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Abstract

In this paper, the following third-order nonlinear delay differential equation
with periodic coeffi cients

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = f (t, x (t) , x(t− τ(t))) + c(t)x′(t− τ(t))

is considered. By employing Green’s function, Krasnoselskii’s fixed point theorem
and the contraction mapping principle, we state and prove the existence and
uniqueness of periodic solutions to the third-order delay differential equation.
Finally, an example is given to illustrate our results.

1 Introduction

Third order differential equations arise from in a variety of different areas of applied
mathematics and physics, as the deflection of a curved beam having a constant or
varying cross section, three layer beam, electromagnetic waves or gravity driven flows
and so on [19, 23].
Delay differential equations have received increasing attention during recent years

since these equations have been proved to be valuable tools in the modeling of many
phenomena in various fields of science and engineering, see the monograph [8, 20] and
the papers [1]-[18], [21]-[23], [25]-[28] and the references therein.
The second order nonlinear delay differential equation with periodic coeffi cients

x′′ (t) + p (t)x′ (t) + q (t)x (t) = r (t)x′ (t− τ (t)) + f (t, x (t) , x (t− τ (t)))

has been investigated in [26]. By using Krasnoselskii’s fixed point theorem and the
contraction mapping principle, Wang, Lian and Ge obtained existence and uniqueness
of periodic solutions.
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In [23], Ren, Siegmund and Chen discussed the existence of positive periodic solu-
tions for the third-order differential equation

x′′′ (t) + p (t)x′′ (t) + q (t)x′ (t) + c (t)x (t) = g (t, x (t)) .

By employing the fixed point index, the authors obtained existence results for positive
periodic solutions.
Inspired and motivated by the works mentioned above and the papers [1]-[18], [21]-

[23], [25]-[28] and the references therein, we concentrate on the existence of periodic
solutions for the third-order nonlinear delay differential equation

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = f (t, x (t) , x(t− τ(t))) + c(t)x′(t− τ(t)), (1)

where p, q, r are continuous real-valued functions. The function c : R −→ R is con-
tinuously differentiable, τ : R −→ R+ is twice continuously differentiable and f :
R× R× R −→ R is continuous in their respective arguments. To show the existence
of periodic solutions, we transform (1) into an integral equation and then use Kras-
noselskii’s fixed point theorem. The obtained integral equation splits in the sum of two
mappings, one is a contraction and the other is compact. We also obtain the existence
of a unique periodic solution of (1) by employing the contraction mapping principle as
the basic mathematical tool.
The organization of this paper is as follows. In section 2, we introduce some nota-

tions and lemmas, and state some preliminary results needed in later section. Then we
give the Green’s function of (1) which plays an important role in this paper. In section
3, we present our main results on existence and uniqueness.
We state Krasnoselskii’s fixed point theorem which enables us to prove the existence

of periodic solutions to (1). For its proof we refer the reader to [24].

THEOREM 1.1 (Krasnoselskii). Let M be a closed convex nonempty subset of a
Banach space (B, ‖.‖). Suppose that H1 and H2 map M into B such that

(i) x, y ∈M, implies H1x+H2y ∈M,

(ii) H1 is compact and continuous,

(iii) H2 is a contraction mapping.

Then there exists z ∈M with z = H1z +H2z.

In this paper, we give the assumptions as follows that will be used in the main
results.

(h1) There exist differentiable positive T -periodic functions a1 and a2 and a positive
real constant ρ such that a1(t) + ρ = p(t),

a′1 (t) + a2 (t) + ρa1(t) = q (t) ,
a′2 (t) + ρa2(t) = r (t) .
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(h2) p, q, r, c ∈ C (R,R+) are T -periodic functions with τ (t) ≥ τ∗ > 0, τ ′ (t) 6= 1 for
all t ∈ [0, T ], ∫ T

0

p(s)ds > ρ and
∫ T

0

q(s)ds > 0.

(h3) The function f(t, x, y) is continuous T -periodic in t and globally Lipshitz contin-
uous in x and y. That is

f(t+ T, x, y) = f(t, x, y),

and there are positive constants k1 and k2 such that

|f(t, x, y)− f(t, z, w)| ≤ k1 |x− z|+ k2 |y − w| .

