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Abstract
In this article, we consider a base curve, a rolling curve and a roulette on

complex plane. We investigate the third one when any two of the base curve, the
rolling curve, and a roulette are known.We obtain Euler Savary’s formula, which
gives the relation between the curvatures of these three curves.

1 Introduction

Complex numbers have important role in mathematics. It has caused new numbers
such as dual numbers, hyperbolic numbers, quaternions and octonions, etc. Complex
numbers are not only used in mathematics but also have essential concrete applications
in a variety of scientific and related areas such as physics, chemistry, biology, economics,
electrical engineering, statistics, signal processing, control theory, electromagnetism,
fluid dynamics, quantum mechanics, cartography, and vibration analysis.

On the Euclidean plane E2, let us consider two curves: a base curve and rolling curve
which are denoted by (B) and (R) , respectively. Assume that X is a point which is
relative to a rolling curve (R). Suppose that the rolling curve (R) rolls without splitting
along the base curve (B) . Then, the locus of the point X makes a curve which is called
roulette and denoted by (X). For instance, if (B) is a line, (R) is a circle and X is a
point on (R) , then (X) is cycloid.
Euler Savary’s formula is a very famous theorem which gives relation between cur-

vatures of the roulette and these base curve and rolling curve. It is used on quite serious
fields of mathematics and engineering. It is worked by Alexander and Maddocks, [3],
Buckley and Whitfield, [4], Dooner and Griffi s, [5], Ito and Takahaski, [6], Pennock
and Raje, [7], Wang at all, [8].
However, in 1956, Müller, [9], obtained Euler Savary’s formula for one parameter

motion in Euclidean plane E2. In 2003, T. Ikawa, [11], examined Euler Savary’s formula
in Minkowskian geometry and also showed a new way for a generalization of the Euler
Savary’s formula in the Euclidean plane in this article. In 2010, Masal at al., [10],
expressed Euler Savary’s formula for one parameter motion in the complex plane C. In
this paper, we research a generalization of the Euler Savary’s formula in the complex
plane C by a different way from [10]. Also, we study on a base curve, a rolling curve
and a roulette in the complex plane C.
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2 Preliminaries

Let α : I ⊂ R → C from an open interval I into C be a planar curve with arc length
parameter s. Let the curve α be defined by α (s) = α1 (s)+ iα2 (s) , [1]. Then, the unit
tangent vector of the curve α at the point α (s) is defined by

T (s) = α′1 (s) + iα
′
2 (s) .

Frenet formulas of the curve α have the following equations

T′ = κN,

N′ = −κT,

where N is the unit normal vector of the curve α and κ is curvature of α in [1, 2].
However, we can define a new curve

αA (s) = α (s) + x (s) T (s) + y (s)N (s) ,

which is called associated curve, where x (s) , y (s) ∈ R. If we calculate the velocity
vector of αA (s), then we get

d (αA (s))

ds
=

(
1− κ (s) y (s) + dx (s)

ds

)
T (s) +

(
κ (s)x (s) +

dy (s)

ds

)
N (s) .

Besides, we can write the associated curve as

αA (s) = x (s) + iy (s) ,

with respect to the frame {α (s) ;T (s) ,N (s)} . Also, according to the frame

{α (s) ; T (s) , N (s)} ,

the velocity vector of the associated curve is calculated as

d (αA (s))

ds
= v1 (s) + iv2 (s) ,

where

v1 (s) + iv2 (s) := 1− κ (s) y (s) +
dx (s)

ds
+ i

(
κ (s)x (s) +

dy (s)

ds

)
. (1)

Moreover, assume that sA is the arc length parameter of αA, then the Frenet frame
{TA,NA} of αA holds

T′A (sA) = κA (sA)NA (sA) ,

N′A (sA) = −κA (sA)TA (sA) ,

where κA is the curvature of αA. Let θ be a slope angle of α and ω a slope angle of
αA. Then, we can write

κA (sA) =
dω

dsA
=
dω

ds

ds

dsA
=

(
κ+

dφ

ds

)
1

‖v1 (s) + iv2 (s)‖
,

where φ = ω − θ.
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3 Euler Savary’s Formula

In this section, we investigate the Euler Savary’s formula which gives the relation
between the curvatures of a base curve, a rolling curve, and a roulette. In addition to
this, we investigate the third one when any two of the base curve, the rolling curve,
and the roulette are known on the complex plane.
CASE 1. Let the base curve and the rolling curve be given.

