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Abstract

The purpose of this note is to show that in the Krasnosel’skii fixed point theo-
rem of cone compression and expansion, the norm and more generally the convex
functional may be replaced by convex functionals perturbed by α-homogeneous
boundary operators. An application to a model boundary value problem is then
provided to illustrate the main existence theorem.

1 Introduction

One of the most important tools in fixed point theory is the cone expansion and com-
pression theorem proved by Krasnosel’skii in 1964 (see, e.g., [8] or [9]). It has been
proven to be effi cient in showing existence of positive solutions to various boundary
value problems (BVPs for short).

THEOREM 1. Let E be a Banach space and P ⊆ E a cone. Assume that Ω1,Ω2

are two open subsets of E with θ ∈ Ω1 (the zero element) and Ω1 ⊂ Ω2. Let A :
P ∩ (Ω2 \ Ω1) −→ P be a completely continuous operator such that either

(i) ‖Au‖E ≤ ‖u‖E , for u ∈ P ∩ ∂Ω1 and ‖Au‖E ≥ ‖u‖E , for u ∈ P ∩ ∂Ω2, or

(ii) ‖Au‖E ≥ ‖u‖E , for u ∈ P ∩ ∂Ω1 and ‖Au‖E ≤ ‖u‖E , for u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

Given a real Banach space E and P ⊂ E a nonempty closed convex subset, P is
called a cone if it satisfies the following two conditions:
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(i) x ∈ P, λ ≥ 0⇒ λx ∈ P, and

(ii) P ∩ (−P ) = {θ}.

The proof of Theorem 1 relies upon the following two technical lemmas producing
the computation of the fixed point index (see, e.g. [4, 8, 9]).

LEMMA 1. Let E be a Banach space, P ⊂ E a cone, and Ω ⊂ E a bounded open
subset with θ ∈ Ω. Let A : P ∩ Ω −→ P be a completely continuous operator such
that the so-called Leray-Schauder condition is satisfied:

Ax 6= λx, ∀x ∈ P ∩ ∂Ω and ∀λ ≥ 1. (1)

Then the fixed point index i(A,P ∩ Ω, P ) = 1.

LEMMA 2. Let E be a Banach space, P ⊂ E a cone, and Ω ⊂ E a bounded open
subset. Let A : P ∩ Ω −→ P be a completely continuous operator such that

(i) inf
x∈P∩∂Ω

‖Ax‖ > 0, and

(ii) ‖Ax‖ ≥ ‖x‖ and Ax 6= x,∀x ∈ P ∩ ∂Ω.

Then the fixed point index i(A,P ∩ Ω, P ) = 0.

In the last couple of years, several authors have generalized Theorem 1. The general-
izations have essentially concerned the norm which was replaced by a convex functional
in papers [1, 2, 10, 11]) and where some applications to the solvability of some BVPs
can be found. As noticed in [7], the compact operator A may be generalized to a k-set
contraction mapping. In [10, Theorem 2.4], the norms appearing in conditions (i) and
(ii) of Theorem 1 are not necessarily the same. In [13], in one inequality a norm is
considered while it is a semi-norm in the other inequality. In [11], Sun et al. considered
the case of the sum of convex and concave operators.
In [15], the authors replaced the norm by a convex functional ρ on the cone P , i.e.,

a mapping that satisfies

ρ(tx+ (1− t)y) ≤ tρ(x) + (1− t)ρ(y),

for all x, y ∈ P and t ∈ [0, 1]. Their main existence result extends the fixed point index
theory as developed in [4, 8] and relies heavily on the proof that the intersection F of a
cone with the exterior of a ball defined by a functional is a retract of the whole space;
the latter result (see [15, Theorem 2.1]) is itself very interesting. Recall that a subset
F ⊂ E is called a retract of E (see, e.g. [14]) if there exists a continuous mapping
r : E −→ F such that r(x) = x for every x ∈ F . In 1951, Dugundji [6] proved that
every closed convex subset of a Banach space, in particular a cone, is a retract. It is
important to note that the subset F need not to be convex even in the norm case.
The authors of [12] have established some fixed point theorems of Altman and

Rothe types for α-positive-homogeneous operators. Given a real Banach space E and
a positive real number α, a mapping B : E −→ R+ is called α-positive homogeneous if

B(tu) = tαB(u) ∀u ∈ E,∀ t ≥ 0.
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For instance, the functional B defined on a Banach space E by B(u) = ‖u‖γE , for some
positive constant γ, is γ-positive homogeneous.
The aim of this note is to show that in [15, Corollary 2.1], we can replace the func-

tional ρ by the sum of a convex functional and a homogeneous operator. In addition,
these boundary operators are not necessarily the same in inequalities (i) and (ii) of
Theorem 1. This is the content of Section 2. In Section 3, we apply the theoretical
result to the solvability of a Dirichlet BVP on [0, 1].