2 Green’s Function of Third-Order Differential Equa-
tion

For T > 0, let PT be the set of all continuous scalar functions x, periodic in t of period
T . Then (PT , ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]
|x(t)| .

We consider
x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = h (t) , (2)

where h is a continuous T -periodic function. Obviously, by the condition (h1), (2) is
transformed into {

y′(t) + ρy(t) = h(t),
x′′(t) + a1(t)x

′(t) + a2(t)x(t) = y(t).

LEMMA 2.1 ([3]). If y, h ∈ PT , then y is a solution of equation

y′(t) + ρy(t) = h(t),

if only if

y(t) =

∫ t+T

t

G1(t, s)h(s)ds,

where

G1(t, s) =
exp (ρ (s− t))
exp (ρT )− 1 .

COROLLARY 2.1. Green function G1 satisfies the following properties

G1(t+ T, s+ T ) = G1(t, s), G1(t, t+ T ) = G1(t, t) exp (ρT ) ,

G1 (t+ T, s) = G1(t, s) exp (−ρT ) , G1(t, s+ T ) = G1(t, s) exp (ρT ) ,
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∂

∂t
G1(t, s) = −ρG1(t, s),

∂

∂s
G1(t, s) = ρG1(t, s) and m1 ≤ G1(t, s) ≤M1,

where

m1 =
1

exp (ρT )− 1 and M1 =
exp (ρT )

exp (ρT )− 1 .

LEMMA 2.2 ([22]). Suppose that (h1) and (h2) hold and

R1

[
exp

(∫ T
0
a1(v)dv

)
− 1
]

Q1T
≥ 1, (3)

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T

t

exp
(∫ T

0
a1(v)dv

)
exp

(∫ T
0
a1(v)dv

)
− 1

a2 (s) ds

∣∣∣∣∣∣
and

Q1 =

(
1 + exp

(∫ T

0

a1(v)dv

))2
R21.

Then there are continuous T -periodic functions a and b such that

b(t) > 0,

∫ T

0

a(v)dv > 0, a(t) + b(t) = a1(t) and b′(t) + a(t)b(t) = a2(t) for t ∈ R.

LEMMA 2.3 ([26]). Suppose the conditions of Lemma 2.2 hold and y ∈ PT . Then
the equation

x′′(t) + a1(t)x
′(t) + a2(t)x(t) = y(t),

has a T periodic solution. Moreover, the periodic solution can be expressed by

x(t) =

∫ t+T

t

G2(t, s)y(s)ds,

where

G2(t, s) =

∫ s
t
exp

[∫ v
t
b(u)du+

∫ s
v
a(u)du

]
dv +

∫ t+T
s

exp
[∫ v
t
b(u)du+

∫ s+T
v

a(u)du
]
dv[

exp
(∫ T

0
a(v)dv

)
− 1
] [
exp

(∫ T
0
b(v)dv

)
− 1
]

COROLLARY 2.2. Green’s function G2 satisfies the following proprieties

G2(t+ T, s+ T ) = G2(t, s), G2(t, t+ T ) = G2(t, t),

G2(t+ T, s) = exp

(
−
∫ T

0

b(v)dv

)[
G2 (t, s) +

∫ t+T

t

E (t, u)F (u, s) du

]
,
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∂

∂t
G2(t, s) = −b(t)G2(t, s) + F (t, s) and

∂

∂s
G2(t, s) = a(t)G2(t, s)− E (t, s) ,

where

E (t, s) =
exp

(∫ s
t
b(v)dv

)
exp

(∫ T
0
b(v)dv

)
− 1

and F (t, s) =
exp

(∫ s
t
a (v) dv

)
exp

(∫ T
0
a (v) dv

)
− 1

.

LEMMA 2.4 ([22]). Let A =
∫ T
0
a1(v)dv and B = T 2 exp

(
1
T

∫ T
0
ln (a2(v)) dv

)
. If

A2 ≥ 4B, (4)

then

min

{∫ T

0

a(v)dv,

∫ T

0

b(v)dv

}
≥ 1
2

(
A−

√
A2 − 4B

)
= l

and

max

{∫ T

0

a(v)dv,

∫ T

0

b(v)dv

}
≤ 1
2

(
A+

√
A2 − 4B

)
= L.

