Complete Solution To Chromatic Uniqueness Of K_{4}-Homeomorphs With Girth 9^{*}

Nor Suriya Abd Karim ${ }^{\dagger}$, Roslan Hasni ${ }^{\ddagger}$, Gee Choon Lau ${ }^{\S}$

Received 21 October 2015

Abstract

For a graph G, let $P(G, \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ-equivalent), denoted by $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph G is chromatically unique (or simply χ-unique) if for any graph H such as $H \sim G$, we have $H \cong G$, i.e. H is isomorphic to G. A K_{4}-homeomorph is a subdivision of the complete graph K_{4}. In this paper, we completely determine the chromaticity of K_{4}-homeomorphs which has girth 9 , and give sufficient and necessary condition for the graphs in the family to be chromatically unique.

1 Introduction

All graphs considered here are simple graphs. For such a graph G, let $P(G, \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ-equivalent), denoted by $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph G is chromatically unique (or simply χ-unique) if for any graph H such as $H \sim G$, we have $H \cong G$, i.e. H is isomorphic to G. Many families of χ-unique graphs are known (see $[9,10,11]$).

A K_{4}-homeomorph is a subdivision of the complete graph K_{4}. Such a homeomorph is denoted by $K_{4}(a, b, c, d, e, f)$ if the six edges of K_{4} are replaced by the six paths of length a, b, c, d, e, f, respectively, as shown in Figure 1. So far, the chromaticity of K_{4}-homeomorphs with girth g, where $3 \leq g \leq 7$ has been studied by many authors (see [3, 12, 14, 15, 16]). Also the study of the chromaticity of K_{4}-homeomorphs with at least 2 paths of length 1 has been fulfiled (see [4, 13, 14, 22]). Recently, Shi et al. [18] studied the chromaticity of one family of K_{4}-homeomorphs with girth 8, i.e. $K_{4}(2,3,3, d, e, f)$. In [19], Shi has solved completely the chromaticity of K_{4}-homeomorphs with girth 8 . As we know, only the chromaticity of such graphs with at least 2 paths of length 1 have been obtained among all the K_{4}-homeomorphs with girth 9 . By Ren [17], the chromaticity of K_{4}-homeomorphs with exactly 3 paths of same length has been obtained. Recently, Catada-Ghimire and Hasni [1] investigated the chromaticity of K_{4}-homeomorphs with exactly 2 paths of length 2 . Hence, to completely

[^0]

Figure 1: $K_{4}(a, b, c, d, e, f)$.
determine the chromaticity of K_{4}-homeomorph with girth 9 , there are only 6 more types to be solved, that is, $K_{4}(1,2,6, d, e, f), K_{4}(1,3,5, d, e, f), K_{4}(1,4,4, d, e, f), K_{4}(2,3,4, d, e, f)$, $K_{4}(1,2, c, 3, e, 3)$ and $K_{4}(1,3, c, 2, e, 3)$. The chromaticity of the graphs $K_{4}(2,3,4, d, e, f)$, $K_{4}(1,4,4, d, e, f)$ and $K_{4}(1,2,6, d, e, f)$ were solved by Karim et al. [6, 7, 8]. In this paper, to complete the study of the chromaticity of K_{4}-homeomorph with girth 9 , we investigate the remaining types $K_{4}(1,3,5, d, e, f), K_{4}(1,2, c, 3, e, 3)$ and $K_{4}(1,3, c, 2, e, 3)$. As by-product, we obtain the complete solution on the chromaticity of all families of K_{4}-homeomorphs with girth 9 .

2 Preliminary Results

In this section, we give some known results used in the sequel.

