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Abstract

In the present paper, we consider generalized Geraghty contraction in the
sense of Berinde on partial metric spaces and give some fixed point results which
extend, generalize and enrich some recent results appearing in the literature.
Some examples are provided to illustrate the presented results and that they are
proper extensions of the existing ones.

1 Introduction

Fixed point theory plays a major role within as well as outside mathematics, so the
attraction of fixed point theory to large numbers of researchers is understandable. The
Banach contraction mapping principle is one of the fundamental results of nonlinear
functional analysis to prove the existence and uniqueness of fixed points of certain self-
maps of metric spaces and provides a constructive method to approximate those fixed
points.
In the mathematical field of domain theory, attempts were made in order to equip

semantics domain with a notion of distance. In particular, Matthews [21] introduced
the notion of a partial metric space as a part of the study of denotational semantics of
dataflow networks. These spaces are generalizations of usual metric spaces where the
self-distance for any point need not be equal to zero. At this point it seems interesting
to remark the fact that partial metric spaces play an important role in constructing
models in the theory of computation.
Matthews [21] obtained, among other results, a partial metric version of the Banach

fixed point theorem as follows.

THEOREM 1 ([21]). Let T be a mapping of a complete partial metric space (X, p)
into itself such that there is a real number k with 0 ≤ k < 1, satisfying for all x, y ∈ X,

p(Tx, Ty) ≤ kp(x, y).

Then T has a unique fixed point.
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After the appearance of partial metric spaces, some authors started to generalize
Banach contraction mapping theorem to partial metric spaces and focus on fixed point
theory on partial metric spaces. Neill [22] defined the concept of the dualistic partial
metric, which is more general than the partial metric. In [23], Oltra and Valero gave a
Banach fixed point theorem on complete dualistic partial metric spaces. Later, Valero
[30] generalized the main theorem of [23] using a nonlinear contractive condition instead
of a Banach contractive condition. For further works in this direction, we refer the
interested reader to [1, 3—7, 13, 19, 24—27] and the references cited therein.
In 1973, Geraghty [17] proved a fixed point result, generalizing Banach contraction

principle. Several authors proved later various results using Geraghty-type conditions.
Recently, Dukíc et al. [15] proved the following nice fixed point theorem. Before,
we introduce the set F of all functions β : [0,+∞) → [0, 1) satisfying the following
condition:

β(tn)→ 1 as n→ +∞ implies tn → 0 as n→ +∞.

THEOREM 2 ([15]). Let (X, p) be a complete partial metric space and let T : X →
X be a self-mapping. Suppose that there exists β ∈ F such that

p(Tx, Ty) ≤ β
(
p(x, y)

)
p(x, y)

holds for all x, y ∈ X. Then T has a unique fixed point u ∈ X and for each x ∈ X the
Picard sequence {Tnx} converges to u when n→ +∞.

The concept of almost contractions was introduced by Berinde [8, 9] on metric
spaces. Other results on almost contractions could be found in [10—12]. Recently,
Altun and Acar [2] characterized this concept in the setting of partial metric space and
proved some fixed point theorems using these concepts. The purpose of this work is
to present some fixed point results for self-mappings involving some almost generalized
contractions in the setting of partial metric spaces by using functions belonging to F.
Our main results extend, generalize and enrich some existing theorems in the literature.
Also, we give some illustrative examples making our results proper.

2 Preliminaries

We begin with some basic concepts and results in partial metric spaces which are
needed in this paper.
Following Matthews [21], the notion of a partial metric space is given as follows.

DEFINITION 1 ([21]). A partial metric on a nonempty set X is a function p :
X ×X → [0,+∞) such that, for all x, y, z ∈ X, the following conditions hold:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),
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(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A pair (X, p) is called a partial metric space where X is a nonempty set and p is a
partial metric on X.

EXAMPLE 1 ([21]). Let X = [0,+∞) and p defined on X by p(x, y) = max{x, y}
for all x, y ∈ X. Then (X, p) is a partial metric space.

EXAMPLE 2 ([21]). Let (X, d) and (X, p) be a metric space and partial metric
space, respectively. Functions pi : X ×X → [0,+∞) (i ∈ {1, 2, 3}) defined by

p1(x, y) = d(x, y) + p(x, y),

p2(x, y) = d(x, y) + max
{
ω(x), ω(y)

}
,

p3(x, y) = d(x, y) + a

consider partial metrics on X, where ω : X → [0,+∞) is an arbitrary function and
a ≥ 0.