2 Main Results

We start with a result extending Lemma 1. When B = 0, we also recover [15, Theorem
2.3].

LEMMA 3. Let Ω be a bounded open set in a Banach space E such that θ ∈ Ω
and let P ⊆ E be a cone. Suppose that A : P ∩ Ω −→ P is a completely continuous
mapping such that Au 6= u for all u ∈ P ∩ ∂Ω and that ρ,B : P −→ R+ are uniformly
continuous functionals satisfying:

(i) B is α-positive homogeneous with α ≥ 1 and Bu > 0, for u 6= θ,

(ii) ρ is convex with ρ(θ) = 0 and ρ(u) > 0, for u 6= θ.

Assume further that

B(Au) + ρ(Au) ≤ B(u) + ρ(u) for allu ∈ P ∩ ∂Ω. (2)

Then, the fixed point index i(A,P ∩ Ω, P ) = 1.

PROOF. We prove that Hypothesis (2) implies that the condition of Leray-Schauder
(1) is satisfied. Suppose to the contrary that there exist u0 ∈ P ∩ ∂Ω and λ0 ≥ 1 such
that Au0 = λ0u0. Since operator A has no fixed point on the boundary ∂Ω, then
λ0 > 1. Moreover we have

1

λ0
B(Au0) + ρ(u0) =

1

λ0
B(Au0) + ρ

(
1

λ0
Au0

)
=

1

λ0
B(Au0) + ρ

(
1

λ0
Au0 +

(
1− 1

λ0

)
θ

)
.

Since the functional ρ is convex, and by Hypothesis (2), we obtain

1

λ0
B(λ0u0) + ρ(u0) ≤ 1

λ0
(B(Au0) + ρ(Au0))

≤ 1

λ0
(B(u0) + ρ(u0)) ≤ 1

λ0
B(u0) + ρ(u0),

which implies that
B(λ0u0) ≤ B(u0).
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Operator B being α-positive homogeneous, we deduce that

B(λ0u0) = λα0B(u0) ≤ B(u0).

Hence (1− λα0 )B(u0) ≥ 0, contradicting the fact that 1− λα0 < 0 and Bu0 > 0. Thus,
Lemma 1 guarantees that i(A,P ∩ Ω, P ) = 1.

By replacing the functional ρ by the sum B + ρ in [15, Theorem 2.1] and [15,
Theorem 2.2], respectively, and adapting the same proofs, we obtain the following two
lemmas. We omit the details.

LEMMA 4. Let P be a cone in a Banach space E. Assume that B, ρ : P −→ R+

are uniformly continuous functionals such that B is α-positive homogeneous (α ≥ 1),
sub-additive (i.e., B(u+v) ≤ Bu+Bv for u, v ∈ P ), and ρ is convex with (B+ρ)(θ) = 0
and (B + ρ)(u) > 0 for u 6= θ. Then, for all R > 0, the set

DR = {u ∈ P : (B + ρ)(u) ≥ R}

is a retract of E.

LEMMA 5. Let Ω be a bounded open set in a Banach space E and let P ⊆ E
be a cone. Suppose that A : P ∩ Ω −→ P is a completely continuous mapping and
B, ρ : P −→ R+ are uniformly continuous functionals that satisfy:

(i) B is α-positive homogeneous (α ≥ 1) and sub-additive,

(ii) ρ is convex with (B + ρ)(θ) = 0 and (B + ρ)(u) > 0, for u 6= θ.

Assume further that

(1) B(Au) + ρ(Au) ≥ Bu+ ρ(u), for u ∈ P ∩ ∂Ω,

(2) inf
u∈P∩∂Ω

{Bu+ ρ(u)} > 0 and Au 6= u, for u ∈ P ∩ ∂Ω.

Then the fixed point index i(A,P ∩ Ω, P ) = 0.

As a consequence of Lemma 3 and Lemma 5, we derive a generalization of the
Krasnosel’skii fixed point theorem. The proof is immediate.

THEOREM 2. Let Ω1 and Ω2 be two bounded open sets in a Banach space E such
that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let P ⊆ E be a cone. Suppose that A : P ∩(Ω2\Ω1) −→ P
is a completely continuous mapping and Bi, ρi : P −→ R+ are uniformly continuous
functionals such that:

(i) For i = 1, 2, Bi is αi-positive homogeneous (αi ≥ 1) and B2 is sub-additive.

(ii) ρ1 is convex with ρ1(θ) = 0 and ρ1(u) > 0, for u 6= θ if ρ1 6≡ 0.

