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Abstract

We provide here a new representation of the exponential constant e, and show
how this leads to a connection between e and the elementary symmetric polyno-
mials.

1 Introduction

The exponential constant e is generally defined by way of the following infinite sum:

e =

∞∑
k=0

1

k!
.

It is well-known that e may alternatively be expressed as the limit given by

e = lim
n→∞

(
1 +

1

n

)n
. (1)

In fact, e is sometimes even defined by way of this limit. It is reasonably straightforward
to prove the equality of the two representations above by applying the binomial theorem
and then examining the behavior of the resultant series as n tend to infinity. It is
probably not quite so well-known, however, that the exponential constant may also be
expressed as the following infinite product [2]:

e = 2

(
2

1

)1/2(
2 · 4
3 · 3

)1/4(
4 · 6 · 6 · 8
5 · 5 · 7 · 7

)1/8
· · · .

There are in fact many other known ways of representing e via infinite sums or
products. However, following an extensive literature search, it would appear that the
representation given in this note is new. We state and prove our main theorem, a
generalization of (1), in Section 2, making use of analytic techniques. This result is
then utilized to demonstrate a particular connection between the exponential constant
and elementary symmetric polynomials.
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2 The Representation of e

Our purpose in the current section is to prove the following result:

THEOREM 1. Assume that m > 0 is a fixed real number. Then

ex = lim
n→∞

n∏
k=1

(
1 +

mkm−1

nm
x

)
for all x ∈ R. (2)

PROOF. First we define fn,m(x) by

fn,m(x) =

n∏
k=1

(
1 +

mkm−1

nm
x

)
(3)

and let ln,m(x) = log fn,m(x). From these definitions it follows that

l′n,m(x) =

n∑
k=1

mkm−1

nm

(
1 +

mkm−1

nm
x

)−1
. (4)

We now carry out the proof of Theorem 1 in two parts. The first part covers the
situation in which m ≥ 1, while the second deals with the case 0 < m < 1. Suppose
first that r and m be any fixed positive real numbers, where m ≥ 1. Then, for any
n ∈ N such that n > 2mr, k ∈ N such that 1 ≤ k ≤ n, and x ∈ [−r, r], it is the case
that ∣∣∣∣mkm−1nm

x

∣∣∣∣ ≤ ∣∣∣mxn ∣∣∣ ≤ mr

n
<
1

2
,

and we may thus expand (
1 +

mkm−1

nm
x

)−1
by way of the geometric series expansion. So, on setting

A = mx

(
k

n

)m−1
,

we have (
1 +

mkm−1

nm
x

)−1
=

(
1 +

A

n

)−1
= 1− A

n
+

(
A

n

)2
−
(
A

n

)3
+ · · ·

= 1− A

n
+

(
A
n

)2
1 + A

n

= 1− A

n
+

A2

n(n+A)

= 1− 1
n

(
A− A2

n+A

)
.
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From the definition of A it follows, when n > 2mr, that∣∣∣∣A− A2

n+A

∣∣∣∣ ≤ |A|+ ∣∣∣∣ A2

n+A

∣∣∣∣ ≤ mr + (mr)22mr
=
3mr

2
,

leading to the result (
1 +

mkm−1

nm
x

)−1
= 1 +O

(
1

n

)
. (5)

By (4) and (5), we see that

l′n,m(x) =

n∑
k=1

mkm−1

nm

(
1 +O

(
1

n

))

=
m

nm

(
1 +O

(
1

n

)) n∑
k=1

km−1

=
m

nm

(
1 +O

(
1

n

))(
nm

m
+O

(
nm−1

))
= 1 +O

(
1

n

)
,

where we have used the result

n∑
k=1

ks =
ns+1

s+ 1
+O(ns).

It is thus the case that

lim
n→∞

l′n,m(x) = 1 for m ≥ 1.

Suppose now that r and m be any fixed positive real numbers, where 0 < m < 1.
Then, for any n ∈ N such that n > (2mr)1/m, k ∈ N such that 1 ≤ k ≤ n, and
x ∈ [−r, r], we have ∣∣∣∣mkm−1nm

x

∣∣∣∣ ≤ ∣∣∣mxnm ∣∣∣ ≤ mr

nm
<
1

2
,

noting, in particular, that the left-hand inequality above is true since 0 < m < 1 so
that km−1 ≤ 1. Thus, as with the previous case, we may expand(

1 +
mkm−1

nm
x

)−1
by way of the geometric series expansion. This time, with

B =
mkm−1

nm/2
x,
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we obtain (
1 +

mkm−1

nm
x

)−1
=

(
1 +

B

nm/2

)−1
= 1− B

nm/2
+

(
B

nm/2

)2
−
(

B

nm/2

)3
+ · · ·

= 1− 1

nm/2

(
B − B2

nm/2 +B

)
,

which implies that (
1 +

mkm−1

nm
x

)−1
= 1 +O

(
1

nm/2

)
.

In this case, we have that

l′n,m(x) =

n∑
k=1

mkm−1

nm

(
1 +O

(
1

nm/2

))

=
m

nm

(
1 +O

(
1

nm/2

)) n∑
k=1

km−1

=
m

nm

(
1 +O

(
1

nm/2

))(
nm

m
+O

(
nm−1

))
= 1 +O

(
1

nm/2

)
,

from which we see that

lim
n→∞

l′n,m(x) = 1 when 0 < m < 1.