EXAMPLE 3 ([21]). Let X = R and p(x, y) = emax{x,y} for all x, y ∈ X. Then
(X, p) is a partial metric space.

Other examples of the partial metric spaces which are interesting from a computa-
tional point of view may be found in [16, 18, 21].

REMARK 1. It is clear that if p(x, y) = 0, then from (p1) and (p2) follows x = y.
On the other hand, if x = y, then p(x, y) may not be 0.

Recall that each partial metric p on X generates a T0 topology τp on X which has
as a base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) =
{
y ∈ X : p(x, y) < p(x, x) + ε

}
,

for all x ∈ X and ε > 0.
It is remarkable that if p is a partial metric on X, then the functions ps, pw :

X ×X → [0,+∞), given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

and

pw(x, y) = max
{
p(x, y)− p(x, x), p(x, y)− p(y, y)

}
= p(x, y)−min

{
p(x, x), p(y, y)

}
are ordinary metrics on X. It is easy to see that ps and pw are equivalent metrics on
X.
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REMARK 2. Clearly, a limit of a sequence in a partial metric space need not
be unique. Moreover, the function p(·, ·) need not be continuous in the sense that
xn → x and yn → y implies p(xn, yn) → p(x, y). For example, if X = [0,+∞) and
p(x, y) = max{x, y} for x, y ∈ X, then for {xn} = {1}, p(xn, x) = x = p(x, x) for each
x ≥ 1 and so, for example, xn → 2 and xn → 3 when n→ +∞.

DEFINITION 2 ([21]). Let (X, p) be a partial metric space, and let {xn} be a
sequence in X and x ∈ X.

(1) The sequence {xn} is said to converge to x, with respect to τp, if and only if
limn→+∞ p(xn, x) = p(x, x).

(2) The sequence {xn} is said to be Cauchy sequence if limn,m→+∞ p(xn, xm) exists
and is finite.

(3) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with
respect to τp, to a point x such that p(x, x) = limn,m→+∞ p(xn, xm).

The following lemma is crucial in proving our main results.

LEMMA 1 ([21]). Let (X, p) be a partial metric space.

(1) A sequence {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy
sequence in (X, ps).

(2) A partial metric space (X, p) is complete if and only if the metric space (X, ps)
is complete. Furthermore, limn→+∞ ps(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm).

The following Lemma shows that under certain conditions the limit is unique.

LEMMA 2 ([28]). Let {xn} be a convergent sequence in partial metric space X
such that xn → x and yn → y with respect to τp. If

lim
n→+∞

p(xn, xn) = p(x, x) = p(y, y),

then x = y.

LEMMA 3 ([20, 28]). Let {xn} and {yn} be two sequences in partial metric space
X such that

lim
n→+∞

p(xn, x) = lim
n→+∞

p(xn, xn) = p(x, x)

and
lim

n→+∞
p(yn, y) = lim

n→+∞
p(yn, yn) = p(y, y),
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then limn→+∞ p(xn, yn) = p(x, y). In particular, limn→+∞ p(xn, z) = p(x, z) for every
z ∈ X.

LEMMA 4 ([21]). Let (X, p) be a partial metric space and {xn} ⊂ X. If xn → z ∈
X, with respect to τp, with p(z, z) = 0, then limn→+∞ p(xn, y) = p(z, y) for all y ∈ X.

3 Main Results

The following is the main result of this paper.

THEOREM 3. Let (X, p) be a complete partial metric space and let T : X → X
be a self-mapping. Suppose that there exist β ∈ F and L ≥ 0 such that

p(Tx, Ty) ≤ β
(
M(x, y)

)
M(x, y) + LN(x, y) (1)

holds for all x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)

2

}
and

N(x, y) = min
{
pw(x, Tx), pw(y, Ty), pw(x, Ty), pw(y, Tx)

}
.

Then T has a unique fixed point u ∈ X. Moreover, p(u, u) = 0.

