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Abstract

In this paper we give a closed expression for the series

∞∑
n1=1

· · ·
∞∑

nk=1

n1 · · ·nk
(n1 + · · ·+ nk)!

,

for all k = 1, 2, 3, . . ., solving Open Problem 3.137 in the recent book [5, Chapt.
3.7, problem 3.137] by Furdui. The method is based on properties of divided dif-
ferences. It applies also to similar series and certain generalizations. Furthermore,
we study the asymptotic behaviour of these series as k tends to infinity.

1 Introduction

In his recent book [5, Chapt. 3.7, Problem 3.137] Ovidiu Furdui states the open problem
to give a closed expression for the multiple factorial series

Sk :=

∞∑
n1=1

· · ·
∞∑

nk=1

n1 · · ·nk
(n1 + · · ·+ nk)!

,

for all integers k ≥ 4. Moreover, he conjectured that Sk is, for all integers k ∈ N, a
rational multiple of e, i.e., Sk = ake with ak ∈ Q. It is easy to see that S1 = e. Using
the Beta function technique Furdui [5, Problem 3.114 and 3.118, respectively] shows
that a2 = 2/3 and a3 = 31/120.
More generally, Furdui considers the series

Sk,0 :=

∞∑
n1=1

· · ·
∞∑

nk=1

1

(n1 + · · ·+ nk)!
,

Sk,j :=

∞∑
n1=1

· · ·
∞∑

nk=1

n1 · · ·nj
(n1 + · · ·+ nk)!

(1 ≤ j ≤ k) .
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162 Certain Multiple Factorial Series

Obviously, we have Sk = Sk,k. Furdui [5, Problems 3.117 and 3.120, respectively]
determines the exact values Sk,1 = (k!)

−1
e and S3,2 = (5/24) e. Also an expression for

Sk,0 is given [5, Problem 3.119]:

Sk,0 = (−1)
k

1− e
k−1∑
j=0

(−1)
j

j!

 . (1)

More generally, one defines, for real numbers x1, . . . , xk, the function

Sk (x1, . . . , xk) :=

∞∑
n1=1

· · ·
∞∑

nk=1

xn11 · · ·x
nk
k

(n1 + · · ·+ nk)!
. (2)

Closed expressions for Sk (x1, . . . , xk) in the special case k = 2 can be found in [5,
Problem 3.115 (see also Problem 3.116)].
In this note we give an affi rmative answer to Furdui’s conjecture e−1Sk = ak ∈ Q

and provide an explicit representation of ak in the form

ak =
1

(2k − 1)!

[(
d

dx

)2k−1 (
xk−1ex

)]∣∣∣∣∣
x=1

.

Moreover, we derive similar expressions for Sk,j . Our main result considers even more
general sums. Finally, we represent Sk (x1, . . . , xk) as a finite sum, for all k ∈ N.

The proofs are based on divided differences. For pairwise different real or complex
numbers x0, . . . , xk, in most textbooks, the divided differences of a function f are
defined recursively: [x0; f ] = f (x0), . . . ,

[x0, . . . , xk; f ] =
[x1, . . . , xk; f ]− [x0, . . . , xk−1; f ]

xk − x0
.

2 Main Results

Let

g (z) =
∞∑
n=0

gnz
n,

be a power series converging for |z| < R with R > 1. For integers ` ≥ 0, let

g` (z) =

∞∑
n=0

gn+`z
n.

Hence g0 = g and, for ` ≥ 1,

z`g` (z) = g (z)−
`−1∑
n=0

gnz
n.
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For k ∈ N and t ∈ R, we define

Gk,` (x1, . . . , xk; t) =

∞∑
n1=0

· · ·
∞∑

nk=0

gn1+···+nk+` · xn11 · · ·x
nk
k · t

n1+···+nk . (3)

Throughout the paper we assume that |txj | < R, for j ∈ {1, . . . , k}.
Our main results are presented in the following theorems.

THEOREM 1. With the above notation, for all k ∈ N, integers ` ≥ 0, and t ∈ R,
such that |txj | < R (1 ≤ j ≤ k),

Gk,` (x1, . . . , xk; t) =
[
x1, . . . , xk; z`−1g` (tz)

]
z
,

where the index z indicates that the divided difference is taken with respect to the
variable z.

THEOREM 2. Let k, j be integers such that 1 ≤ j ≤ k and let i1, . . . , ij ∈ {1, . . . , k}
be pairwise different integers. Then, for all t ∈ R, such that |txj | < R (1 ≤ j ≤ k),

lim
x1,...,xk→x

∂j

∂xi1 · · · ∂xij
Gk,` (x1, . . . , xk; t) =

1

(k + j − 1)!

