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Abstract

For a graph G, let P (G,λ) denote the chromatic polynomial of G. Two graphs G
and H are chromatically equivalent (or simply χ-equivalent), denoted by G ∼ H, if
P (G,λ) = P (H,λ). A graph G is chromatically unique (or simply χ-unique) if for any
graph H such as H ∼ G, we have H ∼= G, i.e. H is isomorphic to G. A K4-homeomorph
is a subdivision of the complete graph K4. In this paper, we completely determine the
chromaticity of K4-homeomorphs which has girth 9, and give suffi cient and necessary
condition for the graphs in the family to be chromatically unique.

1 Introduction

All graphs considered here are simple graphs. For such a graph G, let P (G,λ) denote the
chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply
χ-equivalent), denoted by G ∼ H, if P (G,λ) = P (H,λ). A graph G is chromatically unique
(or simply χ-unique) if for any graph H such as H ∼ G, we have H ∼= G, i.e. H is isomorphic
to G. Many families of χ-unique graphs are known (see [9, 10, 11]).
A K4-homeomorph is a subdivision of the complete graph K4. Such a homeomorph is

denoted by K4(a, b, c, d, e, f) if the six edges of K4 are replaced by the six paths of length
a, b, c, d, e, f , respectively, as shown in Figure 1. So far, the chromaticity ofK4-homeomorphs
with girth g, where 3 ≤ g ≤ 7 has been studied by many authors (see [3, 12, 14, 15, 16]). Also
the study of the chromaticity of K4-homeomorphs with at least 2 paths of length 1 has been
fulfiled (see [4, 13, 14, 22]). Recently, Shi et al. [18] studied the chromaticity of one family of
K4-homeomorphs with girth 8, i.e. K4(2, 3, 3, d, e, f). In [19], Shi has solved completely the
chromaticity of K4-homeomorphs with girth 8. As we know, only the chromaticity of such
graphs with at least 2 paths of length 1 have been obtained among all the K4-homeomorphs
with girth 9. By Ren [17], the chromaticity of K4-homeomorphs with exactly 3 paths of
same length has been obtained. Recently, Catada-Ghimire and Hasni [1] investigated the
chromaticity of K4-homeomorphs with exactly 2 paths of length 2. Hence, to completely

∗Mathematics Subject Classifications: 05C15.
†Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris,

35900 Tanjong Malim, Perak, Malaysia
‡School of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 Kuala Tereng-

ganu, Terengganu, Malaysia
§Faculty of Computer and Mathematical Sciences, University Teknologi MARA (Segamat Campus),

85000 Segamat, Johor, Malaysia

144



Karim et al. 145

Figure 1: K4(a, b, c, d, e, f).

determine the chromaticity of K4-homeomorph with girth 9, there are only 6 more types to
be solved, that is, K4(1, 2, 6, d, e, f), K4(1, 3, 5, d, e, f), K4(1, 4, 4, d, e, f), K4(2, 3, 4, d, e, f),
K4(1, 2, c, 3, e, 3) and K4(1, 3, c, 2, e, 3). The chromaticity of the graphs K4(2, 3, 4, d, e, f),
K4(1, 4, 4, d, e, f) and K4(1, 2, 6, d, e, f) were solved by Karim et al. [6, 7, 8]. In this paper,
to complete the study of the chromaticity ofK4-homeomorph with girth 9, we investigate the
remaining types K4(1, 3, 5, d, e, f), K4(1, 2, c, 3, e, 3) and K4(1, 3, c, 2, e, 3). As by-product,
we obtain the complete solution on the chromaticity of all families of K4-homeomorphs with
girth 9.

2 Preliminary Results

In this section, we give some known results used in the sequel.

LEMMA 1. Assume that G and H are χ-equivalent. Then

(1) |V (G)| = |V (H)| and |E(G) = |E(H)| ([9]);

(2) G and H has the same girth and same number of cycles with length equal to their
girth ([21]);

(3) If G is a K4-homeomorph, then H must itself be a K4-homeomorph ([2]);

(4) Let G = K4(a, b, c, d, e, f) and H = K4(a
′, b′, c′, d′, e′, f ′). Then

(i) min (a, b, c, d, e, f) = min (a′, b′, c′, d′, e′, f ′) and the number of times that this
minimum occurs in the list {a, b, c, d, e, f} is equal to the number of times that
this minimum occurs in the list {a′, b′, c′, d′, e′, f ′} ([20]);

(ii) if {a, b, c, d, e, f} = {a′, b′, c′, d′, e′, f ′} as multisets, then H ∼= G ([12]).

