximation for n !, we obtain

$$
\frac{A\left(a_{1}, \ldots, a_{n}\right)}{G\left(a_{1}, \ldots, a_{n}\right)}=\frac{1}{\mathrm{e}} \log n+O(1) .
$$

Finally, we note that if $d(n)$ denote the number of positive divisors of n, then in [4] we proved that for each fixed integer $m \geqslant 1$ one has

$$
\frac{A(d(1), \ldots, d(n))}{G(d(1), \ldots, d(n))}=B^{-1}(\log n)^{1-\log 2}\left(1+\sum_{k=1}^{m} \frac{r_{k}}{\log ^{k} n}+O\left(\frac{1}{\log ^{m+1} n}\right)\right)
$$

where B and the coefficients r_{k} are computable constants. This provides a number theoretic example for when the ratio $\frac{A}{G}$ tends to infinity.

2 Sums Over Reduced Residue Systems

To approximate $\log G_{n}$ we need to compute restricted summations running over the elements of \mathcal{R}_{n}. We follow the same method as in [1] to obtain the following.

PROPOSITION 7. Assume that f is an arbitrary arithmetic function. Then, we have

$$
\begin{equation*}
\sum_{\substack{1 \leqslant k \leqslant n \\(k, n)=1}} f(k)=\sum_{d \mid n} \mu(d) \sum_{1 \leqslant q \leqslant \frac{n}{d}} f(d q) . \tag{3}
\end{equation*}
$$

PROOF. The result is valid for $n=1$. We assume that $n>1$, and we use the known identity $\sum_{d \mid m} \mu(d)=\left[\frac{1}{m}\right]$ to write

$$
\sum_{\substack{1 \leqslant k \leqslant n \\(k, n)=1}} f(k)=\sum_{k=1}^{n-1} f(k)\left[\frac{1}{(k, n)}\right]=\sum_{k=1}^{n-1} f(k) \sum_{d \mid(k, n)} \mu(d)=\sum_{k=1}^{n-1} \sum_{d|k, d| n} \mu(d) f(k) .
$$

By taking $k=d q$, we get

$$
\begin{aligned}
\sum_{k=1}^{n-1} \sum_{d|k, d| n} \mu(d) f(k) & =\sum_{1 \leqslant d q<n} \sum_{d \mid n} \mu(d) f(d q) \\
& =\sum_{1 \leqslant q<\frac{n}{d}} \sum_{d \mid n} \mu(d) f(d q)=\sum_{d \mid n} \mu(d) \sum_{1 \leqslant q<\frac{n}{d}} f(d q) .
\end{aligned}
$$

Now, we note that if $q=\frac{n}{d}$, then $f(d q)=f(n)$, and since $n>1$, we imply that $\sum_{d \mid n} \mu(d) f(n)=f(n)\left[\frac{1}{n}\right]=0$. Thus, we obtain (3), and the proof is complete.

3 Proofs

PROOF OF LEMMA 2. We apply Euler-Maclaurin summation formula (see [12]) with $f(k)=\log k$ to write

$$
\log n!=n \log n-n+\frac{1}{2} \log n+1-\frac{1}{12}+\frac{1}{12 n}+T_{n}
$$

where

$$
T_{n}=\int_{1}^{\infty} \frac{B_{2}(\{x\})}{2 x^{2}} \mathrm{~d} x-\int_{n}^{\infty} \frac{B_{2}(\{x\})}{2 x^{2}} \mathrm{~d} x
$$

and $B_{2}(\{x\})$ is the Bernoulli function of order 2. Also, $\{x\}$ denotes the fractional part of the real x. Thus, we obtain

$$
\log n!=n \log n-n+\frac{1}{2} \log n+C+\frac{1}{12 n}-I
$$

with

$$
C=\frac{11}{12}+\int_{1}^{\infty} \frac{B_{2}(\{x\})}{2 x^{2}} \mathrm{~d} x
$$