[(
d

dz

)k+j−1
zk−1g` (tz)

]∣∣∣∣∣
z=x

.

For convenience, we define, for k, ` ∈ N and real numbers x1, . . . , xk,

fk,` (x1, . . . , xk; t) :=

∞∑
n1=0

· · ·
∞∑

nk=0

xn11 · · ·x
nk
k

(n1 + · · ·+ nk + `)!
tn1+···+nk . (4)

In the special case of the exponential function g = exp, Theorem 1 provides the repre-
sentation

fk,` (x1, . . . , xk; t) =
[
x1, . . . , xk;x`−1 exp` (tx)

]
x
. (5)

With regard to the series Sk,j as defined in Section 1 it follows that

Sk,j =

∞∑
n1=0

· · ·
∞∑

nj=0

∞∑
nj+1=1

· · ·
∞∑

nk=1

n1 · · ·nj
(n1 + · · ·+ nk)!

=

∞∑
n1=0

· · ·
∞∑

nk=0

n1 · · ·nj
(n1 + · · ·+ nk + k − j)!

=
∂jfk,k−j
∂x1 · · · ∂xj

(1, . . . , 1; 1) .

Hence, Theorem 1 implies the following theorem as an immediate corollary.

THEOREM 3. Let k, j be integers such that 0 ≤ j ≤ k. Then the series Sk,j has
the representation

Sk,j =
1

(k + j − 1)!

[(
d

dz

)k+j−1
zk−1 expk−j (z)

]∣∣∣∣∣
z=1

.
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In the special case j = 0, we obtain

Sk,0 ≡
∞∑

n1=1

· · ·
∞∑

nk=1

1

(n1 + · · ·+ nk)!
=

1

(k − 1)!

[(
d

dz

)k−1
ez − 1

z

]∣∣∣∣∣
z=1

and an application of the Leibniz rule immediately leads to formula (1). In the cases
1 ≤ j ≤ k the formula of Theorem 3 simplifies to

Sk,j =
1

(k + j − 1)!

[(
d

dz

)k+j−1
zj−1ez

]∣∣∣∣∣
z=1

.

An application of the Leibniz rule yields the explicit formula

Sk,j = e

j−1∑
i=0

(
j − 1

i

)
1

(k + i)!
. (6)

Hence, the series Sk,j are rational multiples of e for j = 1, . . . , k. We list some initial
values:

k\j 0 1 2 3 4 5
1 e− 1 1
2 1 1/2 2/3
3 e/2− 1 1/6 5/24 31/120
4 1− e/3 1/24 1/20 43/720 179/2520
5 3e/8− 1 1/120 7/720 19/1680 529/40320 787/51840

We close with the special case j = k:

Sk ≡ Sk,k = e

k−1∑
i=0

(
k − 1

i

)
1

(k + i)!
.

We mention that this finite sum can be expressed in terms of the first of Kummer’s
functions (a confluent hypergeometric function; see [1, Eq. (13.1.2)])

Sk =
e

k!
M (1− k, k + 1,−1)

or by virtue of the Kummer transformation ([1, Eq. (13.1.27)])

Sk =
1

k!
M (2k, k + 1, 1) .

For the convenience of the reader we list some exact and numerical values of ak = e−1Sk:

k ak
1 1 = 1.000000
2 2/3 ≈ 0.666667
3 31/120 ≈ 0.258333
4 179/2520 ≈ 0.0710317
5 787/51840 ≈ 0.0151813

10 5.912338752837942 · 10−7

100 2.829019570367539 · 10−158
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Finally, we mention that the series Sk (x1, . . . , xk) as defined in (2) is connected to
the function fk,` as defined in (4) by the relation

Sk (x1, . . . , xk) = x1 · · ·xk · fk,k (x1, . . . , xk; 1) .

Hence, by Eq. (5), we have the new approach

Sk (x1, . . . , xk) = x1 · · ·xk ·
[
x1, . . . , xk;xk−1 expk (x)

]
.

Experiments with different functions g may be subject of further studies.
In [5, Chapt. 3.7, Problem 3.137] Furdui arose the question of studying the prop-

erties of the sequence
(
e−1Sk

)
k∈N = (ak)k∈N. We study the asymptotic behaviour of

this sequence as k tends to infinity.

THEOREM 4. The sequence (Sk)k∈N has the asymptotic expansion

Sk ∼
e2

k!