LEMMA 1. Assume that G and H are χ-equivalent. Then
(1) $|V(G)|=|V(H)|$ and $|E(G)=|E(H)|([9])$;
(2) G and H has the same girth and same number of cycles with length equal to their girth ([21]);
(3) If G is a K_{4}-homeomorph, then H must itself be a K_{4}-homeomorph ([2]);
(4) Let $G=K_{4}(a, b, c, d, e, f)$ and $H=K_{4}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$. Then
(i) $\min (a, b, c, d, e, f)=\min \left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$ and the number of times that this minimum occurs in the list $\{a, b, c, d, e, f\}$ is equal to the number of times that this minimum occurs in the list $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}([20])$;
(ii) if $\{a, b, c, d, e, f\}=\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ as multisets, then $H \cong G$ ([12]).

LEMMA $2(\operatorname{Ren}[17])$. Let $G=K_{4}(a, b, c, d, e, f)$ when exactly three of a, b, c, d, e, f are the same. Then G is not chromatically unique if and only if G is isomorphic to $K_{4}(s, s, s-$
$2,1,2, s)$ or $K_{4}(s, s-2, s, 2 s-2,1, s)$ or $K_{4}(t, t, 1,2 t, t+2, t)$ or $K_{4}(t, t, 1,2 t, t-1, t)$ or $K_{4}(t, t+1, t, 2 t+1,1, t)$ or $K_{4}(1, t, 1, t+1,3,1)$ or $K_{4}(1,1, t, 2, t+2,1)$, where $s \geq 3, t \geq 2$.

LEMMA 3 (Hasni et al. [5]). Let K_{4}-homeomorphs $K_{4}(1,3,5, d, e, f)$ and $K_{4}\left(1,3,5, d^{\prime}\right.$, $\left.e^{\prime}, f^{\prime}\right)$ be chromatically equivalent. Then

$$
K_{4}(1,3,5, i, i+6, i+1) \sim K_{4}(1,3,5, i+2, i, i+5)
$$

and

$$
K_{4}(1,3,5, i, i+1, i+4) \sim K_{4}(1,3,5, i+2, i+3, i)
$$

where $i \geq 1$.
LEMMA 4 (Karim et al. [6]). Let K_{4}-homeomorphs $K_{4}(2,3,4, d, e, f)$ and $K_{4}\left(1,3,5, d^{\prime}\right.$, $\left.e^{\prime}, f^{\prime}\right)$ be chromatically equivalent. Then

$$
K_{4}(2,3,4,1,3,6) \sim K_{4}(1,3,5,4,4,2)
$$

and

$$
K_{4}(2,3,4,1,5,7) \sim K_{4}(1,3,5,2,8,3)
$$

LEMMA 5 (Karim et al. [7]). Let K_{4}-homeomorphs $K_{4}(1,4,4, d, e, f)$ and $K_{4}\left(1,3,5, d^{\prime}\right.$, $\left.e^{\prime}, f^{\prime}\right)$ be chromatically equivalent. Then

$$
\begin{aligned}
& K_{4}(1,4,4,3,5,8) \sim K_{4}(1,3,5,5,7,4) \\
& K_{4}(1,4,4,6,3,7) \sim K_{4}(1,3,5,4,4,8) \\
& K_{4}(1,4,4,6,3,8) \sim K_{4}(1,3,5,4,9,4)
\end{aligned}
$$

and

$$
K_{4}(1,4,4,6,2,6) \sim K_{4}(1,3,5,2,4,8)
$$

LEMMA 6 (Karim et al. [8]). Let K_{4}-homeomorphs $K_{4}(1,2,6, d, e, f)$ and $K_{4}\left(1,3,5, d^{\prime}\right.$, $\left.e^{\prime}, f^{\prime}\right)$ be chromatically equivalent. Then

$$
\begin{aligned}
K_{4}(1,2,6,4,5,8) & \sim K_{4}(1,3,5,2,6,9) \\
K_{4}(1,2,6,4,7,5) & \sim K_{4}(1,3,5,2,8,6) \\
K_{4}(1,2,6,3,4,10) & \sim K_{4}(1,3,5,9,2,6) \\
K_{4}(1,2,6,3,4,6) & \sim K_{4}(1,3,5,5,6,2) \\
K_{4}(1,2,6,5,3,8) & \sim K_{4}(1,3,5,7,2,7) \\
K_{4}(1,2,6,5,9,3) & \sim K_{4}(1,3,5,7,8,2)
\end{aligned}
$$

and

$$
K_{4}(1,2,6, f+2,4, f) \sim K_{4}(1,3,5,2, f, f+4)
$$

where $f \geq 4$.