LEMMA 2 (Ren [17]). Let G = K4(a, b, c, d, e, f) when exactly three of a, b, c, d, e, f are
the same. Then G is not chromatically unique if and only if G is isomorphic to K4(s, s, s−
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2, 1, 2, s) or K4(s, s − 2, s, 2s − 2, 1, s) or K4(t, t, 1, 2t, t + 2, t) or K4(t, t, 1, 2t, t − 1, t) or
K4(t, t+ 1, t, 2t+ 1, 1, t) or K4(1, t, 1, t+ 1, 3, 1) or K4(1, 1, t, 2, t+ 2, 1), where s ≥ 3, t ≥ 2.

LEMMA 3 (Hasni et al. [5]). Let K4-homeomorphs K4(1, 3, 5, d, e, f) and K4(1, 3, 5, d
′,

e′, f ′) be chromatically equivalent. Then

K4(1, 3, 5, i, i+ 6, i+ 1) ∼ K4(1, 3, 5, i+ 2, i, i+ 5)

and
K4(1, 3, 5, i, i+ 1, i+ 4) ∼ K4(1, 3, 5, i+ 2, i+ 3, i),

where i ≥ 1.

LEMMA 4 (Karim et al. [6]). Let K4-homeomorphs K4(2, 3, 4, d, e, f) and K4(1, 3, 5, d
′,

e′, f ′) be chromatically equivalent. Then

K4(2, 3, 4, 1, 3, 6) ∼ K4(1, 3, 5, 4, 4, 2)

and
K4(2, 3, 4, 1, 5, 7) ∼ K4(1, 3, 5, 2, 8, 3).

LEMMA 5 (Karim et al. [7]). Let K4-homeomorphs K4(1, 4, 4, d, e, f) and K4(1, 3, 5, d
′,

e′, f ′) be chromatically equivalent. Then

K4(1, 4, 4, 3, 5, 8) ∼ K4(1, 3, 5, 5, 7, 4),

K4(1, 4, 4, 6, 3, 7) ∼ K4(1, 3, 5, 4, 4, 8),

K4(1, 4, 4, 6, 3, 8) ∼ K4(1, 3, 5, 4, 9, 4),

and
K4(1, 4, 4, 6, 2, 6) ∼ K4(1, 3, 5, 2, 4, 8).

LEMMA 6 (Karim et al. [8]). Let K4-homeomorphs K4(1, 2, 6, d, e, f) and K4(1, 3, 5, d
′,

e′, f ′) be chromatically equivalent. Then

K4(1, 2, 6, 4, 5, 8) ∼ K4(1, 3, 5, 2, 6, 9),

K4(1, 2, 6, 4, 7, 5) ∼ K4(1, 3, 5, 2, 8, 6),

K4(1, 2, 6, 3, 4, 10) ∼ K4(1, 3, 5, 9, 2, 6),

K4(1, 2, 6, 3, 4, 6) ∼ K4(1, 3, 5, 5, 6, 2),

K4(1, 2, 6, 5, 3, 8) ∼ K4(1, 3, 5, 7, 2, 7),

K4(1, 2, 6, 5, 9, 3) ∼ K4(1, 3, 5, 7, 8, 2),

and
K4(1, 2, 6, f + 2, 4, f) ∼ K4(1, 3, 5, 2, f, f + 4),

where f ≥ 4.
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LEMMA 7 (Catada-Ghimire and Hasni [1]). A K4-homeomorphic graph with exactly
two path of length two is χ-unique if and only if it is not isomorphic to

K4(1, 2, 2, 4, 1, 1), or K4(4, 1, 2, 1, 2, 4), or K4(1, s+ 2, 2, 1, 2, s),
K4(1, 2, 2, t+ 2, t+ 2, t), or K4(1, 2, 2, t, t+ 1, t+ 3), or K4(3, 2, 2, r, 1, 5),
K4(1, r, 2, 4, 2, 4), or K4(3, 2, 2, r, 1, r + 3), or K4(r + 2, 2, 2, 1, 4, r),
K4(r + 3, 2, 2, r, 1, 3), or K4(4, 2, 2, 1, r + 2, r), or K4(3, 4, 2, 4, 2, 6),
K4(3, 4, 2, 4, 2, 8), or K4(3, 4, 2, 8, 2, 4), or K4(7, 2, 2, 3, 4, 5),
K4(5, 2, 2, 3, 4, 7), or K4(8, 2, 2, 3, 4, 6), or K4(5, 2, 2, 9, 3, 4),
K4(5, 2, 2, 5, 3, 4),

where r ≥ 3, s ≥ 3, t ≥ 3.