(
1− 3

k
+

27

2k2
− 218

3k3
+ · · ·

)
as k →∞.

More generally, the proof shows that (Sk) has a complete asymptotic expansion

Sk ∼
e2

k!

∞∑
ν=0

cνk
−ν (k →∞) .

Using our method it is possible to compute arbitrarily many coeffi cients cν explicitly.

REMARK 1. After preparation of the paper the author learned by personal com-
munication that Huizeng Qin and Ovidiu Furdui recently found the expressions (6) by
a completely different approach. Their main result (see [8, Theorem 1.7, p. 735]) reads

∞∑
n1=1

· · ·
∞∑

nk=1

zn1+···+nk

(n1 + · · ·+ nk)!
= (−1)

k
+ ez

k−1∑
i=0

(−1)
k−1−i z

i

i!
,

∞∑
n1=1

· · ·
∞∑

nk=1

n1 · · ·nj
(n1 + · · ·+ nk)!

zn1+···+nk = ez
j−1∑
i=0

(
j − 1

i

)
zk+i

(k + i)!
(1 ≤ j ≤ k) .

This generalization is a corollary of Theorem 2.

3 Auxiliary Results

Let x0, . . . , xk be pairwise different real or complex numbers. In most textbooks, the
divided differences of a function f are defined recursively: [x0; f ] = f (x0), . . . ,

[x0, . . . , xk; f ] =
[x1, . . . , xk; f ]− [x0, . . . , xk−1; f ]

xk − x0
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In this paper we make use of some properties of divided differences which are considered
in the following lemmas.

LEMMA 1. The divided differences have the integral representation

[x0, . . . , xk; f ]

=

∫ 1

0

∫ t1

0

· · ·
∫ tk−1

0

f (k) (x0 + (x1 − x0) t1 + · · ·+ (xk − xk−1) tk) dtk · · · dt2dt1,

provided that f (k−1) is absolutely continuous.

This can be proved by mathematical induction on k (see [2, Chapt. 4, §7, Eq. (7.12)
and below]).

LEMMA 2. Let 1 ≤ j ≤ k and let i1, . . . , ij ∈ {1, . . . , k} be pairwise different
integers. Then, for each function f having a derivative of order k + j − 1,

lim
x1,...,xk→x

∂j [x1, . . . , xk; f ]

∂xi1 · · · ∂xij
=

1

(k + j − 1)!
f (k+j−1) (x) .

PROOF. Because the divided differences are invariant with respect to the order of
knots we can restrict ourselves to the case iν = ν (ν = 1, . . . , j). By Lemma 1, we have

∂j [x1, . . . , xk; f ]

∂x1 · · · ∂xj

=
∂j

∂x1 · · · ∂xj

∫ 1

0

∫ t1

0

· · ·
∫ tk−2

0

f (k−1)(x1 + (x2 − x1) t1

+ · · ·+ (xk − xk−1) tk−1)dtk−1 · · · dt2dt1

=

∫ 1

0

∫ t1

0

· · ·
∫ tk−2

0

f (k+j−1) (x1 (1− t1) + x2 (t1 − t2) + · · ·+ xk (tk−1 − tk))

× (1− t1) (t1 − t2) · · · (tj−1 − tj) dtk−1 · · · dt2dt1,

where we put tk = 0. Taking the limit we obtain

lim
x1,...,xk→x

∂j [x1, . . . , xk; f ]

∂x1 · · · ∂xj

= f (k+j−1) (x)

∫ 1

0

∫ t1

0

· · ·
∫ tk−2

0

(1− t1) (t1 − t2) · · · (tj−1 − tj) dtk−1 · · · dt2dt1.

An inductive argument shows that the multiple integral has the value 1/ (k + j − 1)!
which completes the proof of Lemma 2.
Popoviciu [7] proved the following formula for monomials.

LEMMA 3. For each integer r ≥ 0,[
x0, . . . , xk; zk+r

]
=
∑

xn00 · · ·x
nk
k ,

where the sum runs over all nonnegative integers n0, . . . , nk satisfying n0+ · · ·+nk = r.
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4 Proofs of the Theorems

PROOF OF THEOREM 1. By Eq. (3) and Lemma 3 we have

Gk,` (x1, . . . , xk; t) =

∞∑
n=0

gn+`t
n

∑
n1+···+nk=n

xn11 · · ·x
nk
k

=

∞∑
n=0

gn+`t
n
[
x1, . . . , xk; zk−1+n

]
z

=
[
x1, . . . , xk; zk−1g` (tz)

]
z

which completes the proof.