LEMMA 7 (Catada-Ghimire and Hasni [1]). A K_{4}-homeomorphic graph with exactly two path of length two is χ-unique if and only if it is not isomorphic to

$K_{4}(1,2,2,4,1,1)$,	or	$K_{4}(4,1,2,1,2,4)$,	or	$K_{4}(1, s+2,2,1,2, s)$,
$K_{4}(1,2,2, t+2, t+2, t)$,	or	$K_{4}(1,2,2, t, t+1, t+3)$,	or	$K_{4}(3,2,2, r, 1,5)$,
$K_{4}(1, r, 2,4,2,4)$,	or	$K_{4}(3,2,2, r, 1, r+3)$,	or	$K_{4}(r+2,2,2,1,4, r)$,
$K_{4}(r+3,2,2, r, 1,3)$,	or	$K_{4}(4,2,2,1, r+2, r)$,	or	$K_{4}(3,4,2,4,2,6)$,
$K_{4}(3,4,2,4,2,8)$,	or	$K_{4}(3,4,2,8,2,4)$,	or	$K_{4}(7,2,2,3,4,5)$,
$K_{4}(5,2,2,3,4,7)$,	or	$K_{4}(8,2,2,3,4,6)$,	or	$K_{4}(5,2,2,9,3,4)$,
$K_{4}(5,2,2,5,3,4)$,				

where $r \geq 3, s \geq 3, t \geq 3$.

3 Main Results

In this section, we present our main results. We now investigate the chromaticity of $K_{4}(1,3,5, d, e, f)$. We first obtain the following result.

LEMMA 8. Let G is of type of $K_{4}(1,3,5, d, e, f)$ and H is of type $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$, then there is no graph satisfying $G \sim H$ unless $G \cong H$.

PROOF. Let G and H be two graphs such that $G \cong K_{4}(1,3,5, d, e, f)$ and $H \cong$ $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$. Let

$$
\begin{aligned}
Q\left(K_{4}(a, b, c, d, e, f)\right)= & -(s+1)\left(s^{a}+s^{b}+s^{c}+s^{d}+s^{e}+s^{f}\right)+s^{a+d}+s^{b+f} \\
& +s^{c+e}+s^{a+b+e}+s^{b+d+c}+s^{a+c+f}+s^{d+e+f}
\end{aligned}
$$

Let $s=1-\lambda$ and x is the number of edges in G. From [20], we have the chromatic polynomial of K_{4}-homeomorphs $K_{4}(a, b, c, d, e, f)$ is as follows:

$$
P\left(K_{4}(a, b, c, d, e, f)=(-1)^{x-1} \frac{s}{(s-1)^{2}}\left[\left(s^{2}+3 s+2\right)+Q\left(K_{4}(a, b, c, d, e, f)\right)-s^{x-1}\right)\right]
$$

Hence $P(G)=P(H)$ if and only if $Q(G)=Q(H)$. We solve the equation $Q(G)=Q(H)$ to get all solutions. Let the lowest remaining power and the highest remaining power be denoted by l.r.p. and h.r.p., respectively.

