An Integral Representation Of A Symmetrical H_{q}-Semiclassical Form Of Class One*

Athar Bouanani ${ }^{\dagger}$, Lotfi Khériji ${ }^{\ddagger}$

Received 12 March 2014

Abstract

The aim of this paper is to highlight for some values of parameter an integral representation for the form $u(\alpha) q$-analogue of Bessel kind.

1 Introduction

The monic orthogonal polynomials sequence (MOPS) $\left\{P_{n}\right\}_{n \geq 0}$ satisfying the threeterm recurrence relation (see (6) bellow) with

$$
\left\{\begin{array}{l}
\beta_{n}=0 \tag{1}\\
\gamma_{2 n+1}=\frac{1-q}{2} \frac{q^{2 n+2 \alpha}-1}{\left(q^{4 n+2 \alpha}-1\right)\left(q^{4 n+2 \alpha+2}-1\right)} q^{2 n+2 \alpha+2} \\
\gamma_{2 n+2}=\frac{q-1}{2} \frac{q^{2 n+2}-1}{\left(q^{4 n+2 \alpha+2}-1\right)\left(q^{4 n+2 \alpha+4}-1\right)} q^{2 n+2 \alpha+4}
\end{array}\right.
$$

is associated with the form $u(\alpha)(\alpha \neq-n, n \geq 0, q>0, q \neq 1)$ symmetrical $H_{q^{-}}$ semiclassical of class one satisfying the q-distributional equation

$$
\begin{equation*}
H_{q}\left(x^{3} u(\alpha)\right)+\left(\frac{1-q^{-2 \alpha-2}}{1-q} x^{2}-\frac{1}{2}\right) u(\alpha)=0 \tag{2}
\end{equation*}
$$

were studied in [12] (see also [4]). Moreover, in that work a discrete representation of the form $u(\alpha)(0<q<1)$ were established (see [12, (4.9)]). In fact, the form $u(\alpha)$ is the q-analogue of the form $\mathcal{B}[\alpha]$ of Bessel kind which is D-semiclassical of class one for $\alpha \neq-n-1, n \geq 0$ satisfying the functional equation [3]

$$
D\left(x^{3} \mathcal{B}[\alpha]\right)-\left(2(\alpha+1) x^{2}+\frac{1}{2}\right) \mathcal{B}[\alpha]=0
$$

and having the integral representation [3]

$$
\begin{equation*}
\langle\mathcal{B}[\alpha], f\rangle=S_{\alpha}^{-1} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2 \alpha+1} \exp \left(\frac{1}{4 t^{2}}-\frac{1}{4 x^{2}}\right) s\left(t^{2}\right) d t f(x) d x \tag{3}
\end{equation*}
$$

[^0]for all polynomial f and $\alpha \geq \frac{1}{2}$ where S_{α} is the normalization constant, s is the Stieltjes function [13]
\[

s(x)= $$
\begin{cases}0 & \text { if } x \leq 0 \tag{4}\\ \exp \left(-x^{\frac{1}{4}}\right) \sin x^{\frac{1}{4}} & \text { if } x>0\end{cases}
$$
\]

and D be the derivative operator. Let us recall the fundamental property $[11,13]$

$$
\begin{equation*}
\int_{0}^{+\infty} x^{n} s(x) d x=0, \quad n \geq 0 \tag{5}
\end{equation*}
$$

Our aim is to highlight an integral representation corresponding to the form $u(\alpha)$ for $q>1$ and for some values of the parameter α, according to its H_{q}-semiclassical character and by solving a suitable q-difference equation.

2 Preliminary

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}^{\prime} be its dual. We denote by $\langle u, f\rangle$ the effect of a form $u \in \mathcal{P}^{\prime}$ (linear functional) on $f \in \mathcal{P}$. In particular, we denote by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$ the moments of u. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a sequence of monic polynomials with $\operatorname{deg} P_{n}=n, n \geq 0$. The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called orthogonal (MOPS) if we can associate with it a form $u\left((u)_{0}=1\right)$ and a sequence of numbers $\left\{r_{n}\right\}_{n \geq 0}\left(r_{n} \neq 0, n \geq 0\right)$ such that [1, 10]

$$
\left\langle u, P_{m} P_{n}\right\rangle=r_{n} \delta_{n, m}, \quad n, m \geq 0
$$

and the form u is then said regular. The (MOPS) $\left\{P_{n}\right\}_{n \geq 0}$ fulfils the three-term recurrence relation [1]

$$
\left\{\begin{array}{l}
P_{0}(x)=1, P_{1}(x)=x-\beta_{0} \tag{6}\\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), n \geq 0
\end{array}\right.
$$

where

$$
\beta_{n}=\frac{\left\langle u, x P_{n}^{2}\right\rangle}{r_{n}}, \quad \gamma_{n+1}=\frac{r_{n+1}}{r_{n}} \neq 0 \text { for } n \geq 0
$$

