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Abstract

In the paper, the authors provide some new generalizations of Feng Qi type
integral inequalities on time scales by using elementary analytic methods.

1 Introduction

The following problem was posed by Qi in [16]: under what conditions does the in-
equality ∫ b

a

fp(x)dx >
(∫ b

a

f(x)dx

)p−1

holds for p > 1? Later, this problem attracted great interest of many mathematicians.
M. Akkouchi proved the following results in [1, p. 124, Theorem C].

THEOREM. Let [a, b] be a closed interval of R and p > 1. For any continuous
function f(x) on [a, b] such that f(a) > 0, f ′(x) > p, we have

∫ b

a

fp+2(x)dx > 1

(b− a)p−1

(∫ b

a

f(x)dx

)p+1

.

Then, the q-analogue of the previous result was obtained in [7, Proposition 3.5] as
follows.

THEOREM. Let p > 1 be a real number and f(x) a function defined on [a, b]q, such
that f(a) > 0, Dqf(x) > p for all x ∈ (a, b]q. Then

∫ b

a

fp+2(x)dqx >
1

(b− a)p−1

(∫ b

a

f(qx)dqx

)p+1

.
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232 Generalizations of Feng Qi Type Integral Inequalities

Later, V. Krasniqi and A. Sh. Shabani obtained some more suffi cient conditions to
Qi type h-integral inequalities in [12]. M. R. S. Rahmat got some (q, h)-analogues of
integral inequalities on discrete time scales in [17]. Yin et al. obtained some Qi type
inequalities on time scales in [21]. For more results, we refer the reader to the papers
([2—6, 8—10, 13, 14, 18—20]). Recently, V. Krasniqi obtained some generalizations of Qi
type inequalities in [11]. His main results are following two theorems.

THEOREM 1. If f is a non-negative increasing function on [a, b] and satisfies
f ′(x) ≥ (t− 2) (x− a)t−3 for t > 3, then

∫ b

a

f t(x)dx−
(∫ b

a

f(x)dx

)t−1

> f t−1(a)

∫ x

a

f(x)dx.

THEOREM 2. Let p > 1. If f is a non-negative increasing function on [a, b] and

satisfies f ′(x) > p
(
x−a
b−a

)p−1

, then

∫ b

a

fp+2(x)dx− 1

(b− a)p−1

(∫ b

a

f(x)dx

)p+1

> fp+1(a)

∫ x

a

f(x)dx.

The main aim of this paper is to generalize the above results on time scales.

2 Notations and Lemmas

2.1 Notations

A time scale T is an arbitrary nonempty closed subset of the real numbers R. The
forward and backward jump operators σ, ρ : T→ T are defined by

σ(t) = inf {s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t} ,

where the supremum of the empty set is defined to be the infimum of T. If σ(t) > t,
we say that t is right-scattered, while if ρ(t) < t we say that t is left-scattered. Points
that are right-scattered and left-scattered at the same time are called isolated. Also, if
t < supT and σ(t) = t, then t is called right-dense, and if t > inf T and ρ(t) = t, then
t is called left-dense.
A function g : T → R is said to be rd (ld)-continuous provided g is continuous

at right (left)-dense points and has finite left (right)-sided limits at left (right)-dense
points in T. The graininess function µ (ν) for a time scale T is defined by µ(t) =
σ(t)− t(ν(t) = t− ρ(t)), and for every function f : T→ R the notation fσ(fρ) means
the composition f ◦ σ (f ◦ ρ). We also need below the set Tκ(Tκ) which is derived
from the time scale T as follows: if T has a left-scattered maximum (right-scattered
minimum) m, then Tκ = T− {m}(Tκ = T− {m}).We then define the interval [a, b] in
T by [a, b]T = {t ∈ T : a 6 t 6 b}.
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Let f : T → R and t ∈ Tκ(Tκ). We define f∆(f∇) to be the number (provided
it exists) with the property that given any ε > 0, there is a neighborhood U (U =
(t− δ, t+ δ) ∩ T for some δ > 0) of t such that