As $G \cong K_{4}(1,3,5, d, e, f)$ and $H \cong K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$, then

$$
\begin{aligned}
Q(G)= & -(s+1)\left(s+s^{3}+s^{5}+s^{d}+s^{e}+s^{f}\right)+s^{d+1}+s^{f+3}+s^{e+5}+ \\
& s^{e+4}+s^{d+8}+s^{f+6}+s^{d+e+f}
\end{aligned}
$$

and

$$
\begin{aligned}
Q(H)= & -(s+1)\left(s+s^{3}+s^{c^{\prime}}+s^{2}+s^{e^{\prime}}+s^{3}\right)+s^{3}+s^{6}+s^{c^{\prime}+e^{\prime}}+ \\
& s^{e^{\prime}+4}+s^{c^{\prime}+5}+s^{c^{\prime}+4}+s^{e^{\prime}+5}
\end{aligned}
$$

By Lemma 1(1), we have

$$
\begin{equation*}
d+e+f=c^{\prime}+e^{\prime} \tag{1}
\end{equation*}
$$

Since $Q(G)=Q(H)$, we see that

$$
Q_{1}(G)=-s^{5}-s^{6}-s^{d}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{d+8}+s^{e+4}+s^{e+5}+s^{f+3}+s^{f+6}
$$

and

$$
Q_{1}(H)=-s^{2}-s^{3}-s^{4}-s^{c^{\prime}}-s^{c^{\prime}+1}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{6}+s^{c^{\prime}+4}+s^{c^{\prime}+5}+s^{e^{\prime}+4}+s^{e^{\prime}+5}
$$

We consider the term $-s^{2}$ and $-s^{3}$ in $Q_{1}(H)$. Since $d+e \geq 6$ and $e+f \geq 8$, we have either $d=3$ and $f=2$, or $d=2$ and $f=3$.

Case 1. Assume that $d=3$ and $f=2$. We obtain the following simplification

$$
\begin{gathered}
Q_{2}(G)=-s^{3}-s^{6}-s^{e}-s^{e+1}+s^{8}+s^{11}+s^{e+4}+s^{e+5} \\
Q_{2}(H)=-s^{4}-s^{c^{\prime}}-s^{c^{\prime}+1}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{6}+s^{c^{\prime}+4}+s^{c^{\prime}+5}+s^{e^{\prime}+4}+s^{e^{\prime}+5}
\end{gathered}
$$

Since $e \geq 6$, the term $-s^{4}$ is in $Q_{2}(H)$ but not in $Q_{2}(G)$, which is a contradiction.
Case 2. Assume that $d=2$ and $f=3$. We obtain the following simplification

$$
\begin{gathered}
Q_{3}(G)=-s^{5}-s^{6}-s^{e}-s^{e+1}+s^{9}+s^{10}+s^{e+4}+s^{e+5} \\
Q_{3}(H)=-s^{c^{\prime}}-s^{c^{\prime}+1}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{c^{\prime}+4}+s^{c^{\prime}+5}+s^{e^{\prime}+4}+s^{e^{\prime}+5}
\end{gathered}
$$

We then obtain either $c^{\prime}=5$ and $e=e^{\prime}$, or $c^{\prime}=e$ and $e^{\prime}=5$. If $c^{\prime}=5$ and $e=e^{\prime}$, we obtain $G \cong K_{4}(1,3,5,2, e, 3)$ and $H \cong K_{4}(1,3,5,2, e, 3)$. Hence, $G \cong H$. If $c^{\prime}=e$ and $e^{\prime}=5$, we obtain $G \cong K_{4}(1,3,5,2, e, 3)$ and $H \cong K_{4}(1,3, e, 2,5,3)$. Hence, $G \cong H$.

So the proof is complete.
LEMMA 9. If G is of type $K_{4}(1,3,5, d, e, f)$ and H is of type $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 3\right)$, then there are no graphs satisfying $G \sim H$ unless $G \cong H$.

PROOF. The proof is similar to Lemma 8.
LEMMA 10. If G is of type $K_{4}(1,3,5, d, e, f)$ and H is of type $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then there are no graphs satisfying $G \sim H$.

PROOF. If H is of the type of $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then from Lemma 7, we know that H is chromatically unique. Since $G \sim H$, we have $G \cong H$. But it is obvious that G is not isomorphic to H. This is a contradiction.

LEMMA 11. If G is of type $K_{4}(1,3,5, d, e, f)$ and H is of type $K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 4\right)$, then there are no graphs satisfying $G \sim H$.