The regular form u is positive definite if and only if $\forall n \geq 0, \beta_{n} \in \mathbb{R}, \gamma_{n+1}>0$. Also, its corresponding (MOPS) $\left\{P_{n}\right\}_{n \geq 0}$ is symmetrical if and only if $\beta_{n}=0, n \geq 0$ or equivalently $(u)_{2 n+1}=0, n \geq 0$.

Let us introduce some useful operations in \mathcal{P}^{\prime}. For any form u, any $a \in \mathbb{C}-\{0\}$, any $c \in \mathbb{C}$ and any $q \neq 1$, we let $D u=u^{\prime}, h_{a} u,(x-c)^{-1} u$ and $H_{q} u$, be the forms defined by duality $[8,10]$

$$
\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle, \quad\left\langle h_{a} u, f\right\rangle:=\left\langle u, h_{a} f\right\rangle, \quad\left\langle(x-c)^{-1} u, f\right\rangle:=\left\langle u, \theta_{c} f\right\rangle
$$

and

$$
\left\langle H_{q} u, f\right\rangle:=-\left\langle u, H_{q} f\right\rangle
$$

for all $f \in \mathcal{P}$ where

$$
\left(h_{a} f\right)(x)=f(a x), \quad\left(\theta_{c} f\right)(x)=\frac{f(x)-f(c)}{x-c}, \quad\left(H_{q} f\right)(x)=\frac{f(q x)-f(x)}{(q-1) x}
$$

c.f. [5]. We will usually suppose that

$$
q \in \widetilde{\mathbb{C}}:=\mathbb{C}-\left(\{0\} \bigcup\left(\bigcup_{n \geq 0}\left\{z \in \mathbb{C}, z^{n}=1\right\}\right)\right)
$$

A form u is called H_{q}-semiclassical when it is regular and there exist two polynomials Φ and Ψ, Φ monic, $\operatorname{deg} \Phi=t \geq 0, \operatorname{deg} \Psi=p \geq 1$ such that

$$
\begin{equation*}
H_{q}(\Phi u)+\Psi u=0 \tag{7}
\end{equation*}
$$

The corresponding orthogonal sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called H_{q}-semiclassical [9]. The H_{q}-semiclassical form u is said to be of class $s=\max (p-1, t-2) \geq 0$ if and only if [9]

$$
\begin{equation*}
\prod_{c \in \mathcal{Z}_{\Phi}}\left\{\left|q\left(h_{q} \Psi\right)(c)+\left(H_{q} \Phi\right)(c)\right|+\left|\left\langle u, q\left(\theta_{c q} \Psi\right)+\left(\theta_{c q} \circ \theta_{c} \Phi\right)\right\rangle\right|\right\}>0 \tag{8}
\end{equation*}
$$

where \mathcal{Z}_{Φ} is the set of zeros of Φ.

REMARK. When $q \rightarrow 1$ in (7)-(8) we meet the D-semiclassical character [10].
Regarding integral representations through true-functions for a H_{q}-semiclassical form u satisfying (7), we look for a function U such that

$$
\begin{equation*}
\langle u, f\rangle=\int_{-\infty}^{+\infty} U(x) f(x) d x, f \in \mathcal{P} \tag{9}
\end{equation*}
$$

where we suppose that U is regular as far as necessary. On account of (7), we get [8]

$$
\int_{-\infty}^{+\infty}\left\{q^{-1}\left(H_{q^{-1}}(\Phi U)\right)(x)+\Psi(x) U(x)\right\} f(x) d x=0, f \in \mathcal{P}
$$

with the additional condition [8]

$$
\begin{equation*}
\lim _{\epsilon \rightarrow+0} \int_{\epsilon}^{1} \frac{U(x)-U(-x)}{x} d x \text { exists or } U \text { is continuous at the origin. } \tag{10}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
q^{-1}\left(H_{q^{-1}}(\Phi U)\right)(x)+\Psi(x) U(x)=\lambda g(x) \tag{11}
\end{equation*}
$$

where $\lambda \in \mathbb{C}$ and g is a locally integrable function with rapid decay representing the null form. For instance the function s defined by (4) and satisfying (5) represents the null form.