Let (B) be the base curve with curvature κB . Assume that X is a point relative
to the rolling curve (R) and the roulette of the locus of this point X is denoted by
(X). Then, we can consider that (X) is an the associated curve of (B). So the relative
coordinate {x, y} of (X) with respect to the curve (B) satisfies the following equation

v1 (s) + iv2 (s) = 1− κ (s) y (s) +
dx (s)

ds
+ i

(
κ (s)x (s) +

dy (s)

ds

)
,

from the equation (1).
Moreover, we know that when the rolling curve rolls without splitting along the

base curve (B) at each point of contact, the relative coordinate {x, y} is also a relative
coordinate of (X) with respect to the curve (R) for a suitable parameter sR. In this
situation, the associated curve is a point X and the following is provided:

v1 (sR) + iv2 (sR) = 1− κ (sR) y (sR) +
dx (sR)

dsR
+ i

(
κ (sR)x (sR) +

dy (sR)

dsR

)
= 0.

Then, we have

dx (sR)

dsR
+ i

dy (sR)

dsR
= −1 + κR (sR) y (sR)− iκR (sR)x (sR) . (2)

If we substitute these equations into (1), we get

v1 (sR) + iv2 (sR) = (κR − κB) y + i (κB − κR)x.

However, we can write the associated curve on the polar coordinate with respect to
{(B) (s);x, y} as follows:

(X) = reiφ(s),

where r is the distance from the origin point (B) (s) to the point X. Then, from the
equation (2), we calculate

d (X)

dsR
=

dr

dsR
eiφ(s) + ireiφ(sR)

dφ (sR)

dsR
= κRr sinφ− 1 + i(−κRr cosφ).

If we solve this equation with respect to r dφ
dsR
, then we find

r
dφ

dsR
= −κRr + Im(eiφ). (3)
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Furthermore, we know that

κ(X) =

(
κB +

dφ

ds

)
1

|κB − κR|
√
x2 + y2

=

(
κB +

dφ

ds

)
1

|κB − κR| r
. (4)

So, we get

rκ(X) =
κB − κR
|κB − κR|

+
Im(eiφ)

r |κB − κR|
, (5)

from the equations (3) and (4).
So, we may give the following theorem:

THEOREM 1. Assume that a curve (R) rolls without splitting along a curve (B)
on the complex plane C. Let (X) be a locus of a point that is relative to (R) . Let Q be
a point on (X) and R be a point of contact of (B) and (R) corresponds to Q relative
to the rolling relation. By (r, φ) , we denote a polar coordinate of Q with respect to
the origin R and the base line (B)′ |R . Then, the curvatures κB , κR and κ(X) of the
curves (B) , (R) , and (X) , respectively, satisfy

rκ(X) = ±1 +
Im(eiφ)

r |κB − κR|
.

CASE 2. Assume that the base curve and the roulette are given.
Suppose that (B) (sB) = u (sB) + iv (sB) is a base curve with the arc length para-

meter sB . Let us draw the normal to the roulette (X) for a point Q of the curve (B)
and let the point R = x (sB) + iy (sB) be the foot of this normal. Then the length of
the normal QR is

d (Q,R) =

√
(x (sB)− u (sB))2 + (y (sB)− v (sB))2. (6)

However, by considering the equation (6) on the rolling curve (R) , this equation repre-
sents the length of the point X relative to (R) and a point of (R) . So, the orthogonal
coordinate f (sB) + ig (sB) of (R) is given by the following equations:

‖f (sB) + ig (sB)‖ = ‖(x (sB)− u (sB)) + i (y (sB)− v (sB))‖ ,∥∥∥∥( df

dsB

)
+ i

(
dg

dsB

)∥∥∥∥ = 1.