PROOF. The proof is similar to Lemma 10.
LEMMA 12. If G is of type $K_{4}(1,3,5, d, e, f)$ and H is of type $K_{4}\left(1,2, c^{\prime}, 4, e^{\prime}, 2\right)$, then there are no graphs satisfying $G \sim H$.

PROOF. The proof is similar to Lemma 10.

Now we establish the chromaticity of $K_{4}(1,3,5, d, e, f)$ as follows.

THEOREM 13. K_{4}-homeomorphs $K_{4}(1,3,5, d, e, f)$ with girth 9 is not χ-unique if and only if it is isomorphic to

$K_{4}(1,3,5,2,4,8)$,	or	$K_{4}(1,3,5,2,8,3)$,	or	$K_{4}(1,3,5,2,8,6)$,
$K_{4}(1,3,5,4,4,8)$,	or	$K_{4}(1,3,5,4,9,4)$,	or	$K_{4}(1,3,5,5,6,2)$,
$K_{4}(1,3,5,5,7,4)$,	or	$K_{4}(1,3,5,7,2,7)$,	or	$K_{4}(1,3,5,7,8,2)$,
$K_{4}(1,3,5,9,2,6)$,	or	$K_{4}(1,3,5,5, e, 2)$,	or	$K_{4}(1,3,5, e+3,2, e)$,
$K_{4}(1,3,5, i, i+6, i+1)$,	or	$K_{4}(1,3,5, i, i+1, i+4)$,	or	$K_{4}(1,3,5, i+2, i, i+5)$,
$K_{4}(1,3,5, i+2, i+3, i)$,	or	$K_{4}(1,3,5,2, f, f+4)$,		

where $e \geq 6, i \geq 1$ and $f \geq 4$.

PROOF. Let G and H be two graphs such that $G \cong K_{4}(1,3,5, d, e, f)$ and $H \sim G$. Since the girth of G is 9 , there is at most 1 among d, e and f. Moreover, by Lemma 1(2)(3), it follows that H is a K_{4}-homeomorph with girth 9 . So H must be one of the following 10 types.

Type 1: $K_{4}\left(1,2,6, d^{\prime}, e^{\prime}, f^{\prime}\right)$ where $d^{\prime}+e^{\prime} \geq 7, d^{\prime}+f^{\prime} \geq 6, e^{\prime}+f^{\prime} \geq 8 ;$
Type 2: $K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$ where $d^{\prime}+e^{\prime} \geq 6, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 8$;
Type 3: $K_{4}\left(1,4,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$ where $d^{\prime}+e^{\prime} \geq 5, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 8$;
Type 4: $K_{4}\left(2,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$ where $d^{\prime}+e^{\prime} \geq 6, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 7$;
Type 5: $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$ where $d^{\prime}+e^{\prime} \geq 7, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 7$;
Type 6: $K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 4\right)$ where $c^{\prime} \geq 6, e^{\prime} \geq 5$;
Type 7: $K_{4}\left(1,2, c^{\prime}, 4, e^{\prime}, 2\right)$ where $c^{\prime}=e^{\prime} \geq 6$;
Type 8: $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 3\right)$ where $c^{\prime} \geq 6, e^{\prime} \geq 5$;
Type 9: $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$ where $c^{\prime}=e^{\prime} \geq 5$;
Type 10: $K_{4}\left(2,2, c^{\prime}, 2, e^{\prime}, 3\right)$ where $c^{\prime}=e^{\prime} \geq 5$.
If H is of Type 1 , then from Lemma 6, we know that the solutions of the equation $P(G)=P(H)$ are

$$
\begin{aligned}
K_{4}(1,2,6,4,5,8) & \sim K_{4}(1,3,5,2,6,9), \\
K_{4}(1,2,6,4,7,5) & \sim K_{4}(1,3,5,2,8,6), \\
K_{4}(1,2,6,3,4,10) & \sim K_{4}(1,3,5,9,2,6), \\
K_{4}(1,2,6,3,4,6) & \sim K_{4}(1,3,5,5,6,2), \\
K_{4}(1,2,6,5,3,8) & \sim K_{4}(1,3,5,7,2,7), \\
K_{4}(1,2,6,5,9,3) & \sim K_{4}(1,3,5,7,8,2), \\
K_{4}(1,2,6, f+2,4, f) & \sim K_{4}(1,3,5,2, f, f+4),
\end{aligned}
$$

where $f \geq 4$.