Next, note that l′n,m(x) is monotone decreasing on the interval [−r, r], so that

l′n,m(r) ≤ l′n,m(x) ≤ l′n,m(−r) for all x ∈ [−r, r].

Therefore∣∣l′n,m(x)− 1∣∣ ≤ max{∣∣l′n,m(−r)− 1∣∣ , ∣∣l′n,m(r)− 1∣∣} for all x ∈ [−r, r].
From this we may infer that∥∥l′n,m − 1∥∥∞ ≤ max{∣∣l′n,m(−r)− 1∣∣ , ∣∣l′n,m(r)− 1∣∣} ,
which in turn implies that

lim
n→∞

∥∥l′n,m − 1∥∥∞ = 0.
The convergence is thus uniform over the interval [−r, r].
Since l′n,m(x) converges uniformly to 1 on [−r, r], and the sequence {ln,m(0)} con-

verges (all its terms are in fact equal to 0), we know from Theorem 9.13 in [1] that
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l′n,m(x) tends to a function L(x) uniformly on [−r, r] where L′(x) = 1. Furthermore,
as ln,m(0) = 0 for all n, it follows that L(x) = x. The continuity of the exponential
function then implies that

lim
n→∞

fn,m(x) = ex (6)

on [−r, r]. However, since the choice of r was arbitrary, we see that (6) is actually true
for all x ∈ R, as required.

Note that specializing (2) to x = 1 and then m = x = 1 gives rise to

e = lim
n→∞

n∏
k=1

(
1 +

mkm−1

nm

)
and (1), respectively. It is worth pointing out here that the limit given by (2) is in fact
independent of m. Furthermore, it is possible to obtain the representation as given
below.

COROLLARY 1. For any fixed m ∈ N, it is the case that

ex = lim
n→∞

n∏
k=1

(
1 +

mgm−1(k)

nm
x

)
,

where gm−1(k) is a fixed, though arbitrary, monic polynomial of degree m− 1.

PROOF. This proceeds along similar lines to the proof of Theorem 1, so we provide
merely an outline here. Let r be a fixed positive real number and m be a fixed positive
integer. First, since gm−1 is an arbitrary monic polynomial of degree m− 1, it follows
that for any given ε > 0 there exists some positive integer N(ε, gm−1), a function of
both ε and gm−1, such that for any fixed n > N(ε, gm−1) it is true that

0 <

∣∣∣∣gm−1(k)nm

∣∣∣∣ < ε

for each k ∈ N satisfying 1 ≤ k ≤ n. Therefore, for any x ∈ [−r, r], it is the case that∣∣∣∣mgm−1(k)nm
x

∣∣∣∣ ≤ ∣∣∣∣mrgm−1(k)nm

∣∣∣∣ < mrε

for each k ∈ N satisfying 1 ≤ k ≤ n when n > N(ε, gm−1). So, when

n > N

(
1

2mr
, gm−1

)
,

it follows that ∣∣∣∣mgm−1(k)nm
x

∣∣∣∣ < 1

2
,
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allowing us to expand (
1 +

mgm−1(k)

nm
x

)−1
by way of the geometric series expansion. Then, on setting

C =
mgm−1(k)

nm−1
x,

we have (
1 +

mgm−1(k)

nm
x

)−1
=

(
1 +

C

n

)−1
,

which can be shown to be equal to 1 + O(1/n). We omit the remainder of the proof
since it differs only in minor details to the proof of the corresponding part of Theorem
1.

We now employ Theorem 1 to establish a link between the exponential constant and
a limit involving the elementary symmetric polynomials. A polynomial in the variables
x1, x2, . . . , xn is called symmetric if it is left unchanged by any permutation of these
variables. In particular, the elementary symmetric polynomial Ek,n is defined to be
the sum of all possible products of k distinct elements from the set {x1, x2, . . . , xn},
noting that if k > n then Ek,n is defined to be zero.

COROLLARY 2. The exponential constant is related to the elementary symmetric
polynomials by way of the following:

e = lim
n→∞

(
1 +

n∑
k=1

Ek,n

( m
nm

)k)
.

PROOF. From (3), we have

fn,m(1) =

n∏
k=1

(
1 +

mkm−1

nm

)
=
(
1 +

m

nm

)(
1 +

2m−1m

nm

)(
1 +

3m−1m

nm

)
· · ·
(
1 +

nm−1m

nm

)
= 1 +

( m
nm

) (
1 + 2m−1 + 3m−1 + · · ·+ nm−1

)
+
( m
nm

)2 (
1 · 2m−1 + 1 · 3m−1 + · · ·+ (n− 1)m−1 · nm−1

)
...

+
( m
nm

)n (
1 · 2m−1 · 3m−1 · · ·nm−1

)
= 1 +

n∑
k=1

Ek,n

( m
nm

)k
,
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where the variables x1, x2, . . . , xn have been specialized by setting xk = km−1, k =
1, 2, . . . , n, and m is any fixed positive integer. The result follows from Theorem 1.

We have thus shown that e may be expressed as the limit of a sequence of finite
sums where, for each of these sums, the elementary symmetric polynomials play, in
some sense, the role of coeffi cients. For the particular case in which m ∈ N, fn,m(1)
gives rise to a sequence of rational approximations to e. On setting m = 1, we have
the sequence of rational approximations given by (1). With m = 3, for example, the
sequence

4,
55

16
,
260

81
,
810901

262144
,
3689013248

1220703125
, . . .

is obtained. For the latter case the convergence to e is somewhat slow; indeed, it is not
until n = 51 that the approximations are correct to within one decimal place.
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