Lastly, let us recall the following standard expressions needed to the q-calculus in the sequel $[2,6,7]$ where q is fixed in $] 0,1[$.

$$
(a ; q)_{0}:=1, \quad(a ; q)_{n}:=\prod_{k=1}^{n}\left(1-a q^{k-1}\right), \quad n \geq 1, \quad(a ; q)_{\infty}:=\prod_{k=0}^{+\infty}\left(1-a q^{k}\right)
$$

The q-integral of a function f is defined as

$$
\int_{0}^{x} f(t) d_{q} t:=(1-q) x \sum_{n=0}^{+\infty} f\left(x q^{n}\right) q^{n}, \quad \int_{x}^{+\infty} f(t) d_{q} t:=(1-q) x \sum_{n=1}^{+\infty} f\left(x q^{-n}\right) q^{-n}
$$

and

$$
\int_{0}^{+\infty} f(t) d_{q} t:=(1-q) \sum_{n=-\infty}^{+\infty} f\left(q^{n}\right) q^{n}
$$

provided the sums converge absolutely.

3 An Integral Representation for $u(\alpha)$

In the sequel, let

$$
\begin{equation*}
\alpha \geq \frac{1}{2} \quad \text { and } \quad q>1 \tag{12}
\end{equation*}
$$

We define the following sequence of numbers

$$
\begin{equation*}
\left|x_{k}(q)\right|=\sqrt{\frac{q-1}{2}} q^{\alpha-k}, \quad k \in \mathbb{N} \tag{13}
\end{equation*}
$$

THEOREM 1. For all $\alpha \geq \frac{1}{2}$, there exists $q>1$ such that, for all $f \in \mathcal{P}$, the form $u(\alpha)$ has the following integral representation

$$
\begin{aligned}
\langle u(\alpha), f\rangle= & S_{\alpha, q}^{-1} \int_{\left\{|x|>\left|x_{0}(q)\right|\right\}} \frac{\left(x_{0}^{2}(q) x^{-2} ; q^{-2}\right)_{\infty}}{x^{2}} \\
& \times \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2 \alpha+1} \frac{s\left(t^{2}-x_{0}^{2}(q)\right)}{\left(q^{2} x_{0}^{2}(q) t^{-2} ; q^{-2}\right)_{\infty}} d_{q^{-1}} t f(x) d x
\end{aligned}
$$

PROOF. Taking into account (12)-(13) we have

$$
\begin{equation*}
0<\left|x_{k+1}(q)\right|<\left|x_{k}(q)\right|<\left|x_{0}(q)\right|=\sqrt{\frac{q-1}{2}} q^{\alpha} \text { and }\left|x_{k}(q)\right| \underset{k \rightarrow+\infty}{\longrightarrow} 0 \tag{14}
\end{equation*}
$$

According to (9) and (12), we look for a function U representing $u(\alpha)$ respecting the complementary condition [11]

$$
\begin{equation*}
\int_{-\infty}^{+\infty} U(x) d x \neq 0 \tag{15}
\end{equation*}
$$

By (9), (12)-(13) and the q-distributional equation in (2), the q-difference equation (11) becomes

$$
\begin{equation*}
U\left(q^{-1} x\right)-q^{1-2 \alpha}\left(1-q^{2} x_{0}^{2}(q) x^{-2}\right) U(x)=\lambda q^{3}(1-q) x^{-2} g(x) \tag{16}
\end{equation*}
$$

where $\lambda \neq 0$ and g represents the null form. For instance, let us choose g the following even function [11]

$$
g(x)=|x| s\left(x^{2}-x_{0}^{2}(q)\right), \quad x \in \mathbb{R}
$$

where s is given by (4). Therefore,

$$
g(x)= \begin{cases}|x| \exp \left(-\sqrt[4]{x^{2}-x_{0}^{2}(q)}\right) \sin \left(\sqrt[4]{x^{2}-x_{0}^{2}(q)}\right) & \text { if }|x|>\left|x_{0}(q)\right| \tag{17}\\ 0 & \text { if }|x| \leq\left|x_{0}(q)\right|\end{cases}
$$

It is easily seen that for all $n \geq 0$

$$
\int_{-\infty}^{+\infty} x^{2 n+1} g(x) d x=0
$$

and

$$
\begin{aligned}
\int_{-\infty}^{+\infty} x^{2 n} g(x) d x & =2 \int_{0}^{+\infty} x^{2 n} g(x) d x=\int_{x_{0}(q)}^{+\infty} x^{2 n} s\left(x^{2}-x_{0}^{2}(q)\right) 2 x d x \\
& =\int_{0}^{+\infty}\left[t+x_{0}^{2}(q)\right]^{n} s(t) d t=0
\end{aligned}
$$

by (5). Consequently, the even function g in (17) is locally integrable with rapid decay representing the null form.