PROOF. Let x0 ∈ X be an arbitrary point. We construct a sequence {xn} in X
such that xn = Txn−1 for all n ∈ N. Suppose that p(xn0 , xn0+1) = 0 for some n0 ∈ N.
So, we have xn0 = xn0+1 = Txn0 , that is, xn0 is a fixed point of T .
From now on, assume that p(xn, xn+1) > 0 for all n ∈ N ∪ {0}. By applying (1),

we have

p(xn, xn+1) = p(Txn−1, Txn)

≤ β
(
M(xn−1, xn)

)
M(xn−1, xn) + LN(xn−1, xn), (2)

Since

p(xn−1, xn+1) + p(xn, xn)

2
≤ p(xn−1, xn) + p(xn, xn+1)

2

≤ max
{
p(xn−1, xn), p(xn, xn+1)

}
,
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we have

M(xn−1, xn) = max

{
p(xn−1, xn), p(xn−1, Txn−1), p(xn, Txn),

p(xn−1, Txn) + p(xn, Txn−1)

2

}
= max

{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

p(xn−1, xn+1) + p(xn, xn)

2

}
= max

{
p(xn−1, xn), p(xn, xn+1)

}
(3)

and

N(xn−1, xn) = min
{
pw(xn−1, Txn−1), p

w(xn, Txn), p
w(xn−1, Txn), p

w(xn, Txn−1)
}

= min
{
pw(xn−1, xn), p

w(xn, xn+1), p
w(xn−1, xn+1), p

w(xn, xn)
}
. (4)

As pw(xn, xn) = 0, it follows thatN(xn−1, xn) = 0. Notice that the caseM(xn−1, xn) =
p(xn, xn+1) is impossible due to the definition of β. Indeed,

p(xn, xn+1) ≤ β
(
M(xn−1, xn)

)
M(xn−1, xn)

≤ β
(
p(xn, xn+1)

)
p(xn, xn+1)

< p(xn, xn+1).

Thus, we conclude that M(xn−1, xn) = p(xn−1, xn). Keeping the inequality (2) in
the mind, we get 0 < p(xn, xn+1) < p(xn−1, xn) for all n ∈ N. Hence, the sequence
{p(xn, xn+1)} is a nonincreasing sequence of nonnegative numbers which is bounded
from below. So, there exists r ≥ 0 such that limn→+∞ p(xn, xn+1) = r. We claim that
r = 0. On the contrary, assume that r > 0. Then, due to (2), we obtain

p(xn, xn+1)

p(xn−1, xn)
≤ β

(
p(xn−1, xn)

)
≤ 1

for all n ∈ N which yields that limn→+∞ β
(
p(xn−1, xn)

)
= 1. Owing to the fact that

β ∈ F, we have limn→+∞ p(xn, xn+1) = 0, that is, r = 0, a contradiction. Hence,

lim
n→+∞

p(xn, xn+1) = 0. (5)

Next, we claim that {xn} is a Cauchy sequence in the partial metric space (X, p). By
applying Lemma 2, we need to prove that {xn} is a Cauchy sequence in the metric
space (X, ps). Suppose, on the contrary, that {xn} is not a Cauchy sequence in the
metric space (X, ps). Then, there exists ε > 0 such that for an integer k there exist
integers m(k) > n(k) > k such that

ps(xn(k), xm(k)) > ε. (6)



182 Fixed Points for Generalized Geraghty Contractions

By the definition of ps, we have ps(x, y) ≤ 2p(x, y) for all x, y ∈ X. Thus, by using (6),
we get

p(xn(k), xm(k)) >
ε

2
. (7)

For every integer k, let m(k) be the least positive integer exceeding n(k) satisfying (7).
Hence,

p(xn(k), xm(k)−1) ≤
ε

2
. (8)

By applying (7) and (8) and due to (p4) from Definition 1, we get

ε

2
< p(xn(k), xm(k))

≤ p(xn(k), xm(k)−1) + p(xm(k)−1, xm(k))− p(xm(k)−1, xm(k)−1)
≤ p(xn(k), xm(k)−1) + p(xm(k)−1, xm(k))

≤ ε

2
+ p(xm(k)−1, xm(k)).