|f(σ (t))− f (s)− f∆(t)(σ (t)− s)| < ε|σ (t)− s|

(|f(ρ (t))− f (s)− f∇(t)(ρ (t)− s)| < ε|ρ (t)− s|).
If the delta (nabla) derivative f∆(t)(f∇(t)) exits for all t ∈ T, then we say that f is

delta (nabla) differentiable on T. We will make use of the following product and rules
for the derivatives of the product fg and the quotient f/g (where ggσ(ggρ) 6= 0) of two
delta (nabla) differentiable functions f and g,

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ (1)

((fg)∇ = f∇g + fρg∇ = fg∇ + f∇gρ),

(
f

g

)∆

=
f∆g − fg∆

ggσ

((
f

g

)∇
=
f∇g − fg∇

ggρ

)
.

Note that in the case T = R, we have σ(t) = ρ(t) = t, µ(t) = ν(t) = 0, f∆(t) (f∇(t)) =
f ′(t), and in the case T = qZ, we have σ(t) = t+ q, ρ(t) = t− q, µ(t) = ν(t) = q,

f∆(t) =
f(t+ q)− f(t)

q
and f∇(t) =

f(t)− f(t− q)
q

.

If T = qZ, q < 1, we have σ(t) = qt, ρ(t) = t
q , µ(t) = (q − 1)t,

f∆(t) =
f(qt)− f(t)

(q − 1)t
and f∇(t) =

f(t)− f(t/q)

t− t/q for t 6= 0.

A continuous function f : T → R is called pre-differentiable with D, provided D ⊂
Tκ(Tκ), Tκ\D(Tκ\D) is countable and contains no right-scattered elements of T, and
f is differentiable at each t ∈ D. Let f be rd (ld)-continuous. Then there exists
a function F which is pre-differentiable with region of differentiation D such that
F∆(x) = f(t) (F∇(x) = f(t)) holds for all t ∈ D. We define the Cauchy integral by

c∫
b

f(t)∆t = F (c)− F (b)

 c∫
b

f(t)∇t = F (c)− F (b)

 ,

where F is a pre-antiderivative of f and b, c ∈ T. The existence theorem [3, p. 27,
Theorem 1.74] reads as follows: Every rd (ld)-continuous function has an antiderivative.

In particular if t0 ∈ T, then F defined by F (t) =
∫ t
t0
f(τ)∆τ

(
F (t) =

∫ t
t0
f(τ)∇τ

)
is

an antiderivative of f .
If f is delta (nabla) differentiable, then f is continuous and rd (ld)-continuous. By

using property of rd(ld)-continuous function, one can easily see that

σ, ρ, fσ(x), (fσ(x))p, fρ(x), (fρ(x))p p ∈ N

are rd (ld)-continuous. Thus, all integrals involving main results of this paper are
meaningful.
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2.2 Lemmas

The following lemmas are useful and some of them can be found in [3].

LEMMA 2.1 ([21, p. 423, Lemma 2.5]). Let a, b ∈ T and p > 1. Assume g : T→ R
is delta differentiable at t ∈ Tκ and non-negative, increasing function on [a, b]T. Then

pgp−1(x)g∆(x) 6 (gp(x))∆ 6 p(gσ(x))p−1g∆(x).

LEMMA 2.2 ([3, p. 28, Theorem 1.76]). If f∆(x) > 0(f∇(x) > 0), then f(x) is
nondecreasing.

LEMMA 2.3 ([3, p. 5, Theorem 1.75]). Assume that f : T→ R is rd-continuous at
t ∈ Tκ. Then ∫ σ(t)

t

f(τ)∆τ =f(t)µ(t).

LEMMA 2.4. Let a, b ∈ T and p > 1. Assume g : T → R is nabla differentiable at
t ∈ Tκ and non-negative, increasing function on [a, b]T. Then

p(gρ(x))p−1g∇(x) 6 (gp(x))∇ 6 pgp−1(x)g∇(x).