Let us consider the q-sum $\sum_{n \geq 1} u_{n}(x)$ and $|x|>\left|x_{0}(q)\right|$ where

$$
\begin{equation*}
u_{n}(x)=\frac{q^{-2 n \alpha}|x| \exp \left(-\sqrt[4]{q^{2 n} x^{2}-x_{0}^{2}(q)}\right) \sin \left(\sqrt[4]{q^{2 n} x^{2}-x_{0}^{2}(q)}\right)}{\left(q^{2} x_{n}^{2}(q) x^{-2} ; q^{-2}\right)_{\infty}} \tag{18}
\end{equation*}
$$

For all $n \geq 1,|x|>\left|x_{0}(q)\right|$ we have

$$
\left|u_{n}(x)\right| \leq \frac{q^{-2 n \alpha}|x| \exp \left(-\sqrt[4]{q^{2 n} x^{2}-x_{0}^{2}(q)}\right)}{\left(q^{2} x_{n}^{2}(q) x^{-2} ; q^{-2}\right)_{\infty}}:=v_{n}(x)
$$

with

$$
\frac{v_{n+1}(x)}{v_{n}(x)}=q^{-2 \alpha}\left(1-q^{2} x_{n}^{2}(q) x^{-2}\right) \exp \left(-q^{\frac{n}{2}}\left(\sqrt[4]{q^{2} x^{2}-q^{-2 n} x_{0}^{2}(q)}-\sqrt[4]{x^{2}-q^{-2 n} x_{0}^{2}(q)}\right)\right)
$$

As consequence, the q-sum $\sum_{n \geq 1} u_{n}(x),|x|>\left|x_{0}(q)\right|$ converge absolutely since

$$
\frac{v_{n+1}(x)}{v_{n}(x)} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

Now, on account of (18) we are able to give a possible solution U of the q-difference equation (16)

$$
U(x)= \begin{cases}\lambda q^{2 \alpha+2}(1-q) \frac{\left(x_{0}^{2}(q) x^{-2} ; q^{-2}\right)}{x^{2}} \sum_{n=1}^{+\infty} u_{n}(x) & \text { if }|x|>\left|x_{0}(q)\right| \tag{19}\\ 0 & \text { if }|x| \leq\left|x_{0}(q)\right|\end{cases}
$$

For $\alpha \geq \frac{1}{2}, q>1$ and $|x|>\left|x_{0}(q)\right|$ and according to (17)-(19) we obtain the definition of the following q^{-1}-integral

$$
\int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2 \alpha+1} \frac{s\left(t^{2}-x_{0}^{2}(q)\right)}{\left(q^{2} x_{0}^{2}(q) t^{-2} ; q^{-2}\right)_{\infty}} d_{q^{-1}} t:=\left(1-q^{-1}\right) \sum_{n=1}^{+\infty} u_{n}(x)
$$

Consequently, (19) becomes

$$
U(x)= \begin{cases}-\lambda q^{2 \alpha+2} \frac{\left(x_{0}^{2}(q) x^{-2} ; q^{-2}\right)_{\infty}}{x^{2}} & \text { if }|x|>\left|x_{0}(q)\right| \tag{20}\\ \quad \times \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2 \alpha+1} \frac{s\left(t^{2}-x_{0}^{2}(q)\right)}{\left(q^{2} x_{0}^{2}(q) t^{-2} ; q^{-2}\right)_{\infty}} d_{q^{-1}} t, & \\ 0 & \text { if }|x| \leq\left|x_{0}(q)\right|\end{cases}
$$