3 Main Results

In this section, we present our main results. We now investigate the chromaticity of
K4(1, 3, 5, d, e, f). We first obtain the following result.

LEMMA 8. Let G is of type of K4(1, 3, 5, d, e, f) and H is of type K4(1, 3, c
′, 2, e′, 3),

then there is no graph satisfying G ∼ H unless G ∼= H.

PROOF. Let G and H be two graphs such that G ∼= K4(1, 3, 5, d, e, f) and H ∼=
K4(1, 3, c

′, 2, e′, 3). Let

Q(K4(a, b, c, d, e, f)) = −(s+ 1)(sa + sb + sc + sd + se + sf ) + sa+d + sb+f

+sc+e + sa+b+e + sb+d+c + sa+c+f + sd+e+f .

Let s = 1 − λ and x is the number of edges in G. From [20], we have the chromatic
polynomial of K4-homeomorphs K4(a, b, c, d, e, f) is as follows:

P (K4(a, b, c, d, e, f) = (−1)x−1
s

(s− 1)2
[
(s2 + 3s+ 2) +Q(K4(a, b, c, d, e, f))− sx−1)

]
.

Hence P (G) = P (H) if and only if Q(G) = Q(H). We solve the equation Q(G) = Q(H)
to get all solutions. Let the lowest remaining power and the highest remaining power be
denoted by l.r.p. and h.r.p., respectively.
As G ∼= K4(1, 3, 5, d, e, f) and H ∼= K4(1, 3, c

′, 2, e′, 3), then

Q(G) = −
(
s+ 1

)(
s+ s3 + s5 + sd + se + sf

)
+ sd+1 + sf+3 + se+5 +

se+4 + sd+8 + sf+6 + sd+e+f

and

Q(H) = −
(
s+ 1

)(
s+ s3 + sc

′
+ s2 + se

′
+ s3

)
+ s3 + s6 + sc

′+e′ +

se
′+4 + sc

′+5 + sc
′+4 + se

′+5.

By Lemma 1(1), we have
d+ e+ f = c′ + e′. (1)
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Since Q(G) = Q(H), we see that

Q1(G) = −s5 − s6 − sd − se − se+1 − sf − sf+1 + sd+8 + se+4 + se+5 + sf+3 + sf+6

and

Q1(H) = −s2 − s3 − s4 − sc
′
− sc

′+1 − se
′
− se

′+1 + s6 + sc
′+4 + sc

′+5 + se
′+4 + se

′+5.

We consider the term −s2 and −s3 in Q1(H). Since d+ e ≥ 6 and e+ f ≥ 8, we have either
d = 3 and f = 2, or d = 2 and f = 3.

Case 1. Assume that d = 3 and f = 2. We obtain the following simplification

Q2(G) = −s3 − s6 − se − se+1 + s8 + s11 + se+4 + se+5,

Q2(H) = −s4 − sc
′
− sc

′+1 − se
′
− se

′+1 + s6 + sc
′+4 + sc

′+5 + se
′+4 + se

′+5.

Since e ≥ 6, the term −s4 is in Q2(H) but not in Q2(G), which is a contradiction.
Case 2. Assume that d = 2 and f = 3. We obtain the following simplification

Q3(G) = −s5 − s6 − se − se+1 + s9 + s10 + se+4 + se+5,

Q3(H) = −sc
′
− sc

′+1 − se
′
− se

′+1 + sc
′+4 + sc

′+5 + se
′+4 + se

′+5.

We then obtain either c′ = 5 and e = e′, or c′ = e and e′ = 5. If c′ = 5 and e = e′, we obtain
G ∼= K4(1, 3, 5, 2, e, 3) and H ∼= K4(1, 3, 5, 2, e, 3). Hence, G ∼= H. If c′ = e and e′ = 5, we
obtain G ∼= K4(1, 3, 5, 2, e, 3) and H ∼= K4(1, 3, e, 2, 5, 3). Hence, G ∼= H.
So the proof is complete.