Letting k → +∞ in the above inequality and using (5), we obtain

lim
k→+∞

p(xn(k), xm(k)) =
ε

2
. (9)

Further, by using the triangular inequality, we have∣∣p(xn(k), xm(k)−1)− p(xn(k), xm(k))∣∣ ≤ p(xm(k)−1, xm(k)).
Letting again k → +∞ in the above inequality and using (5) and (9), we obtain

lim
k→+∞

p(xn(k), xm(k)−1) =
ε

2
. (10)

By using (p3) and (p4) from Definition 1, we have

p(xn(k), xm(k)) ≤ p(xn(k), xn(k)+1) + p(xn(k)+1, xm(k))− p(xn(k)+1, xn(k)+1)
≤ p(xn(k), xn(k)+1) + p(xn(k)+1, xm(k))
≤ p(xn(k), xn(k)+1) + p(xn(k)+1, xm(k)−1) + p(xm(k)−1, xm(k))
− p(xm(k)−1, xm(k)−1)
≤ p(xn(k), xn(k)+1) + p(xn(k)+1, xm(k)−1) + p(xm(k)−1, xm(k))
≤ 2p(xn(k), xn(k)+1) + p(xn(k), xm(k)−1) + p(xm(k)−1, xm(k))
− p(xn(k), xn(k))
≤ 2p(xn(k), xn(k)+1) + p(xn(k), xm(k)−1) + p(xm(k)−1, xm(k)).

Letting again k → +∞ in the above inequalities and using (5),(9) and (10), we obtain

lim
k→+∞

p(xn(k)+1, xm(k)) =
ε

2
(11)
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and

lim
k→+∞

p(xn(k)+1, xm(k)−1) =
ε

2
. (12)

On the other hand, from

pw(xn(k), xn(k)+1) = p(xn(k), xn(k)+1)−min
{
p(xn(k), xn(k)), p(xn(k)+1, xn(k)+1)

}
≤ p(xn(k), xn(k)+1),

and thanks to (5), we get

lim
k→+∞

pw(xn(k), xn(k)+1) = 0. (13)

Now, by applying the inequality (1) with x = xn(k) and y = xm(k)−1, we have

p(xn(k)+1, xm(k)) = p(Txn(k), Txm(k)−1)

≤ β
(
M(xn(k), xm(k)−1)

)
M(xn(k), xm(k)−1)

+ LN(xn(k), xm(k)−1), (14)

where

M(xn(k), xm(k)−1) = max

{
p(xn(k), xm(k)−1), p(xn(k), Txn(k)), p(xm(k)−1, Txm(k)−1),

p(xn(k), Txm(k)−1) + p(xm(k)−1, Txn(k))

2

}
= max

{
p(xn(k), xm(k)−1), p(xn(k), xn(k)+1), p(xm(k)−1, xm(k)),

p(xn(k), xm(k)) + p(xm(k)−1, xn(k)+1)

2

}
(15)

and

N(xn(k), xm(k)−1) = min
{
pw(xn(k), Txn(k)), p

w(xm(k)−1, Txm(k)−1)

pw(xn(k), Txm(k)−1), p
w(xm(k)−1, Txn(k))

}
,

= min
{
pw(xn(k), xn(k)+1), p

w(xm(k)−1, xm(k)),

pw(xn(k), xm(k)), p
w(xm(k)−1, xn(k)+1)

}
. (16)

Letting again k → +∞ in (15) and (16) and using (5),(9), (10), (12) and (13), we get

lim
k→+∞

M(xn(k), xm(k)−1) = max

{
ε

2
, 0, 0,

ε

2

}
=
ε

2
(17)

and

lim
k→+∞

N(xn(k), xm(k)−1) = 0. (18)
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Now, letting again k → +∞ in (14) and using (11), (17) and (18), we obtain

1 ≤ lim
k→+∞

β
(
M(xn(k), xm(k)−1)

)
,

and so limk→+∞ β
(
M(xn(k), xm(k)−1)

)
= 1. Since β ∈ F, we have

lim
k→+∞

M(xn(k), xm(k)−1) = 0.

This implies that ε = 0, which is a contradiction. So, {xn} is a Cauchy sequence in the
metric space (X, ps). Since (X, p) is complete, it follows from Lemma 1 that (X, ps)
is a complete metric space. Therefore, the sequence {xn} converges to some u ∈ X in
(X, ps), that is,

lim
n→+∞

ps(xn, u) = 0.

Again, from Lemma 1,

p(u, u) = lim
n→+∞

p(xn, u) = lim
n→+∞

p(xn, xn).