(iii) ρ2 is convex with ρ2(θ) = 0 and ρ2(u) > 0, for u 6= θ.
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Assume further that

(1) B1(Au) + ρ1(Au) ≤ B1(u) + ρ1(u), for u ∈ P ∩ ∂Ω1,

(2) B2(Au) + ρ2(Au) ≥ B2(u) + ρ2(u), for all u ∈ P ∩ ∂Ω2 with

inf
u∈P∩∂Ω2

{B2u+ ρ2u} > 0.

Then operator A has at least one fixed point in P ∩ (Ω2 \ Ω1).

Letting B1 = B2 = 0 and ρ1 = ρ2, we recapture [15, Corollary 2.1]. Another inter-
esting situation is that of a convex functional combined with an α-positive homogeneous
one. The following consequence is derived by letting ρ1 ≡ B2 ≡ 0.

COROLLARY 1. Let Ω1 and Ω2 be two bounded open sets in a Banach space E such
that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let P ⊆ E be a cone. Suppose that A : P ∩ (Ω2\Ω1) −→
P is a completely continuous operator, B, ρ : P −→ R+ are uniformly continuous
functionals such that B is an α-positive homogeneous functional with α ≥ 1, and ρ is
convex satisfying ρ(θ) = 0, ρ(u) > 0, for u 6= θ. Assume further that the following two
conditions hold:

(i) B(Au) ≤ B(u), for u ∈ P ∩ ∂Ω1,

(ii) ρ(Au) ≥ ρ(u), for all u ∈ P ∩ ∂Ω2 with inf
u∈P∩∂Ω2

ρ(u) > 0.

Then operator A has at least one fixed point in P ∩ (Ω2 \ Ω1).

3 Applications

Consider the Dirichlet boundary value problem{
−u′′(t) = f(t, u(t)), t ∈ [0, 1],
u(0) = u(1) = 0,

(3)

where f : [0, 1]×R+ −→ R+ is a continuous function. It is clear that if u is a solution
of the integral equation

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds,

where

G(t, s) =

{
t(1− s) for t ≤ s,
s(1− t) for s ≤ t (4)

is the Green function for −u′′(t) = 0 and u(0) = u(1) = 0, then it is a solution of
problem (3). One can show that

G(t, s) ≤ G(s, s) for (t, s) ∈ [0, 1]2,

G(t, s) ≥ 1
4G(s, s), ∀ t ∈

[
1
4 ,

3
4

]
,∫ 3

4
1
4

G
(

1
2 , s
)
ds = 3

32 .

(5)
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Let E = C([0, 1]) be the Banach space of real continuous functions on [0, 1] endowed
with the norm ‖u‖∞ = max

t∈[0,1]
|u(t)| and let A be the operator defined by

Au(t) =

∫ 1

0

G(t, s)f(s, u(s))ds.

For u ∈ E, Au is solution of the problem{
−(Au)′′(t) = f(t, u(t)), t ∈ [0, 1],
(Au)(0) = (Au)(1) = 0.

(6)

Define the cone

P =

{
u ∈ E : u(t) ≥ 0, u(t) ≥ 1

4
‖u‖∞, ∀ t ∈

[
1

4
,

3

4

]}
and let H1

0 (0, 1) stand for the Sobolev space of measurable functions u with u, u′ ∈
L2(0, 1) and u(0) = u(1) = 0. It is endowed with the norm ‖u‖H1

0
= ‖u′‖L2 . Define

the functionals:
B(u) = ‖u‖H1

0
and ρ(u) = ‖u‖∞.

Concerning problem (3), our main result is:

THEOREM 3. Assume that the following conditions hold:

(a)

0 < lim sup
x→0+

max
t∈[0,1]

f(t, x)

x
≤ π2,

(b)

lim inf
x→+∞

min
t∈[ 14 ,

3
4 ]

f(t, x)

x
≥ 128

3
.

Then the boundary value problem (3) has at least one positive solution u ∈ E and
there exist two positive constants 0 < R1 < R2 such that R1 ≤ ‖u‖∞ ≤ R2.

PROOF. Since f is continuous, operator A : E −→ E is completely continuous.
Moreover the functional ρ : P −→ R+ defined by ρ(u) = ‖u‖∞ is uniformly continuous
and convex. The functional B : P −→ R+ defined by B(u) = ‖u‖H1

0
is also uniformly

continuous and 1-positive homogeneous.
By Hypothesis (a), there exist 0 < ε < π2 and R1 > 0 such that 0 ≤ f(t, x) ≤(

π2 − ε
)
x, for 0 < x ≤ R1 and t ∈ [0, 1]. Let

Ω1 = {u ∈ E, ‖u‖∞ < R1}.