LEMMA 9. If G is of type K4(1, 3, 5, d, e, f) and H is of type K4(1, 2, c
′, 3, e′, 3), then

there are no graphs satisfying G ∼ H unless G ∼= H.

PROOF. The proof is similar to Lemma 8.

LEMMA 10. If G is of type K4(1, 3, 5, d, e, f) and H is of type K4(2, 2, 5, d
′, e′, f ′), then

there are no graphs satisfying G ∼ H.

PROOF. If H is of the type of K4(2, 2, 5, d
′, e′, f ′), then from Lemma 7, we know that

H is chromatically unique. Since G ∼ H, we have G ∼= H. But it is obvious that G is not
isomorphic to H. This is a contradiction.

LEMMA 11. If G is of type K4(1, 3, 5, d, e, f) and H is of type K4(1, 2, c
′, 2, e′, 4), then

there are no graphs satisfying G ∼ H.

PROOF. The proof is similar to Lemma 10.

LEMMA 12. If G is of type K4(1, 3, 5, d, e, f) and H is of type K4(1, 2, c
′, 4, e′, 2), then

there are no graphs satisfying G ∼ H.

PROOF. The proof is similar to Lemma 10.
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Now we establish the chromaticity of K4(1, 3, 5, d, e, f) as follows.

THEOREM 13. K4-homeomorphs K4(1, 3, 5, d, e, f) with girth 9 is not χ-unique if and
only if it is isomorphic to

K4(1, 3, 5, 2, 4, 8), or K4(1, 3, 5, 2, 8, 3), or K4(1, 3, 5, 2, 8, 6),
K4(1, 3, 5, 4, 4, 8), or K4(1, 3, 5, 4, 9, 4), or K4(1, 3, 5, 5, 6, 2),
K4(1, 3, 5, 5, 7, 4), or K4(1, 3, 5, 7, 2, 7), or K4(1, 3, 5, 7, 8, 2),
K4(1, 3, 5, 9, 2, 6), or K4(1, 3, 5, 5, e, 2), or K4(1, 3, 5, e+ 3, 2, e),
K4(1, 3, 5, i, i+ 6, i+ 1), or K4(1, 3, 5, i, i+ 1, i+ 4), or K4(1, 3, 5, i+ 2, i, i+ 5),
K4(1, 3, 5, i+ 2, i+ 3, i), or K4(1, 3, 5, 2, f, f + 4),

where e ≥ 6, i ≥ 1 and f ≥ 4.

PROOF. Let G and H be two graphs such that G ∼= K4(1, 3, 5, d, e, f) and H ∼ G. Since
the girth of G is 9, there is at most 1 among d, e and f . Moreover, by Lemma 1(2)(3), it
follows that H is a K4-homeomorph with girth 9. So H must be one of the following 10
types.

Type 1: K4(1, 2, 6, d
′, e′, f ′) where d′ + e′ ≥ 7, d′ + f ′ ≥ 6, e′ + f ′ ≥ 8;

Type 2: K4(1, 3, 5, d
′, e′, f ′) where d′ + e′ ≥ 6, d′ + f ′ ≥ 5, e′ + f ′ ≥ 8;

Type 3: K4(1, 4, 4, d
′, e′, f ′) where d′ + e′ ≥ 5, d′ + f ′ ≥ 5, e′ + f ′ ≥ 8;

Type 4: K4(2, 3, 4, d
′, e′, f ′) where d′ + e′ ≥ 6, d′ + f ′ ≥ 5, e′ + f ′ ≥ 7;

Type 5: K4(2, 2, 5, d
′, e′, f ′) where d′ + e′ ≥ 7, d′ + f ′ ≥ 5, e′ + f ′ ≥ 7;

Type 6: K4(1, 2, c
′, 2, e′, 4) where c′ ≥ 6, e′ ≥ 5;

Type 7: K4(1, 2, c
′, 4, e′, 2) where c′ = e′ ≥ 6;

Type 8: K4(1, 2, c
′, 3, e′, 3) where c′ ≥ 6, e′ ≥ 5;

Type 9: K4(1, 3, c
′, 2, e′, 3) where c′ = e′ ≥ 5;

Type 10: K4(2, 2, c
′, 2, e′, 3) where c′ = e′ ≥ 5.

