A Note On A Result Due To Ankeny And Rivlin*

Eze Raymond Nwaeze ${ }^{\dagger}$

Received 27 November 2015

Abstract

Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\cdots+a_{n} z^{n}$ be a polynomial of degree n having no zeros in the unit disk. Then it is well known that for $R \geq 1, \max _{|z|=R}|p(z)| \leq$ $\left(\frac{R^{n}+1}{2}\right) \max _{|z|=1}|p(z)|$. In this paper, we consider polynomials with gaps, having all its zeros on the circle $S(0, K):=\{z:|z|=K\}, 0<K \leq 1$, and estimate the value of $\left(\frac{\max _{|z|=R}|p(z)|}{\max _{|z|=1}|p(z)|}\right)^{s}$ for any positive integer s.

1 Introduction

Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. We will denote

$$
\begin{gathered}
M(p, r):=\max _{|z|=r}|p(z)|, \quad r>0 \\
\|p\|:=\max _{|z|=1}|p(z)|
\end{gathered}
$$

and

$$
D(0, K):=\{z:|z|<K\}, K>0 .
$$

Bernstein observed the following result, which in fact is a simple consequence of the maximum modulus principle (see [8, p. 137]). This inequality is also known as the Bernstein's inequality.

THEOREM 1. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. Then for $R \geq 1$,

$$
M(p, R) \leq R^{n}\|p\|
$$

Equality holds for $p(z)=\alpha z^{n}, \alpha$ being a complex number.

For polynomial of degree n not vanishing in the interior of the unit circle, Ankeny and Rivlin [1] proved the following result.

[^0]THEOREM 2 (Ankeny and Rivlin [1]). Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j} \neq 0$ in $D(0,1)$. Then for $R \geq 1$,

$$
\begin{equation*}
M(p, R) \leq\left(\frac{R^{n}+1}{2}\right)\|p\| \tag{1}
\end{equation*}
$$

Here equality holds for $p(z)=\frac{\alpha+\beta z^{n}}{2}$, where $|\alpha|=|\beta|=1$.
In 2005, Gardner, Govil and Musukula [3] proved the following generalization and sharpening of Theorem 2.

THEOREM 3. Let $p(z)=a_{0}+\sum_{j=t}^{n} a_{j} z^{j}, 1 \leq t \leq n$, be a polynomial of degree n and $p(z) \neq 0$ in $D(0, K), K \geq 1$. Then for $R \geq 1$,

$$
\begin{align*}
M(p, R) \leq & \left(\frac{R^{n}+s_{0}}{1+s_{0}}\right)\|p\|-\left(\frac{R^{n}-1}{1+s_{0}}\right) m-\frac{n}{1+s_{0}}\left[\frac{(\|p\|-m)^{2}-\left(1+s_{0}\right)^{2}\left|a_{n}\right|^{2}}{(\|p\|-m)}\right] \\
& \times\left\{\frac{(R-1)(\|p\|-m)}{(\|p\|-m)+\left(1+s_{0}\right)\left|a_{n}\right|}-\ln \left[1+\frac{(R-1)(\|p\|-m)}{(\|p\|-m)+\left(1+s_{0}\right)\left|a_{n}\right|}\right]\right\},(2) \tag{2}
\end{align*}
$$

where $m=\min _{|z|=K}|p(z)|$, and

$$
s_{0}=K^{t+1} \frac{\frac{t}{n} \cdot \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} K^{t-1}+1}{\frac{\left|a_{t}\right|}{n} \cdot \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} K^{t+1}+1}
$$

Several research monographs have been written on this subject of inequalities (see for example Govil and Mohapatra [4], Milovanović, Mitrinović and Rassias [7], Rahman and Schmeisser [9], and recent article of Govil and Nwaeze [5]).

While trying to obtain an inequality analogous to (1) for polynomials not vanishing in $D(0, K), K \leq 1$, Dewan and Ahuja [2] were able to prove this only for polynomials having all the zeros on the circle $S(0, K):=\{z:|z|=K\}, 0<K \leq 1$.