COROLLARY 2.3. Functions G2, E and F satisfy

m2 ≤ G2(t, s) ≤M2, E (t, s) ≤
eL

el − 1 and F (t, s) ≤ e
L,

where

m2 =
T

(exp (L)− 1)2
and M2 =

T exp
(∫ T

0
a1 (v) dv

)
(exp (l)− 1)2

.

LEMMA 2.5 ([11]). Suppose the conditions of Lemma 2.2 hold and h ∈ PT . Then
the equation

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = h (t)

has a T -periodic solution. Moreover, the periodic solution can be expressed by

x(t) =

∫ t+T

t

G(t, s)h(s)ds,

where

G (t, s) =

∫ t+T

t

G2 (t, σ)G1 (σ, s) dσ.

COROLLARY 2.4. Green’s function G satisfies the following properties

G(t+ T, s+ T ) = G(t, s), G (t, t+ T ) = G (t, t) exp (ρT ) ,
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∂

∂t
G(t, s) = (exp (−ρT )− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s)

+

∫ t+T

t

F (t, σ)G1 (σ, s) dσ,

∂

∂s
G(t, s) = ρG (t, s) and m ≤ G(t, s) ≤M,

where

m =
T 2

(exp (l)− 1)2 (exp (ρT )− 1)
and M =

T 2 exp
(
ρT +

∫ T
0
a (v) dv

)
(exp (l)− 1)2 (exp (ρT )− 1)

.

3 Main Results

In this section we will study the existence and uniqueness of periodic solutions of (1).

LEMMA 3.1. Suppose (h1)—(h3) and (3) hold. The function x ∈ PT is a solution
of (1) if and only if

x (t) = Z (t) (exp (ρT )− 1)G (t, t)x (t− τ (t))

+

∫ t+T

t

G (t, s) {−R (s)x (s− τ (s)) + f (s, x (s) , x (s− τ (s)))} ds, (5)

where

R (s) =
(c′ (s) + c (s) ρ) (1− τ ′ (s)) + c (s) τ ′′ (s)

(1− τ ′ (s))2
(6)

and

Z (t) =
c (t)

1− τ ′ (t) . (7)

PROOF. Let x ∈ PT be a solution of (1). From Lemma 2.5, we have

x (t) =

∫ t+T

t

G (t, s) [f (s, x (s) , x (s− τ (s))) + c (s)x′ (s− τ (s))] ds

=

∫ t+T

t

G (t, s) f (s, x (s) , x (s− τ (s))) ds

+

∫ t+T

t

G (t, s) c (s)x′ (s− τ (s)) ds. (8)
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Performing an integration by parts, we get∫ t+T

t

G (t, s) c (s)x′ (s− τ (s)) ds

=

∫ t+T

t

c (s) (1− τ ′ (s))x′ (s− τ (s))
1− τ ′ (s) G (t, s) ds

=

∫ t+T

t

c (s)

1− τ ′ (s)G (t, s) dx (s− τ (s))

=
c (s)

1− τ ′ (s)G (t, s)x (s− τ (s))
∣∣∣∣t+T
t

−
∫ t+T

t

∂

∂s

[
c (s)

1− τ ′ (s)G (t, s)
]
x (s− τ (s)) ds

= Z (t) (exp (ρT )− 1)x (t− τ (t))G (t, t)

−
∫ t+T

t

R (s)G(t, s)x (s− τ (s)) ds, (9)

where R and Z are given by (6) and (7), respectively. We obtain (5) by substituting
(9) in (8). Since each step is reversible, the converse follows easily. This completes the
proof.

Define the mapping H : PT → PT by

(Hϕ) (t) =

∫ t+T

t

G (t, s) {−R (s)ϕ (s− τ (s)) + f (s, ϕ (s) , ϕ (s− τ (s)))} ds

+ Z (t) (exp (ρT )− 1)G (t, t)ϕ (t− τ (t)) . (10)

Note that to apply Krasnoselskii’s fixed point theorem we need to construct two map-
pings, one is a contraction and the other is compact. Therefore, we express (10) as

(Hϕ) (t) = (H1ϕ) (t) + (H2ϕ) (t) ,

where H1, H2 : PT → PT are given by

(H1ϕ) (t) =

∫ t+T

t

G (t, s) {−R (s)ϕ (s− τ (s)) + f (s, ϕ (s) , ϕ (s− τ (s)))} ds (11)

and
(H2ϕ) (t) = Z (t) (exp (ρT )− 1)G (t, t)ϕ (t− τ (t)) . (12)