If H is of Type 1, then from Lemma 6, we know that the solutions of the equation
P (G) = P (H) are

K4(1, 2, 6, 4, 5, 8) ∼ K4(1, 3, 5, 2, 6, 9),

K4(1, 2, 6, 4, 7, 5) ∼ K4(1, 3, 5, 2, 8, 6),

K4(1, 2, 6, 3, 4, 10) ∼ K4(1, 3, 5, 9, 2, 6),

K4(1, 2, 6, 3, 4, 6) ∼ K4(1, 3, 5, 5, 6, 2),

K4(1, 2, 6, 5, 3, 8) ∼ K4(1, 3, 5, 7, 2, 7),

K4(1, 2, 6, 5, 9, 3) ∼ K4(1, 3, 5, 7, 8, 2),

K4(1, 2, 6, f + 2, 4, f) ∼ K4(1, 3, 5, 2, f, f + 4),

where f ≥ 4.
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If H is of Type 2, then from Lemma 3, we know that the solutions of the equation
P (G) = P (H) are

K4(1, 3, 5, i, i+ 6, i+ 1) ∼ K4(1, 3, 5, i+ 2, i, i+ 5),

K4(1, 3, 5, i, i+ 1, i+ 4) ∼ K4(1, 3, 5, i+ 2, i+ 3, i),

where i ≥ 1.
If H is of Type 3, then from Lemma 5, we know that the solutions of the equation

P (G) = P (H) are

K4(1, 4, 4, 3, 5, 8) ∼ K4(1, 3, 5, 5, 7, 4),

K4(1, 4, 4, 6, 3, 7) ∼ K4(1, 3, 5, 4, 4, 8),

K4(1, 4, 4, 6, 3, 8) ∼ K4(1, 3, 5, 4, 9, 4),

K4(1, 4, 4, 6, 2, 6) ∼ K4(1, 3, 5, 2, 4, 8).

If H is of Type 4, then from Lemma 4, we know that the solutions of the equation
P (G) = P (H) are

K4(2, 3, 4, 1, 3, 6) ∼ K4(1, 3, 5, 4, 4, 2),

K4(2, 3, 4, 1, 5, 7) ∼ K4(1, 3, 5, 2, 8, 3).

If H is of Types 5—9, then from Lemmas 8—12, we know that there is no solution of the
equation P (G) = P (H) unless G ∼= H.
If H is of Type 10, then from Lemma 2, we know that H is chromatically unique. Since

G ∼ H, we have G ∼= H. But it is obvious that G is not isomorphic to H. This is a
contradiction.
This completes the proof.

The following table is to show the result of Theorem 13, that is, the solution of P (G) =
P (H) when G ∼= K4(1, 3, 5, d, e, f) and H ∼ G.

Graph H where G ∼= K4(1, 3, 5, d, e, f) and H ∼ G Solution of P (G) = P (H)
Type 1: K4(1, 2, 6, d

′, e′, f ′) From Lemma 6
Type 2: K4(1, 3, 5, d

′, e′, f ′) From Lemma 3
Type 3: K4(1, 4, 4, d

′, e′, f ′) From Lemma 5
Type 4: K4(2, 3, 4, d

′, e′, f ′) From Lemma 4
Type 5: K4(2, 2, 5, d

′, e′, f ′) No solution
Type 6: K4(1, 2, c

′, 2, e′, 4) No solution
Type 7: K4(1, 2, c

′, 4, e′, 2) No solution
Type 8: K4(1, 2, c

′, 3, e′, 3) No solution
Type 9: K4(1, 3, c

′, 2, e′, 3) No solution
Type 10: K4(2, 2, c

′, 2, e′, 3) No solution

Similarly to Theorem 13, we can easily prove the following results.

THEOREM 14. K4-homeomorphs K4(1, 2, c, 3, e, 3) with girth 9 is χ-unique where c ≥ 6
and e ≥ 5.
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THEOREM 15. K4-homeomorphs K4(1, 3, c, 2, e, 3) with girth 9 is χ-unique for all c ≥ 5
and e ≥ 5.

The following results were obtained in [6, 7, 8].

THEOREM 16. K4-homeomorphs K4(1, 4, 4, d, e, f) with girth 9 is not χ-unique if and
only if G is isomorphic to

K4(1, 4, 4, 4, 2, 6), K4(1, 4, 4, 6, 2, 6), K4(1, 4, 4, 2, 3, 7),

K4(1, 4, 4, 6, 3, 7), K4(1, 4, 4, 6, 3, 8), K4(1, 4, 4, 3, 5, 8),

K4(1, 4, 4, i, i+ 1, i+ 5), K4(1, 4, 4, i+ 2, i, i+ 4),

where i ≥ 3.