PROOF. By (1), we have(
g2
)∇

= (g + gρ) g∇ and
(
g3
)∇

=
(

(gρ)
2

+ ggρ + g2
)
g∇.

By mathematical induction, we easily obtain

(gp)
∇

=
(
gp−1 + gρgp−2 + · · ·+ (gρ)

p−1
)
g∇.

Since the function g(x) is an increasing function on [a, b]T, we get

gρ(x) ≤ g(x).

So we easily obtain

p(gρ(x))p−1g∇(x) 6 (gp(x))∇ 6 pgp−1(x)g∇(x).

The proof is completed.

For more discussion on time scales, we refer the reader to [3].
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3 Main Results

THEOREM 3.1. Let a, b ∈ T and t > 3. Assume f, σ : T → R are delta differentiable
at t ∈ Tκ. If f is a non-negative, increasing function on [a, b]T and satisfies

f t−2(x)f∆(x) > (t− 2)(fσ
2

(x))t−2(σ2(x)− a)t−3σ∆(x),

where σ2(x) = σ(σ(x)), then

∫ b

a

f t(x)∆x−
(∫ b

a

f(x)∆x

)t−1

> f t−2(a)
[
f(a)− (t− 1)µt−2(a)

] ∫ x

a

f(x)∆x.

PROOF. Define

F (x) =

∫ x

a

f t(u)∆u−
(∫ x

a

f(u)∆u

)t−1

and g(x) =
∫ x
a
f(u)∆u. It is easy to see that g∆(x) = f(x). By Lemma 2.1, it follows

that
F∆(x) > f t(x)− (t− 1)(gσ(x))t−2g∆(x) = f(x)F1(x),

where F1(x) = f t−1(x)− (t− 1)(gσ(x))t−2. By Lemma 2.2 again, we have

F∆
1 (x) > (t− 1)f t−2(x)f∆(x)− (t− 1)(t− 2)(gσ

2

(x))t−3fσ(x)σ∆(x).

Since f is a non-negative and increasing function, we have

gσ
2

(x) =

∫ σ2(x)

a

f(u)∆u 6 fσ
2

(x)(σ2(x)− a). (2)

Hence,

F∆
1 (x) > (t− 1)[f t−2(x)f∆(x)− (t− 2)(fσ

2

(x))t−3fσ(x)(σ2(x)− a)t−3σ∆(x)]

> (t− 1)[f t−2(x)f∆(x)− (t− 2)(fσ
2

(x))t−2(σ2(x)− a)t−3σ∆(x)] > 0.

By Lemma 2.2, we conclude that F1(x) is an increasing function. Hence,

F1(x) > F1(a) = f t−2(a)[f(a)− (t− 1)µt−2(a)],

which means that

F∆(x) > f t−2(a)[f(a)− (t− 1)µt−2(a)]f(x)

by applying Lemma 2.2. It follows that(
F (x)− f t−2(a)[f(a)− (t− 1)µt−2(a)]g(x)

)∆

> 0.
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Thus, we have

F (x)−f t−2(a)[f(a)−(t−1)µt−2(a)]g(x) > F (a)−f t−2(a)[f(a)−(t−1)µt−2(a)]g(a) = 0.

This finishes the proof.

REMARK 1. If T = R and f(a) 6= 0 in Theorem 3.1, we deduce Theorem 2.1 in
[11].

REMARK 2. If T = hZ in Theorem 3.1, then Theorem 3.1 generalizes Theorem
3.2 in [17].

THEOREM 3.2. Let a, b ∈ T and p > 1. Assume f, σ : T → R are delta differen-
tiable at t ∈ Tκ. If f is a non-negative, increasing function on [a, b]T and satisfies

fp(x)f∆(x) > p

(b− a)p−1

(
fσ

2

(x)

)p(
σ2(x)− a

)p−1

σ∆(x),

then ∫ b

a

fp+2(x)∆x− 1

(b− a)p−1

(∫ b

a

f(x)∆x

)p+1

> fp(a)

[
f(a)− p+ 1

(b− a)p−1
µp(a)

] ∫ x

a

f(x)∆x.