To simplify notation, we introduce the constants

α = max
t∈[0,T ]

|Z (t)| , β = max
t∈[0,T ]

{b(t)} , δ = exp (L)

exp (l)− 1 and γ = max
t∈[0,T ]

|R (s)| . (13)

LEMMA 3.2. Suppose (h1)—(h3), (3) and (4) hold. Then H1 : PT → PT is compact.
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PROOF. Let H1 be defined by (11). Obviously, H1ϕ is continuous and it is easy to
show that (H1ϕ) (t+ T ) = (H1ϕ) (t). To see that H1 is continuous, we let ϕ,ψ ∈ PT .
Given ε > 0, take θ = ε/N with N = MT (γ + k1 + k2) where k1 and k2 are given by
(h3). Now, for ‖ϕ− ψ‖ < θ, we obtain

‖H1ϕ−H1ψ‖ ≤M
∫ t+T

t

[γ ‖ϕ− ψ‖+ (k1 + k2) ‖ϕ− ψ‖ ds] ≤ N ‖ϕ− ψ‖ < ε.

This proves that H1 is continuous. To show that the image of H1 is contained in a
compact set, we consider D = {ϕ ∈ PT : ‖ϕ‖ ≤ L}, where L is a fixed positive constant.
Let ϕn ∈ D, where n is a positive integer. Observe that in view of (h3) we have

|f(t, x, y)| = |f(t, x, y)− f(t, 0, 0) + f(t, 0, 0)|
≤ |f(t, x, y)− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ k1 ‖x‖+ k2 ‖y‖+ µ,

where µ = max
t∈[0,T ]

|f(t, 0, 0)|. Hence if H1 is given by (11) we obtain ‖H1ϕn‖ ≤ D

for some positive D. Next we calculate d
dt (H1ϕn) (t) and show that it is uniformly

bounded. By making use of (h1), (h2) and (h3) we obtain by taking the derivative in
(11) that

d

dt
(H1ϕn) (t)

=

∫ t+T

t

[
(exp (−ρT )− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s) +

∫ t+T

t

F (t, σ)G1 (σ, s) dσ

]
× [−R (s)ϕ (s− τ (s)) + f (s, ϕ (s) , ϕ (s− τ (s)))] ds.

Consequently, by invoking (h3) and (13), we obtain∣∣∣∣ ddt (H1ϕn) (t)

∣∣∣∣ ≤ [(1− exp (−ρT ))M1M2 +Mβ +M1δT ] (γL+ (k1 + k2)L+ µ)T

≤ K,

for some positive K. Hence the sequence (H1ϕn) is uniformly bounded and equicon-
tinuous. The Ascoli-Arzela theorem implies that a subsequence

(
H1ϕnk

)
of (H1ϕn)

converges uniformly to continuous T -periodic function. Thus H1 is continuous and
H1 (D) is contained in a compact subset of PT .

LEMMA 3.3. If H2 is given by (12) with

α (exp (ρT )− 1)M < 1, (14)

then H2 : PT → PT is a contraction.

PROOF. Let H2 be defined by (12). It is easy to show that (H2ϕ) (t+ T ) =
(H2ϕ) (t). To see that H2 is a contraction. Let ϕ,ψ ∈ PT we have

‖H2ϕ−H2ψ‖ = sup
t∈[0,T ]

|(H2ϕ) (t)− (H2ψ) (t)| ≤ α (exp (ρT )− 1)M ‖ϕ− ψ‖ .
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Hence H2 : PT → PT is a contraction.

THEOREM 3.1. Let α and γ be given by (13). Suppose that conditions (h1)—
(h3), (3), (4) and (14) hold. Suppose there exist a positive constant J satisfying the
inequality

α (exp (ρT )− 1)MJ + (γJ + (k1 + k2) J + µ)T ≤ J.
Then (1) has a solution x ∈ PT such that ‖x‖ ≤ J .