On the other hand, thanks to (5) and due to (p2) from Definition 1,

lim
n→+∞

p(xn, xn) = 0, (19)

which yields that

p(u, u) = lim
n→+∞

p(xn, u) = lim
n→+∞

p(xn, xn) = 0. (20)

Now, we will prove that p(u, Tu) = 0. Assume on the contrary that p(u, Tu) > 0. By
applying (1), we obtain

p(xn+1, Tu) = p(Txn, Tu)

≤ β
(
M(xn, u)

)
M(xn, u) + LN(xn, u), (21)

where

M(xn, u) = max

{
p(xn, u), p(xn, Txn), p(u, Tu),

p(xn, Tu) + p(u, Txn)

2

}
= max

{
p(xn, u), p(xn, xn+1), p(u, Tu),

p(xn, Tu) + p(u, xn+1)

2

}
(22)

and

N(xn, u) = min
{
pw(xn, Txn), p

w(u, Tu), pw(xn, Tu), p
w(u, Txn)

}
= min

{
pw(xn, xn+1), p

w(u, Tu), pw(xn, Tu), p
w(u, xn+1)

}
. (23)

Thanks to (20), it is obvious that limn→+∞ p(xn, Tu) = p(u, Tu). Hence, by using (5)
and again (20), we get

lim
n→+∞

M(xn, u) = max
{
0, 0, p(u, Tu),

1

2
p(u, Tu)

}
= p(u, Tu). (24)
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Moreover, from (5) and (19), we conclude that limn→+∞ ps(xn, Txn) = 0. Thus, by
using (23), we obtain

lim
n→+∞

N(xn, u) = 0. (25)

Now, letting again k → +∞ in (21) and using (24) and (25), we have

1 ≤ lim
n→+∞

β
(
M(xn, u)

)
,

which implies that limn→+∞M(xn, u) = 0, a contradiction. Hence, p(u, Tu) = 0, that
is, Tu = u. Therefore, we conclude that T has a fixed point u ∈ X and p(u, u) = 0.
Finally, if, on the contrary, v 6= u (so p(u, v) 6= 0) is another fixed point of T (with

p(v, v) = 0), then by using (20),

M(u, v) = max

{
p(u, v), p(u, Tu), p(v, Tv),

p(u, Tv) + p(v, Tu)

2

}
= max

{
p(u, v), p(u, u), p(v, v),

p(u, v) + p(v, u)

2

}
= p(u, v) (26)

and

N(u, v) = min
{
pw(u, Tu), pw(v, Tv), pw(u, Tv), pw(v, Tu)

}
= min

{
pw(u, u), pw(v, v), pw(u, v), pw(v, u)

}
= 0. (27)

Hence, by applying the inequality (1) and using (26) and (27), we obtain

p(u, v) = p(Tu, Tv)

≤ β
(
M(u, v)

)
M(u, v) + LN(u, v)

= β
(
M(u, v)

)
p(u, v) < p(u, v),

which is a contradiction. Therefore, the fixed point of T is unique. This finishes the
proof.

By taking L = 0 in Theorem 3, we obtain the following result.

COROLLARY 1. Let (X, p) be a complete partial metric space and let T : X → X
be a self-mapping. Suppose that there exists β ∈ F such that

p(Tx, Ty) ≤ β
(
M(x, y)

)
M(x, y)

holds for all x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)

2

}
.
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Then T has a unique fixed point u ∈ X. Moreover, p(u, u) = 0.

If in Theorem 3 we take the function β(t) = λ, λ ∈ [0, 1), which is in F, then we
have the following corollary.

COROLLARY 2. Let (X, p) be a complete partial metric space and let T : X → X
be a self-mapping. Suppose that there exist λ ∈ [0, 1) and L ≥ 0 such that

p(Tx, Ty) ≤ λM(x, y) + LN(x, y)

holds for all x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)

2

}
and

N(x, y) = min
{
pw(x, Tx), pw(y, Ty), pw(x, Ty), pw(y, Tx)

}
.

Then T has a unique fixed point u ∈ X. Moreover, p(u, u) = 0.

REMARK 3. Corollary 1 is a generalization of Theorem 3.1 of Dukíc et al. [15]
which is also noted here as Theorem 2.

REMARK 4. By taking L = 0 in Corollary 2, we obtain the Ćiríc fixed point
theorem [14] in the setting of metric spaces (by considering p = d is a metric).