PROOF. Define

G(x) =

∫ x

a

fp+2(t)∆t− 1

(b− a)p−1

(∫ x

a

f(t)∆t

)p+1

and g(x) =
∫ x
a
f(t)∆t. By Lemma 2.1, it follows that

G∆(x) = fp+2(x)− 1

(b− a)p−1
(gp+1(x))∆ > fp+2(x)− p+ 1

(b− a)p−1
(gσ(x))pg∆(x)

> f(x)

[
fp+1(x)− p+ 1

(b− a)p−1
(gσ(x))p

]
= f(x)G1(x),

where G1(x) = fp+1(x)− p+1
(b−a)p−1 (gσ(x))p. By Lemma 2.1 and (2), we have

G∆
1 (x) > (p+ 1)fp(x)f∆(x)− p(p+ 1)

(b− a)p−1

(
gσ

2

(x)

)p−1

fσ(x)σ∆(x)

> (p+ 1)

[
fp(x)f∆(x)− p

(b− a)p−1

(
fσ

2

(x)

)p(
σ2(x)− a

)p−1

σ∆(x)

]
> 0.
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Similar to the proof of Theorem 3.1, we have

G∆(x) ≥ f(x)G1(a) ⇔ (G(x)− g(x)G1(a))
∆ > 0,

which implies
G(x)− g(x)G1(a) > G(a)− g(a)G1(a) = 0.

The proof is complete.

REMARK 3. If T = R and f(a) 6= 0 in Theorem 3.2, we deduce Theorem 2.2 in
[11].

REMARK 4. If T = hZ in Theorem 3.2, then Theorem 3.2 generalizes Theorem
3.3 in [17].

THEOREM 3.3. Let a, b ∈ T and p > 3. Assume f, σ : T → R are delta differen-
tiable at t ∈ Tκ. If f is a non-negative, increasing function on [a, b]T and satisfies

fp−3(x)f∆(x) > (p− 2)

(
fσ

2

(x)

)p−3(
σ2(x)− a

)p−3

σ∆(x),

then ∫ b

a

fp(x)∆x−
(∫ b

a

fρ(x)∆x

)p−1

> (f(a))p−2[f(a)− (p− 1)µp−2(a)]

∫ x

a

f(ρ(x))∆x.

PROOF. Define

H(x) =

∫ x

a

fp(t)∆t−
(∫ x

a

fρ(t)∆t

)p−1

and g(x) =
∫ x
a
fρ(t)∆t. By Lemma 2.1, it follows that

H∆(x) = fp(x)− (gp−1(x))∆ > fp(x)− (p− 1)(gσ(x))p−2g∆(x) > f(ρ(x))H1(x),

where H1(x) = fp−1(x)− (p− 1)(gσ(x))p−2. By Lemma 2.1 and (2) again, we have

H∆
1 (x) > (p− 1)fp−2(x)f∆(x)− (p− 1)(p− 2)

(
gσ

2

(x)

)p−3

f(x)(σ(x))∆

> (p− 1)f(x)

[
fp−3(x)f∆(x)− (p− 2)

(
fσ

2

(x)

)p−3(
σ2(x)− a

)p−3

σ∆(x)

]
> 0.
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By Lemma 2.2, we conclude that H1(x) is an increasing function. Hence,

H1(x) > H1(a) = fp−1(a)− (p− 1)(gσ(a))p−2

= (f(a))p−2[f(a)− (p− 1)µp−2(a)]

which means that (H(x)− g(x)H1(a))∆ > 0. The proof is complete.