PROOF. Define M = {ϕ ∈ PT : ‖ϕ‖ ≤ J}. By Lemma 3.2, the operator H1 :M→
PT is compact and continuous. Also, from Lemma 3.3, the operator H2 : M → PT is
a contraction. Conditions (ii) and (iii) of Krasnoselskii theorem are satisfied. We need
to show that condition (i) is fulfilled. To this end, let ϕ,ψ ∈M. Then

|(H1ϕ) (t) + (H2ψ) (t)|

≤M
∫ t+T

t

[γ ‖ϕ‖+ (k1 + k2) ‖ϕ‖+ µ] ds+ α (exp (ρT )− 1)M ‖ψ‖

≤ α (exp (ρT )− 1)MJ + (γJ + (k1 + k2) J + µ)T ≤ J.

Thus ‖H1ϕ+H2ψ‖ ≤ J and so H1ϕ +H2ψ ∈ M. All the conditions of Krasnoselskii
theorem are satisfied and consequently the operator H defined in (10) has a fixed point
in M. By Lemma 3.1, this fixed point is a solution of (1) and the proof is complete.

THEOREM 3.2. Let α and γ be given by (13). Suppose that conditions (h1)—(h2),
(3) and (4) hold. If

α (exp (ρT )− 1)M + (γ + (k1 + k2))T < 1,

then (1) has a unique T -periodic solution.

PROOF. Let the mapping H be given by (10). For ϕ,ψ ∈ PT , we have

|(Hϕ) (t) + (Hψ) (t)|

≤M
∫ t+T

t

[γ ‖ϕ− ψ‖+ (k1 + k2) ‖ϕ− ψ‖] ds+ α (exp (ρT )− 1)M ‖ϕ− ψ‖ .

Hence

‖Hϕ+Hψ‖ ≤ [α (exp (ρT )− 1)M + (γ + (k1 + k2))T ] ‖ϕ− ψ‖ .

By the contraction mapping principle, H has a fixed point in PT and by Lemma 3.1,
this fixed point is a solution of (1). The proof is complete.

EXAMPLE 3.1. Consider the third-order nonlinear delay differential equation

x′′′(t) + 10.125x′′(t) + 25.25x′(t) + 3x(t)

=
1

5
sin t+

1

20
sin (x (t)) +

1

40
cos (x(t− 2π)) + 0.01 sin (t)x′(t− 2π). (15)
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Then

T = 2π, p (t) = 10.125, q (t) = 25.25, r (t) = 3, τ (t) = 2π, c (t) = 0.01 sin t

and

f (t, x, y) =
1

5
sin t+

1

20
sin (x) +

1

40
cos (y) .

Doing straightforward computations, we obtain

a(t) = 4, b(t) = 6, a1(t) = 10, a2(t) = 24, R (t) = 0.01 (cos t+ 4 sin t) ,

Z (t) = 0.01 sin t, ρ = 0.125, α = 1, β = 4, δ ' 2.868× 105, γ ' 0.041,
k1 = 0.05, k2 = 0.025, µ = 0.2, m ' 4.893× 10−21, M ' 8.825× 10−10, J = 5.

All hypotheses of Theorem 3.1 are fulfilled and so the equation (15) has a 2π-periodic
solution. Also, we have

α (exp (ρT )− 1)M + (γ + (k1 + k2))T ' 0.73 < 1,

then by Theorem 3.2, the equation (15) has a unique 2π-periodic solution.
Acknowledgement. The authors would like to express his thanks to the referee

for his helpful comments and interesting remarks.

References

[1] A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second-order non-
linear neutral differential equation with variable delay, Palest. J. Math., 3(2014),
191—197.

[2] A. Ardjouni, A. Djoudi and A. Rezaiguia, Existence of positive periodic solutions
for two types of third-order nonlinear neutral differential equations with variable
delay, Appl. Math. E-Notes, 14(2014), 86—96.

[3] A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for a nonlinear
neutral differential equations with variable delay, Appl. Math. E-Notes, 12(2012),
94—101.

[4] A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second order
nonlinear neutral differential equation with functional delay, Electron. J. Qual.
Theory Differ. Equ., 2012, No. 31, 9 pp.

[5] A. Ardjouni and A. Djoudi, Periodic solutions for a second-order nonlinear neutral
differential equation with variable delay, Electron. J. Differential Equations, 2011,
No. 128, 7 pp.