CASE 3. Now, assume that the rolling curve (R) and the roulette (X) are given.
Suppose that (X) (sA) = x (sA) + iy (sA) is the roulette with arc length parameter

sA and (R) (sR) is given by the polar coordinate r (sR) with the arc length parameter
sR. Because of the normal of (X) isN (sA) = −y′ (sA)+ix′ (sA) , a point u (sB)+iv (sB)
of the point curve (B) is given by

u (sB) + iv (sB) = x (sA) + iy (sA)± r (sR)N
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or
u (sB) + iv (sB) = x (sA)∓ r (sR) y′ (s)+i (y (sA)± r (sR)x′ (s)) . (7)

So, we can write

du

dsR
+ i

dv

dsR
=

dx

dsA

dsA
dsR

+ i
dy

dsA

dsA
dsR
± dr

dsR
N± r dN

dsA

dsA
dsR

or

du

dsR
+ i

dv

dsR
=

dx

dsA

dsA
dsR

+ i
dy

dsA

dsA
dsR
± dr

dsR

(
− dy

dsA
+ i

dx

dsA

)
∓r
(
κ(X)

(
dx

dsA
+ i

dy

dsA

))
dsA
dsR

.

Then, we find

du

dsR
+i

dv

dsR
=

dx

dsA

(
1∓ rκ(X)

) dsA
dsR
∓ dr

dsR

dy

dsA
+i

(
dy

dsA

(
1∓ rκ(X)

) dsA
dsR
± dr

dsR

dx

dsA

)
,

where κ(X) is the curvature of (X). Since sR is also the arc length of (B) , we have∥∥∥∥( du

dsR

)
+ i

(
dv

dsR

)∥∥∥∥ = 1,
and (

dsA
dsR

)2 (
1∓ rκ(X)

)2
+

(
dr

dsR

)2
= 1.

From this differential equation, we can solve sA = sA (sR) . By substituting this equa-
tion into equation (7), we can have the orthogonal coordinate of (B) .

EXAMPLE 1. Let’s find the curvature of the trajectory curve of a point on the
circle (R) and circles (B) and (R) at the moment t = 15 when circle (R) = cos θ+i sin θ
roles without splitting along (B) = 2 cos θ+ i2 sin θ where θ ∈ [0, 2π]. Here t shows the
moment when circle (R) rolls splitting along circle (B).

Figure 1: The rolling at the moment t = 0, t = 15, t = 30, t = 45, t = 119, respectively.
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SOLUTION. When a circle (R) roles without splitting along a circle (B), a trajec-
tory curve of a point on (R) is a line, (see, Figure 1). So, we know that the curvature
of this trajectory curve is zero.
If we want to solve from Euler Savary’s formula, since r =

√
2 and φ = π

4 at the
moment t = 15 and κB = 1

2 and κR = 1, we find

√
2κ(X) = −1 +

√
2
2√
2 12

= 0.

So, κ(X) = 0.

DISCUSSION. If κB − κR > 0, then we have(
1

r′
− 1
r

)
Im(eiφ) = κB − κR,

from the equation (5), where r′ = r − 1
κ(X)

is the distance from origin point to the

curvature center of (X) . In addition, if κB − κR < 0, then we get(
1

r′
− 1
r

)
Im(eiφ) = κB − κR,

from the equation (5), where r′ = r + 1
κ(X)

is the distance between origin and the

curvature center of (X). Consequently, the Euler Savary’s formula in the complex
plane C coincides with the Euler Savary’s formula in the Euclidean plane E2 in [9].
But, in [10], the Euler Savary formula in the complex plane C is found as(

1

r′
− 1
r

)
i
(
e−iφ

)
= κB − κR.

It is different from Euler Savary’s formula in the Euclidean plane. Note that the left
hand-side of the equation is complex number and right hand-side of the equation is
real number. So, it is provided when φ = π

2 + kπ, k ∈ Z. But, sometimes φ may not
equal to π

2 + kπ.
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