THEOREM 3.4. Let a, b ∈ T and p > 1. Assume f, σ : T → R are delta differen-
tiable at t ∈ Tκ. If f is a non-negative, increasing function on [a, b]T and satisfies

(fσ(x))∆ > pσ∆(x),

then

∫ b

a

(fσ(x))p+2∆x− 1

(b− a)p−1

(∫ b

a

fρ(x)∆x

)p+1

>
[
(fσ(a))p+1 − p+ 1

(b− a)p−1
(fρ(a)µ(a))p

] ∫ x

a

f(ρ(x))∆x.

PROOF. Define

W (x) =

∫ x

a

(fσ(t))p∆t−
(∫ x

a

fρ(t)∆t

)p−1

and g(x) =
∫ x
a
fρ(t)∆t. By Lemma 2.1, it follows that

W∆(x) > (fσ(x))p+2 − p+ 1

(b− a)p−1
(gσ(x))pg∆(x)

> fσ(x)

[
fσ(x))p+1 − p+ 1

(b− a)p−1
(gσ(x))p

]
> f(ρ(x))W1(x),

where W1(x) = (fσ(x))p+1 − p+1
(b−a)p−1 (gσ(x))p. By Lemma 2.1 again, we have

W∆
1 (x) > (p+ 1)

[(
fσ(x)

)p(
fσ(x)

)∆

− p

(b− a)p−1

(
gσ

2

(x)

)p−1

f(x)(σ(x))∆

]
.

Since f is a non-negative and increasing function, then

gσ
2

(x) =

∫ σ2(x)

a

fρ(t)∆t 6 fρσ
2

(x)(σ2(x)− a) 6 fσ(x)(b− a). (3)

Hence,

W∆
1 (x) > (p+ 1)

(
fσ(x)

)p[(
fσ(x)

)∆

− p(σ(x))∆

]
.
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By Lemma 2.2, we conclude that W1(x) is an increasing function. Hence,

W1(x) > W1(a) = (fσ(a))p+1 − p+ 1

(b− a)p−1
(gσ(a))p

= (fσ(a))p+1 − p+ 1

(b− a)p−1
(fρ(a)µ(a))p,

which means that (W (x)− g(x)W1(a))∆ > 0. The proof is complete.

THEOREM 3.5. Let a, b ∈ T and p > 3. Assume f, σ : T → R are delta differen-
tiable at t ∈ Tκ. If f is a non-negative, increasing function on [a, b]T and satisfies(

fσ(x)

)∆

> (p− 2)

(
σ2(x)− a

)p−3

σ∆(x),

then ∫ b

a

fσ(x))p∆x−
(∫ b

a

fρ(x)∆x

)p−1

> (fσ(a))p−2

[
fσ(a)− (p− 1)µp−2(a)

] ∫ x

a

f(ρ(x))∆x.

PROOF. Define

Q(x) =

∫ x

a

(fσ(t))p∆t−
(∫ x

a

fρ(t)∆t

)p−1

and g(x) =
∫ x
a
fρ(t)∆t. By Lemma 2.1, it follows that

Q∆(x) = (fσ(x))p − (gp−1(x))∆ > (fσ(x))p − (p− 1)(gσ(x))p−2g∆(x)

> f(ρ(x))Q1(x),

where Q1(x) = (fσ(x))p−1 − (p− 1)(gσ(x))p−2. By Lemma 2.1 and (3) again, we have

Q∆
1 (x) > (p− 1)[(fσ(x))p−2(fσ(x))∆ − (p− 2)(gσ

2

(x))p−3(gσ(x))∆]

> (p− 1)

(
fσ(x)

)p−2[
(fσ(x))∆ − (p− 2)

(
σ2(x)− a

)p−3

σ∆(x)

]
> 0.

By Lemma 2.2, we conclude that Q1(x) is an increasing function. Hence,

Q1(x) > Q1(a) = (fσ(a))p−1 − (p− 1)(gσ(a))p−2

> (fσ(a))p−2

(
fσ(a)− (p− 1)µp−2(a)

)
,
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which means that(
Q(x)− g(x)(fσ(a))p−2

(
fσ(a)− (p− 1)µp−2(a)

))∆

> 0.