[6] A. Ardjouni and A. Djoudi, Periodic solutions in totally nonlinear dynamic equa-
tions with functional delay on a time scale, Rend. Sem. Mat. Univ. Politec. Torino,
4(2010), 349—359.



220 A Third-Order Delay Differential Equation

[7] T. A. Burton, Liapunov functionals, fixed points and stability by Krasnoselskii’s
theorem, Nonlinear Stud., 9(2002), 181—190.

[8] T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equa-
tions, Dover Publications, Inc., Mineola, NY, 2006.

[9] F. D. Chen, Positive periodic solutions of neutral Lotka-Volterra system with
feedback control, Appl. Math. Comput., 162(2005), 1279—1302.

[10] F. D. Chen and J. L. Shi, Periodicity in a nonlinear predator-prey system with
state dependent delays, Acta Math. Appl. Sin. Engl. Ser., 21(2005), 49—60.

[11] Z. Cheng and J. Ren, Existence of positive periodic solution for variable-
coeffi cient third-order differential equation with singularity, Math. Meth. Appl.
Sci., 37(2014), 2281—2289.

[12] Z. Cheng and Y. Xin, Multiplicity Results for variable-coeffi cient singular third-
order differential equation with a parameter, Abstract and Applied Analysis, 2014,
Art. ID 527162, 10 pp.

[13] S. S. Cheng and G. Zhang, Existence of positive periodic solutions for non-
autonomous functional differential equations, Electron. J. Differential Equations,
2001, No. 59, 8 pp.

[14] H. Deham and A. Djoudi, Periodic solutions for nonlinear differential equation
with functional delay, Georgian Math. J., 15(2008), 635—642.

[15] H. Deham and A. Djoudi, Existence of periodic solutions for neutral nonlinear
differential equations with variable delay, Electronic Journal of Differential Equa-
tions, Vol. 2010 (2010), No. 127, pp. 1—8.

[16] Y. M. Dib, M. R. Maroun and Y. N. Rafoul, Periodicity and stability in neu-
tral nonlinear differential equations with functional delay, Electron. J. Differential
Equations, 2005, No. 142, 11 pp.

[17] M. Fan and K. Wang, P. J. Y. Wong and R. P. Agarwal, Periodicity and stability
in periodic n-species Lotka-Volterra competition system with feedback controls
and deviating arguments, Acta Math. Sin. Engl. Ser., 19(2003), 801—822.

[18] H. I. Freedman and J. Wu, Periodic solutions of single-species models with periodic
delay, SIAM J. Math. Anal., 23(1992), 689—701.

[19] M. Gregus, Third Order Linear Differential Equations, Translated from the Slovak
by J. Dravecký Mathematics and its Applications (East European Series), 22. D.
Reidel Publishing Co., Dordrecht, 1987

[20] Y. Kuang, Delay Differential Equations with Application in Population Dynamics,
Academic Press, New York, 1993.

[21] W. G. Li and Z. H. Shen, An constructive proof of the existence Theorem for
periodic solutions of Duffng equations, Chinese Sci. Bull., 42(1997), 1591—1595.



Nouioua et al. 221

[22] Y. Liu and W. Ge, Positive periodic solutions of nonlinear Duffi ng equations with
delay and variable coeffi cients, Tamsui Oxf. J. Math. Sci., 20(2004), 235—255.

[23] J. Ren, S. Siegmund and Y. Chen, Positive periodic solutions for third-order non-
linear differential equations, Electron. J. Differential Equations 2011, No. 66, 19
pp.

[24] D. R. Smart, Fixed Point Theorems. Cambridge Tracts in Mathematics, No. 66.
Cambridge University Press, London-New York, 1974.

[25] Q. Wang, Positive periodic solutions of neutral delay equations, Acta Math. Sinica,
6(1996), 789—795.

[26] Y. Wang, H. Lian and W. Ge, Periodic solutions for a second order nonlinear
functional differential equation, Appl. Math. Lett., 20(2007) 110—115.

[27] W. Zeng, Almost periodic solutions for nonlinear duffi ng equations, Acta Math.
Sinica, 13(1997), 373—380.

[28] G. Zhang and S. S. Cheng, Positive periodic solutions of non autonomous func-
tional differential equations depending on a parameter, Abstr. Appl. Anal.,
7(2002), 279—286.