From Hypothesis (b), there exists R2 > 0 such that f(t, x) ≥ 128
3 x, for x ≥ R2 and

t ∈ [ 1
4 ,

3
4 ]. Let R2 = max{2R1, 4R2} and

Ω2 = {u ∈ E : ‖u‖∞ < R2}.
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Claim 1: ‖Au‖H1
0
≤ ‖u‖H1

0
, ∀u ∈ P ∩ ∂Ω1. For all u ∈ P ∩ ∂Ω1, we have

‖Au‖H1
0

= sup
‖v‖

H1
0
≤1

∣∣∣(Au, v)H1
0

∣∣∣ = sup
‖v‖

H1
0
≤1

∣∣∣∣∫ 1

0

(Au)′(t)v′(t)dt

∣∣∣∣
= sup

‖v‖
H1
0
≤1

∣∣∣∣∫ 1

0

−(Au)′′(t)v(t)dt

∣∣∣∣ = sup
‖v‖

H1
0
≤1

∫ 1

0

f(t, u(t))v(t)dt,

whence the estimates

‖Au‖H1
0
≤ sup

‖v‖
H1
0
≤1

((∫ 1

0

f2(t, u(t))dt

) 1
2
(∫ 1

0

v2(t)dt

) 1
2

)

≤ sup
‖v‖

H1
0
≤1

((∫ 1

0

(π2 − ε)2u2(t)dt

) 1
2

‖v‖L2
)

≤ π2 sup
‖v‖

H1
0
≤1

((∫ 1

0

u2(t)dt

) 1
2

‖v‖L2
)

≤ π2 sup
‖v‖

H1
0
≤1

(
1

λ1
‖u‖H1

0
‖v‖H1

0

)
= π2 1

λ1
‖u‖H1

0
= ‖u‖H1

0
.

Here, we have used Poincaré’s inequality (see [3]) with optimal constant, that is, if
Ω = (a, b) is a bounded interval, then

‖u‖L2 ≤
1√
λ1

‖u′‖L2 =
1√
λ1

‖u‖H1
0
, ∀u ∈ H1

0 (Ω),

where λ1 = π2

(b−a)2 is the first eigenvalue of the Dirichlet problem{
−u′′(t) = λu(t), t ∈ [a, b],
u(a) = u(b) = 0.

Claim 2: ‖Au‖∞ ≥ ‖u‖∞, ∀ u ∈ P ∩ ∂Ω2. For u ∈ P ∩ ∂Ω2, we have, using (5):

‖Au‖∞ ≥ Au

(
1

2

)
=

∫ 1

0

G

(
1

2
, s

)
f(s, u(s))ds

≥
∫ 3

4

1
4

G

(
1

2
, s

)
f(s, u(s))ds ≥

∫ 3
4

1
4

G

(
1

2
, s

)
128

3
u(s)ds

≥ 128

3

∫ 3
4

1
4

G

(
1

2
, s

)
1

4
‖u‖∞ds ≥

128

3

1

4

3

32
‖u‖∞ = ‖u‖∞.

We have then proved that B(Au) ≤ B(u), for all u ∈ P ∩ ∂Ω2 and ρ(Au) ≥ ρ(u), for
all u ∈ P ∩ ∂Ω2. Moreover inf

u∈P∩∂Ω2

ρ(u) = R2 > 0.
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By Corollary 1, we conclude that problem (3) has at least one positive solution in
P ∩ (Ω2 \ Ω1).

REMARK 1. (a) With π2 ' 9.8596, the estimate in (a) is optimal. It is better than
the weaker one:

0 < lim sup
x→0+

max
t∈[0,1]

f(t, x)

x
≤ 8.

The latter estimate is usually applied with Schauder’s fixed point theorem for it pro-
vides sub-linear growth condition on the mapping A, i.e., ‖Au‖∞ ≤ ‖u‖∞, ∀ u ∈
P ∩ ∂Ω1. Indeed, arguing as in the proof of Theorem 3, Claim 1, we rather obtain the
estimates:

‖Au‖∞ = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s))ds

≤ max
t∈[0,1]

∫ 1

0

G(t, s)(R− ε)u(s)ds

≤ 1

8
(R− ε)‖u‖∞ =

R

8
‖u‖∞.

Thus if R = 8, then ‖Au‖∞ ≤ ‖u‖∞.
(b) The following problem of fractional order can be studied in a similar way; we

omit the details: {
Dα

1−(Dα
0+u(t) = f(t, u(t)), t ∈ [0, 1],

u(0) = u(1) = 0,

where 0 < α < 1 and f : [0, 1]× R+ −→ R+ is continuous.
(c) The conclusion of Theorem 1 can be extended to the case of a k-set contraction

mapping A (0 < k < 1) with respect to some measure of noncompactness (see [4]) and
also to a translate of a cone P as developed in [5].
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