THEOREM 4. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n having all its zeros on $S(0, K), K \leq 1$. Then for $R \geq 1$ and for every positive integer s,

$$
\{M(p, R)\}^{s} \leq\left[\frac{K^{n-1}(1+K)+\left(R^{n s}-1\right)}{K^{n-1}+K^{n}}\right]\{M(p, 1)\}^{s}
$$

For $s=1$, Theorem 4 reduces to the following Corollary 5 .
COROLLARY 5. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n having all its zeros on $S(0, K), K \leq 1$. Then for $R \geq 1$,

$$
\begin{equation*}
M(p, R) \leq\left[\frac{K^{n-1}(1+K)+\left(R^{n}-1\right)}{K^{n-1}+K^{n}}\right] M(p, 1) \tag{3}
\end{equation*}
$$

2 Main Results

THEOREM 6. Let

$$
p(z)=z^{m}\left[a_{n-m} z^{n-m}+\sum_{j=\mu}^{n-m} a_{n-m-j} z^{n-m-j}\right],
$$

where $1 \leq \mu \leq n-m$ and $0 \leq m \leq n-1$, be a polynomial of degree n, having $m-$ fold zeros at origin and remaining $n-m$ zeros on $S(0, K), K \leq 1$. Then for $R \geq 1$ and every positive integer s,

$$
[M(p, R)]^{s} \leq L(\mu ; K, m, n, s)[M(p, 1)]^{s},
$$

where

$$
\begin{aligned}
L(\mu ; K, m, n, s)= & \frac{1}{n\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}\right)}\left[n\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}\right)\right. \\
& +\left(R^{n s}-1\right)\left[n+m K^{n-m-2 \mu+1}+m K^{n-m-\mu+1}-m\right]
\end{aligned}
$$

For $m=0$, by Theorem 6 , we have
COROLLARY 7. Let $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, be a polynomial of degree n, having all zeros on $|z|=K, K \leq 1$. Then for $R \geq 1$ and every positive integer s,

$$
[M(p, R)]^{s} \leq L(\mu ; K, n, s)[M(p, 1)]^{s},
$$

where

$$
L(\mu ; K, n, s)=\frac{K^{n-\mu}\left(K^{1-\mu}+K\right)+\left(R^{n s}-1\right)}{K^{n-2 \mu+1}+K^{n-\mu+1}} .
$$

If we set $\mu=1$ into Corollary 7 , we get the following result of Dewan and Ahuja [2].

COROLLARY 8. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$, be a polynomial of degree n, having all zeros on $|z|=K, K \leq 1$. Then for $R \geq 1$ and every positive integer s,

$$
[M(p, R)]^{s} \leq L(1 ; K, n, s)[M(p, 1)]^{s},
$$

where

$$
L(1 ; K, n, s)=\frac{K^{n-1}(1+K)+\left(R^{n s}-1\right)}{K^{n-1}+K^{n}} .
$$

3 Lemmas

For the proof of Theorem 6, we will need the following lemmas. The first lemma is due to Kumar and Lal [6].

LEMMA 9. Let

$$
p(z)=z^{m}\left[a_{n-m} z^{n-m}+\sum_{j=\mu}^{n-m} a_{n-m-j} z^{n-m-j}\right],
$$

where $1 \leq \mu \leq n-m$ and $0 \leq m \leq n-1$, be a polynomial of degree n, having $m-f o l d$ zeros at origin and remaining $n-m$ zeros on $|z|=K, K \leq 1$.

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n+m\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}-1\right)}{K^{n-m-2 \mu+1}+K^{n-m-\mu+1}} \max _{|z|=1}|p(z)| .
$$

The next lemma is the Bernstein inequality given in Theorem 1.
LEMMA 10. Let $p(z)$ be a polynomial of degree n. Then for $R \geq 1$,

$$
M(p, R) \leq R^{n} M(p, 1)
$$

We now turn our attention to proof of the main result.
PROOF OF THEOREM 6. By Lemma 9, we have

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n+m\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}-1\right)}{K^{n-m-2 \mu+1}+K^{n-m-\mu+1}} \max _{|z|=1}|p(z)| .
$$

Applying Lemma 10 to the polynomial $p^{\prime}(z)$ which is of degree $n-1$, it follows that for all $R \geq 1$ and $\theta \in[0,2 \pi)$,

$$
\begin{aligned}
\left|p^{\prime}\left(R e^{i \theta}\right)\right| & \leq \max _{|z|=R}\left|p^{\prime}(z)\right| \leq R^{n-1} \max _{|z|=1}\left|p^{\prime}(z)\right| \\
& \leq R^{n-1}\left[\frac{n+m\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}-1\right)}{K^{n-m-2 \mu+1}+K^{n-m-\mu+1}}\right] \max _{|z|=1}|p(z)|
\end{aligned}
$$