Taking into account (13)-(14), (19) and the d'Alembert test an other time, we get for $x \geq a, \forall a>\left|x_{0}(q)\right|,|U(x)| \leq V(x)$, where

$$
\begin{aligned}
V(x): & =|\lambda| q^{2 \alpha+2}(q-1) \frac{\left(x_{0}^{2}(q) x^{-2} ; q^{-2}\right)_{\infty}}{\left(x_{0}^{2}(q) a^{-2} ; q^{-2}\right)_{\infty}} \frac{\exp \left(-\frac{1}{2}\left(x^{2}-a^{2}\right)^{\frac{1}{4}}\right)}{|x|} \\
& \times \sum_{k=1}^{+\infty} q^{-2 k \alpha} \exp \left(-\frac{1}{2} q^{\frac{k}{2}}\left(a^{2}-x_{0}^{2}(q)\right)^{\frac{1}{4}}\right) \\
= & o\left(\exp \left(-\frac{1}{2}\left(x^{2}-a^{2}\right)^{\frac{1}{4}}\right)\right), \quad x \longrightarrow+\infty
\end{aligned}
$$

Condition (15) now becomes

$$
\int_{\left\{|x|>\left|x_{0}(q)\right|\right\}} U(x) d x=-\lambda q^{2 \alpha+2} S_{\alpha, q} \neq 0
$$

where

$$
S_{\alpha, q}=\int_{\left\{|x|>\left|x_{0}(q)\right|\right\}} \frac{\left(x_{0}^{2}(q) x^{-2} ; q^{-2}\right)_{\infty}}{x^{2}} \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2 \alpha+1} \frac{s\left(t^{2}-x_{0}^{2}(q)\right)}{\left(q^{2} x_{0}^{2}(q) t^{-2} ; q^{-2}\right)_{\infty}} d_{q^{-1}} t d x
$$

Furthermore, $S_{\alpha, q}$ approaches S_{α} when q tends to 1^{+}and $S_{\alpha} \neq 0$ for $\alpha \geq \frac{1}{2}$, therefore

$$
\forall \alpha \geq \frac{1}{2}, \exists q_{\alpha}>1, \quad \forall 1<q<q_{\alpha}, \quad S_{\alpha, q} \neq 0
$$

Consequently, for all $\alpha \geq \frac{1}{2}, 1<q<q_{\alpha}$ and $f \in \mathcal{P}$, the form $u(\alpha)$ has the following integral representation (compare with the limiting representation (3))

$$
\begin{aligned}
\langle u(\alpha), f\rangle= & S_{\alpha, q}^{-1} \int_{\left\{|x|>\left|x_{0}(q)\right|\right\}} \frac{\left(x_{0}^{2}(q) x^{-2} ; q^{-2}\right)_{\infty}}{x^{2}} \\
& \times \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2 \alpha+1} \frac{s\left(t^{2}-x_{0}^{2}(q)\right)}{\left(q^{2} x_{0}^{2}(q) t^{-2} ; q^{-2}\right)_{\infty}} d_{q^{-1}} t f(x) d x .
\end{aligned}
$$

References

[1] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[2] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[3] A. Ghressi and L. Khériji, Some new results about a symmetric D-semiclassical form of class one, Taiwanese J. Math., 11(2007), 371-382.
[4] A. Ghressi and L. Khériji, The symmetrical H_{q}-semiclassical orthogonal polynomials of class one, SIGMA Symmetry Integrability Geom. Methods Appl., 5(2009), Paper 076, 22 pp.
[5] W. Hahn, Über orthogonalpolynome, die q-differenzengleichungen genügen, Math. Nachr., 2(1949), 4-34.
[6] F. H. Jackson, On a q-definite integrals, Quarterly J. Pure Appl. Math., 41(1910), 193-203.
[7] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
[8] L. Khériji and P. Maroni, The H_{q}-Classical Orthogonal Polynomials, Acta. Appl. Math., 71(2002), 49-115.
[9] L. Khériji, An introduction to the H_{q}-semiclassical orthogonal polynomials, Methods Appl. Anal., 10(2003), 387-411.
[10] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classique, (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math., 9(1991) 95-130.
[11] P. Maroni, An integral representation for the Bessel form, J. Comp. Appl. Math., 57(1995), 251-260.
[12] M. Mejri, q-Extension of some symmetrical and semi-classical orthogonal polynomials of class one, Appl. Anal. Discrete Math., 3(2009), 78-87.
[13] T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 8(1894), J1-J122.

[^0]: *Mathematics Subject Classifications: 20F05, 20F10, 20F55, 68Q42.
 \dagger Institut Supérieur des Sciences Appliquées et de Technologie de Gabès, Rue Omar Ibn El-Khattab, 6072 Gabès, Tunisia
 ${ }^{\ddagger}$ Institut Préparatoire aux Etudes d’Ingénieur El Manar, Campus Universitaire El Manar, B.P. 244, 2092 Tunis, Tunisia