and

$$
I=\int_{n}^{\infty} \frac{B_{2}(\{x\})}{2 x^{2}} \mathrm{~d} x
$$

Since $I \ll \frac{1}{n}$ as $n \rightarrow \infty$, we get

$$
C=\lim _{n \rightarrow \infty}\left(\log n!-\left(n \log n-n+\frac{1}{2} \log n\right)\right)=\log \lim _{n \rightarrow \infty} D_{n}
$$

where

$$
D_{n}=\frac{n!}{\left(\frac{n}{\mathrm{e}}\right)^{n} n^{\frac{1}{2}}}
$$

We apply Wallis product formula for π (see [14] for an elementary proof), to get

$$
D^{2}=\lim _{n \rightarrow \infty}\left(\frac{D_{n} D_{n}}{D_{2 n}}\right)^{2}=\lim _{n \rightarrow \infty} \frac{\prod_{k=1}^{n}(2 k)^{2}}{\prod_{k=1}^{n}(2 k-1)^{2}(2 n+1)} \frac{2(2 n+1)}{n}=2 \pi
$$

Thus, we obtain $D=\sqrt{2 \pi}$, and consequently $C=\log D=\log \sqrt{2 \pi}$. Also, we have

$$
|I| \leqslant \int_{n}^{\infty} \frac{\left|B_{2}(\{x\})\right|}{2 x^{2}} \mathrm{~d} x \leqslant \frac{1}{12} \int_{n}^{\infty} \frac{\mathrm{d} x}{x^{2}}=\frac{1}{12 n}
$$

This completes the proof.
PROOF OF THEOREM 1. By using (3) we have

$$
\log \tilde{n}!!=\sum_{\substack{1 \leqslant k \leqslant n \\(k, n)=1}} \log k=\sum_{d \mid n} \mu(d) \sum_{1 \leqslant q \leqslant \frac{n}{d}} \log (d q)=\sum_{d \mid n} \mu(d)\left(\frac{n}{d} \log d+\log \left(\left(\frac{n}{d}\right)!\right)\right)
$$

We apply the known relation $\sum_{d \mid n} \mu(d) \log d=-\Lambda(n)$, where $\Lambda(n)$ is the Mangoldt function, to obtain

$$
\log \widetilde{n}!!=\phi(n) \log \left(\frac{n}{\mathrm{e}}\right)+E(n)
$$

with

$$
E(n)=\frac{1}{2} \Lambda(n)+\sum_{d \mid n} \mu(d) R\left(\frac{n}{d}\right)
$$

and $R(n)$ is defined in (1). We have $0 \leqslant \Lambda(n) \leqslant \log n$. Also, by using the triangle inequality, and considering the bounds (2), we obtain

$$
\left|\sum_{d \mid n} \mu(d) R\left(\frac{n}{d}\right)\right| \leqslant \sum_{d \mid n}\left|R\left(\frac{n}{d}\right)\right| \leqslant \frac{1}{6} \sum_{d \mid n} \frac{d}{n}=\frac{\sigma(n)}{6 n}<\frac{1}{2} \log \log n
$$

where for deducing the last bound we use the inequality $\sigma(n)<2.59 n \log \log n$, which is valid for $n \geqslant 7$ (see [8]). Hence, for each $n \geqslant 7$ we get

$$
-\frac{1}{2} \log \log n \leqslant E(n) \leqslant \frac{1}{2} \log \left(\frac{n}{\log n}\right)
$$

This completes the proof.
PROOF OF COROLLARY 3. Theorem 1 implies that

$$
(\tilde{n}!!)^{\frac{1}{\phi(n)}}=\left(\frac{n}{\mathrm{e}}\right) \mathrm{e}^{\frac{E(n)}{\phi(n)}} .
$$