THEOREM 17. Let K4-homeomorphs K4(2, 3, 4, d, e, f) with girth 9 is not χ-unique if
and only if G is isomorphic to

K4(2, 3, 4, 1, 5, 8), K4(2, 3, 4, 2, 4, 8), K4(2, 3, 4, 2, 6, 8),

K4(2, 3, 4, e+ 4, e, 1), K4(2, 3, 4, 6, e, 1), K4(2, 3, 4, 1, 7, f),

where e ≥ 6 and f ≥ 4.

THEOREM 18. K4-homeomorphs K4(1, 2, 6, d, e, f) with girth 9 is not χ-unique if and
only if it is isomorphic to

K4(1, 2, 6, 6, 3, 4), K4(1, 2, 6, 9, 3, 5), K4(1, 2, 6, 5, 5, 5),

K4(1, 2, 6, 4, 5, 8), K4(1, 2, 6, 3, 4, 10), K4(1, 2, 6, 5, 3, 8),

K4(1, 2, 6, 4, s, 4), K4(1, 2, 6, f + 2, 4, f), K4(1, 2, 6, i, i+ 7, i+ 1),

K4(1, 2, 6, i+ 2, i, i+ 6), K4(1, 2, 6, i, i+ 1, i+ 3), K4(1, 2, 6, i+ 2, i+ 2, i),

where i ≥ 1, s ≥ 4, f ≥ 4.

Now, we present the necessary and suffi cient conditions for all families ofK4-homeomorphs
graph with girth 9 to be χ-unique.

THEOREM 19. LetG be aK4-homeomorphs graph with girth 9. ThenG is not χ-unique
if and only if G is isomorphic to

K4(2, 3, 4, 1, 5, 8), or K4(2, 3, 4, 2, 4, 8), or K4(2, 3, 4, 2, 6, 8),
K4(1, 4, 4, 4, 2, 6), or K4(1, 4, 4, 2, 3, 7), or K4(1, 4, 4, 6, 2, 6),
K4(1, 4, 4, 6, 3, 7), or K4(1, 4, 4, 6, 3, 8), or K4(1, 4, 4, 3, 5, 8),
K4(1, 2, 6, 9, 3, 5), or K4(1, 2, 6, 5, 5, 5), or K4(1, 2, 6, 4, 5, 8),
K4(1, 2, 6, 5, 3, 8), or K4(1, 3, 5, 2, 8, 3), or K4(1, 3, 5, 4, 9, 4),
K4(1, 3, 5, 5, 7, 4), or K4(1, 3, 5, 7, 2, 7), or K4(1, 3, 5, 7, 8, 2),
K4(1, 3, 5, i, i+ 6, i+ 1), or K4(1, 3, 5, i, i+ 1, i+ 4), or K4(1, 3, 5, i+ 2, i, i+ 5),
K4(1, 3, 5, i+ 2, i+ 3, i), or K4(1, 2, 6, i, i+ 7, i+ 1), or K4(1, 2, 6, i+ 2, i, i+ 6),
K4(1, 2, 6, i, i+ 1, i+ 3), or K4(1, 2, 6, i+ 2, i+ 2, i), or K4(2, 3, 4, e+ 4, e, 1),
K4(2, 3, 4, 6, e, 1), or K4(1, 3, 5, 5, e, 2), or K4(1, 3, 5, e+ 3, 2, e),
K4(2, 3, 4, 1, 7, f), or K4(1, 2, 6, 4, f, 4), or K4(1, 2, 6, f + 2, 4, f),
K4(1, 3, 5, 2, f, f + 4), or K4(1, 4, 4, s, s+ 1, s+ 5), or K4(1, 4, 4, s+ 2, s, s+ 4),
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where i ≥ 1, e ≥ 6, f ≥ 4 and s ≥ 3.

PROOF. The result follows directly from Theorems 13—18.

Conclusion. In this paper, we have completely determined the chromaticity of all
families of K4-homeomorphs with girth 9. The problem on chromaticity of such graphs
with girth equal and more than 10 still remains open. Another problem to consider is to
investigate the chromaticity of K4-homeomorphs with exactly two paths of length greater
than s, s ≥ 3.

Acknowledgement. The authors would like to thank the referee for valuable and
constructive comments.
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