PROOF OF THEOREM 2. By Theorem 1, we have

Gk,` (x1, . . . , xk) =
[
x1, . . . , xk; zk−1g` (z)

]
and Theorem 2 is a consequence of Lemma 1.

PROOF OF THEOREM 4. For convenience, we consider ak+1. By Theorem 3, we
obtain

ak+1 =

k∑
i=0

(
k

i

)
1

(2k + 1− i)! =
1

(2k + 1)!

[(
d

dz

)k (
z2k+1ez−1

)]∣∣∣∣∣
z=1

and an application of the Cauchy integral formula yields

(2k + 1)!ak+1 =
k!

2πi

∫
W

z2k+1ez−1

(z − 1)
k+1

dz,

where the integration path W = {z : |z − 1| = 1} encircles z = 1 counterclockwise.
With z = 1 + eit we have

(2k + 1)!ak+1 =
k!

2π

∫ 2π

0

(
1 + eit

)2k+1
eikt

ee
it

dt =
k!

2π

∫ 2π

0

(2 + 2 cos t)
k
f (t) dt,

with f (t) =
(
1 + eit

)
ee

it

. Because of the symmetries Re f (t) = Re f (2π − t) and
Im f (t) = − Im f (2π − t) we obtain

(2k + 1)!ak+1 =
k!

π

∫ π

0

(2 + 2 cos t)k Re f(t)dt.

This can be rewritten as a Laplace-type integral

bk :=
π (2k + 1)!

4kk!
ak+1 =

∫ π

0

ekh(t)g (t) dt, (7)

where

h (t) = log ((1 + cos t) /2) = − t
2

4
− t4

96
− t6

1440
− 17t8

322560
− · · ·
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and

g (t) = Ref (t) = ecos t [(1 + cos t) cos (sin t)− sin t sin (sin t)]

= 2e− 7et2

2
+

67et4

24
− 3et6

2
+

8429et8

13440
+ · · · .

Thus it is well known (e.g., the integral meets the assumptions of [3, Theorem 1,
Chapt. 3, §5]), that it has the complete asymptotic expansion

bk ∼
1

2

∞∑
ν=0

cν
Γ ((ν + 1) /2)

k(ν+1)/2
(k →∞)

(note that h (0) = 0) with coeffi cients

cν =
1

ν!

{
dν

dtν

[
g (t)

(
t/
√
−h (t)

)ν+1]}∣∣∣∣
t=0

.

Because g and h are even functions, it follows that c1 = c3 = · · · = 0. By direct
calculation, we find that

c0 = 4e, c2 = −29e, c4 =
2425

24
e, c6 =

354053

1440
e, c8 =

77089969

161280
e.

Hence,

bk ∼
2e
√
π

k1/2
− 29e

√
π

4k3/2
+

2425e
√
π

64k5/2
− 354053e

√
π

1536k7/2
+

77089969e
√
π

161280k9/2
+ · · · (k →∞)

and, by (7),

(k + 1)!ak+1

=
4kk! (k + 1)!

π (2k + 1)!
bk =

4k

π (2k + 1)Ck
bk

∼ 4ke

(2k + 1)
√
πCk

(
2

k1/2
− 29

4k3/2
+

2425

64k5/2
− 354053

1536k7/2
+

77089969

161280k9/2
+ · · ·

)
,

where Ck are Catalan numbers defined by Ck = (k + 1)
−1 (2k

k

)
. It is well-known that

Ck ∼ 4k/
√
πk3 as k → ∞ (see [4, Eq. (33)]). More precisely, the Catalan numbers

have the asymptotic expansion

Ck ∼
4k√
πk3

(
1− 9

8k
+

145

128k2
− 1155

1024k3
+

36939

32768k4
− 295911

262144k5
+ · · ·

)
(k →∞) .

(see [4, Page 384]). A proof can be given by an application of the Stirling formula for
factorials or directly by the generating function of the Catalan numbers. Hence, we
have

(k + 1)!ak+1 ∼ e

2k + 1
·

2k − 29
4 + 2425

64k −
354053
1536k2 + 77089969

161280k3 + · · ·
1− 9

8k + 145
128k2 −

1155
1024k3 + · · ·

= e

(
1− 3

k
+

33

2k2
− 308

3k3
+ · · ·

)
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which implies that

k!ak ∼ e
(

1− 3

k
+

27

2k2
− 218

3k3
+ · · ·

)
.

Because Sk = ake the proof is completed.
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