For any $n \geqslant 1$ we have $\phi(n) \leqslant n$. Also, the inequality

$$
\phi(n)>\frac{n}{\mathrm{e}^{\gamma} \log \log n+\frac{2.50637}{\log \log n}}
$$

is valid for $n \geqslant 3$ (see [10]). Thus, we get

$$
\frac{E(n)}{\phi(n)} \ll \frac{\log n}{\frac{n}{\log \log n}}=\frac{\log n \log \log n}{n},
$$

from which we obtain

$$
\mathrm{e}^{\frac{E(n)}{\phi(n)}}=1+O\left(\frac{\log n \log \log n}{n}\right)
$$

This completes the proof.
PROOF OF PROPOSITION 5. For each real number $\eta \geqslant 0$, we set $a_{n}=n^{\eta}$. It is known [9] that

$$
\lim _{n \rightarrow \infty} \frac{A\left(a_{1}, \ldots, a_{n}\right)}{G\left(a_{1}, \ldots, a_{n}\right)}=\frac{\mathrm{e}^{\eta}}{\eta+1}:=\ell(\eta)
$$

say. We note that $\frac{\mathrm{d}}{\mathrm{d} \eta} \ell(\eta)=\ell(\eta) \frac{\eta}{\eta+1}$. Hence $\ell(\eta)$ is strictly increasing for $\eta \geqslant 0$. Also $\ell(0)=1$ and $\lim _{\eta \rightarrow \infty} \ell(\eta)=\infty$. Thus, for any real number $\beta \geqslant 1$ there exists a real number $\eta \geqslant 0$ such that $\ell(\eta)=\beta$, as desired. This completes the proof.

PROOF OF PROPOSITION 6. For the sequence a_{n} addressed in the statement of theorem, it is known that $A\left(a_{1}, \ldots, a_{n}\right) \rightarrow \ell$ (see [11], page 80). Also, since $\log a_{n} \rightarrow$ $\log \ell$ as $n \rightarrow \infty$, we obtain

$$
\log G\left(a_{1}, \ldots, a_{n}\right)=A\left(\log a_{1}, \ldots, \log a_{n}\right) \rightarrow \log \ell
$$

and consequently, $G\left(a_{1}, \ldots, a_{n}\right) \rightarrow \ell$. This concludes the proof.
Acknowledgment. The author was supported by a grant of the University of Zanjan, research project number 9347.

References

[1] T. M. Apostol, Bernoulli's power-sum formulas revisited, Math. Gaz., 90(2006), 276-279.
[2] M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly, 107(2000), 783-799.
[3] M. Hassani, A note on the distribution of the non-trivial zeros of the Riemann zeta function, submitted.
[4] M. Hassani, A remark on the means of the number of divisors, Bull. Iranian Math. Soc., to appear.
[5] M. Hassani, On the arithmetic-geometric means of positive integers and the number e, Appl. Math. E-Notes, 14(2014), 250-255.
[6] M. Hassani, On the ratio of the arithmetic and geometric means of the prime numbers and the number e, Int. J. Number Theory, 9(2013), 1593-1603.
[7] M. Hassani, Uniform distribution modulo one of some sequences concerning the Euler function, Rev. Un. Mat. Argentina, 54(2013), 55-68.
[8] A. Ivić, Two inequalities for the sum of divisor function, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak., 7(1977), 17-22.
[9] R. P. Kubelka, Means to an end, Math. Mag., 74(2001), 141-142.
[10] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6(1962), 64-94.
[11] W. Rudin, Principles of Mathematical Analysis (Third Ed.), McGraw-Hill Inc., 1964.
[12] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory (Third Ed.), American Mathematical Society, 2015.
[13] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, XV. VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.
[14] J. Wästlund, An elementary proof of the Wallis product formula for pi, Amer. Math. Monthly, 114(2007), 914-917.

[^0]: *Mathematics Subject Classifications: 11A25, 11A07, 11N56.
 ${ }^{\dagger}$ Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran.