The proof is complete.

Next, we generalized Feng Qi type inequalities related to nabla derivative.

THEOREM 3.6. Let a, b ∈ T and t > 3. Assume f : T→ R are nabla differentiable
at t ∈ Tκ. If f is a non-negative, increasing function on [a, b]T and satisfies(

fρ(x)

)t−2

f∇(x) > (t− 2)(f(x))t−2(x− a)t−3,

then ∫ b

a

f t(x)∇x−
(∫ b

a

f(x)∇x
)t−1

> f t−1(a)

∫ x

a

f(x)∇x.

PROOF. Define

F (x) =

∫ x

a

f t(u)∇u−
(∫ x

a

f(u)∇u
)t−1

and g(x) =
∫ x
a
f(t)∇t. It is easy to see g∇(x) = f(x). By Lemma 2.4, it follows that

F∇(x) > f t(x)− (t− 1)(g(x))t−2g∇(x) = f(x)F1(x),

where F1(x) = f t−1(x)− (t− 1)(g(x))t−2. By Lemma 2.2 again, we have

F∇1 (x) > (t− 1)(fρ(x))t−2(x)f∇(x)− (t− 1)(t− 2)(g(x))t−3f(x).

Since f is a non-negative and increasing function, then

g(x) =

∫ x

a

f(t)∇t 6 f(x)(x− a). (4)

Hence,

F∇1 (x) > (t− 1)

[
(fρ(x))t−2f∇(x)− (t− 2)(f(x))t−2(x− a)t−3

]
> 0.

By Lemma 2.2, we conclude that F1(x) is an increasing function. Hence,

F1(x) > F1(a),

which means that
F∇(x) > F1(a)f(x).
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It follows that (
F (x)− F1(a)g(x)

)∇
> 0.

Thus, we have
F (x)− f t−1(a)g(x) > F (a)− f t−1(a)g(a) = 0.

This finishes the proof.

THEOREM 3.7. Let a, b ∈ T and p > 1. Assume f : T → R is nabla differentiable
at t ∈ Tκ. If f is a non-negative, increasing function on [a, b]T and satisfies

(fρ(x))pf∇(x) > p

(b− a)p−1
(fp(x))(x− a)p−1,

then ∫ b

a

fp+2(x)∇x− 1

(b− a)p−1

(∫ b

a

f(x)∇x
)p+1

> fp+1(a)

∫ x

a

f(x)∇x.

PROOF. Define

G(x) =

∫ x

a

fp+2(t)∇t− 1

(b− a)p−1

(∫ x

a

f(t)∇t
)p+1

and g(x) =
∫ x
a
f(t)∇t. By Lemma 2.4, it follows that

G∇(x) = fp+2(x)− 1

(b− a)p−1
(gp+1(x))∇

> fp+2(x)− p+ 1

(b− a)p−1
gp(x)g∇(x)

> f(x)

[
fp+1(x)− p+ 1

(b− a)p−1
gp(x)

]
= f(x)G1(x),

where G1(x) = fp+1(x)− p+1
(b−a)p−1 g

p(x). By Lemma 2.4 again, we have

G∇1 (x) > (p+ 1)

[
(fρ(x))pf∇(x)− p

(b− a)p−1
fp(x)(x− a)p−1

]
> 0.

Similar to the proof of Theorem 3.6, we have

G∇(x) > f(x)G1(a) ⇔ (G(x)− g(x)G1(a))
∇ > 0,

which implies
G(x)− g(x)G1(a) > G(a)− g(a)G1(a) = 0.

The proof is completed.
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REMARK 5. Similar to the deduction of Theorems 3.4, 3.5, and 3.6, we easily
obtain other Feng Qi type inequalities related to the nabla derivative. For the sake of
simplicity, we omit the details.
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