REMARK 5. Corollary 2 generalizes Theorem 10 (with f = g = T = S) of Turkoglu
and Özturk [29].

We now present some examples showing that there are situations where our results
can be used to conclude about the existence of fixed points, while some other known
results cannot be applied.

EXAMPLE 4. Let X = [0, 1] and p(x, y) = max{x, y} for all x, y ∈ X. It is clear
that (X, p) is a complete partial metric space. Consider T : X → X given by Tx = x

6 .
Let the function β be defined by

β(t) =

{
e−t

t+1 , if t > 0,
1
2 , if t = 0.

By taking x, y ∈ X with, for example, x ≥ y and x > 0, we have

p(Tx, Ty) = max

{
x

6
,
y

6

}
=
x

6

and

M(x, y) = max

{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)

2

}
= max

{
x, x, y,

1

2

[
x+max

{
y,
x

6

}]}
= x,
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since max{y, x6} ≤ x. Hence,

β
(
M(x, y)

)
M(x, y) = β(x)x =

e−x

x+ 1
x.

Now, from
1

6
<
1

2e
≤ e−x

x+ 1

and
Lmin

{
pw(x, Tx), pw(y, Ty), pw(x, Ty), pw(y, Tx)

}
≥ 0

for all x, y ∈ X, we get that (1) holds. Thus, all the hypotheses of Theorem 3 are
satisfied. Therefore, T has a unique fixed point in X, which is u = 0.

Note that if we use the metric d(x, y) = 2|x− y| for all x, y ∈ X, instead of p, then
T does not satisfy the conditions of Geraghty’s theorem (see [17]) by considering the
above function β in the metric space (X, d). Indeed, by taking x = 1 and y = 0, we
obtain

d
(
T1, T0

)
= d

(
1

6
, 0

)
= 2

∣∣∣∣16 − 0
∣∣∣∣ = 1

3

and

β
(
d(1, 0)

)
d(1, 0) = 2β(2) = 2

e−2

2 + 1
=
2e−2

3
<
1

3
.

Hence, the existence of a fixed point of T cannot be deduced by using Geraghty’s
theorem.

EXAMPLE 5. Let X = [0, 1] and p(x, y) = emax{x,y} − 1 for all x, y ∈ X. Then
(X, p) is a complete partial metric space. Define T : X → X by the rule

Tx =

{
0, if x = 1,
x
2 , if x 6= 1.

Consider the function β given by β(t) = 1
2 . Then, β ∈ F.

Now we consider the following cases:
Case 1. If y ≤ x < 1, then

p(Tx, Ty) = emax{Tx,Ty} − 1 = e
x
2 − 1

≤ ex − 1
2

=
1

2
p(x, y) ≤ β

(
M(x, y)

)
M(x, y).

Case 2. If y < x = 1, then

p(T1, T y) = emax{T1,Ty} − 1 = e
y
2 − 1

≤ e− 1
2

=
1

2
p(1, y) ≤ β

(
M(1, y)

)
M(1, y).
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Case 3. If y = x = 1, then

p(T1, T1) = 0 ≤ e− 1
2

=
1

2
p(1, 1) ≤ β

(
M(1, 1)

)
M(1, 1).

Since, for all x, y ∈ X,

Lmin
{
pw(x, Tx), pw(y, Ty), pw(x, Ty), pw(y, Tx)

}
≥ 0,

it follows that (1) is verified. Hence, all conditions of Theorem 3 are satisfied. Therefore,
T has a unique fixed point in X, which is u = 0.

However, if we consider the standard metric d(x, y) = |x−y| for all , y ∈ X, instead
of p, then we cannot find a function β ∈ F satisfying the conditions of Geraghty’s
theorem (see [17]) in the metric space (X, d). Indeed, by taking x = 3

4 and y = 1, we
have

d

(
T
3

4
, T1

)
= d

(
3

8
, 0

)
=

∣∣∣∣38 − 0
∣∣∣∣ = 3

8
and d

(
3

4
, 1

)
=

∣∣∣∣34 − 1
∣∣∣∣ = 1

4
.

Since 3
8 > β( 14 )

1
4 , it follows that Geraghty’s theorem cannot be used to prove the

existence of a fixed point of T .
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