So for each $\theta \in[0,2 \pi)$ and $R \geq 1$, we obtain

$$
\begin{aligned}
{\left[p\left(R e^{i \theta}\right)\right]^{s}-\left[p\left(e^{i \theta}\right)\right]^{s} } & =\int_{1}^{R} \frac{d\left[p\left(t e^{i \theta}\right)\right]^{s}}{d t} d t \\
& =\int_{1}^{R} s\left[p\left(t e^{i \theta}\right)\right]^{s-1} p^{\prime}\left(e^{i \theta}\right) e^{i \theta} d t
\end{aligned}
$$

This implies that

$$
\left|p\left(R e^{i \theta}\right)\right|^{s} \leq\left|p\left(e^{i \theta}\right)\right|^{s}+s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(e^{i \theta}\right)\right| d t
$$

Therefore,

$$
\begin{aligned}
& {[M(p, R)]^{s}} \\
& \leq[M(p, 1)]^{s}+s \int_{1}^{R}\left[t^{n} M(p, 1)\right]^{s-1}\left|p^{\prime}\left(e^{i \theta}\right)\right| d t \\
& \leq[M(p, 1)]^{s}+s \int_{1}^{R} t^{n s-n}[M(p, 1)]^{s-1} t^{n-1} \frac{n+m\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}-1\right)}{K^{n-m-2 \mu+1}+K^{n-m-\mu+1}} \\
& \times M(p, 1) d t \\
& =[M(p, 1)]^{s}+s\left[\frac{n+m\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}-1\right)}{K^{n-m-2 \mu+1}+K^{n-m-\mu+1}}\right][M(p, 1)]^{s} \int_{1}^{R} t^{n s-1} d t \\
& =[M(p, 1)]^{s}+[M(p, 1)]^{s}\left[\frac{n+m\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}-1\right)}{K^{n-m-2 \mu+1}+K^{n-m-\mu+1}}\right] s \frac{R^{n s}-1}{n s} \\
& =[M(p, 1)]^{s}\left\{1+\frac{\left[n+m\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}-1\right)\right]\left(R^{n s}-1\right)}{n\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}\right)}\right\}
\end{aligned}
$$

This yields

$$
\begin{aligned}
{[M(p, R)]^{s} \leq } & \frac{[M(p, 1)]^{s}}{n\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}\right)}\left\{n\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}\right)\right. \\
& \left.+\left[n+m\left(K^{n-m-2 \mu+1}+K^{n-m-\mu+1}-1\right)\right]\left(R^{n s}-1\right)\right\}
\end{aligned}
$$

This completes the proof.
Acknowledgment. Many thanks to the anonymous referee for his/her valuable comments.

References

[1] N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math., 5(1955), 849-852.
[2] K. K. Dewan and A. Ahuja, Growth of polynomials with prescribed zeros, J. Math. Inequal., 5(2011), 355-361.
[3] R. B. Gardner, N. K. Govil and S. R. Musukula, Rate of growth of polynomials not vanishing inside a circle, JIPAM. J. Inequal. Pure Appl. Math., 6(2005), article 53.
[4] N. K. Govil and R. N. Mohapatra, Markov and Bernstein Type inequalities for Polynomials, J. of Inequal. and Appl., 3(1999), 349-387.
[5] N. K. Govil and E. R. Nwaeze, Bernstein type inequalities concerning growth of polynomials, Mathematical Analysis, Approximation Theory and their Applications, Springer International Publishing, Switzerland, (2016), 293-316.
[6] S. Kumar and R. Lal, Generalizations of some polynomial inequalities, Int. Electron. J. Pure Appl. Math., 3(2011), 111-117.
[7] G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co. Pte. Ltd., (1994).
[8] G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis, $4^{\text {th }}$ ed., Springer Verlag, Berlin, 1(1970).
[9] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, (2002).

[^0]: *Mathematics Subject Classifications: 15A18; 30C10; 30C15; 30A10.
 ${ }^{\dagger}$ Department of Mathematics, Tuskegee University, Tuskegee, AL 36088, USA.