If H is of Type 2, then from Lemma 3, we know that the solutions of the equation $P(G)=P(H)$ are

$$
\begin{aligned}
& K_{4}(1,3,5, i, i+6, i+1) \quad \sim K_{4}(1,3,5, i+2, i, i+5) \\
& K_{4}(1,3,5, i, i+1, i+4) \sim K_{4}(1,3,5, i+2, i+3, i),
\end{aligned}
$$

where $i \geq 1$.
If H is of Type 3, then from Lemma 5, we know that the solutions of the equation $P(G)=P(H)$ are

$$
\begin{aligned}
K_{4}(1,4,4,3,5,8) & \sim K_{4}(1,3,5,5,7,4) \\
K_{4}(1,4,4,6,3,7) & \sim K_{4}(1,3,5,4,4,8) \\
K_{4}(1,4,4,6,3,8) & \sim K_{4}(1,3,5,4,9,4) \\
K_{4}(1,4,4,6,2,6) & \sim K_{4}(1,3,5,2,4,8)
\end{aligned}
$$

If H is of Type 4, then from Lemma 4, we know that the solutions of the equation $P(G)=P(H)$ are

$$
\begin{aligned}
K_{4}(2,3,4,1,3,6) & \sim K_{4}(1,3,5,4,4,2) \\
K_{4}(2,3,4,1,5,7) & \sim K_{4}(1,3,5,2,8,3)
\end{aligned}
$$

If H is of Types $5-9$, then from Lemmas $8-12$, we know that there is no solution of the equation $P(G)=P(H)$ unless $G \cong H$.

If H is of Type 10, then from Lemma 2, we know that H is chromatically unique. Since $G \sim H$, we have $G \cong H$. But it is obvious that G is not isomorphic to H. This is a contradiction.

This completes the proof.
The following table is to show the result of Theorem 13, that is, the solution of $P(G)=$ $P(H)$ when $G \cong K_{4}(1,3,5, d, e, f)$ and $H \sim G$.

Graph H where $G \cong K_{4}(1,3,5, d, e, f)$ and $H \sim G$	Solution of $P(G)=P(H)$
Type 1: $K_{4}\left(1,2,6, d^{\prime}, e^{\prime}, f^{\prime}\right)$	From Lemma 6
Type 2: $K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$	From Lemma 3
Type 3: $K_{4}\left(1,4,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$	From Lemma 5
Type 4: $K_{4}\left(2,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$	From Lemma 4
Type 5: $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$	No solution
Type 6: $K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 4\right)$	No solution
Type 7: $K_{4}\left(1,2, c^{\prime}, 4, e^{\prime}, 2\right)$	No solution
Type 8: $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 3\right)$	No solution
Type 9: $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$	No solution
Type 10: $K_{4}\left(2,2, c^{\prime}, 2, e^{\prime}, 3\right)$	No solution

Similarly to Theorem 13 , we can easily prove the following results.
THEOREM 14. K_{4}-homeomorphs $K_{4}(1,2, c, 3, e, 3)$ with girth 9 is χ-unique where $c \geq 6$ and $e \geq 5$.

THEOREM 15. K_{4}-homeomorphs $K_{4}(1,3, c, 2, e, 3)$ with girth 9 is χ-unique for all $c \geq 5$ and $e \geq 5$.

The following results were obtained in $[6,7,8]$.
THEOREM 16. K_{4}-homeomorphs $K_{4}(1,4,4, d, e, f)$ with girth 9 is not χ-unique if and only if G is isomorphic to

$$
\begin{array}{lll}
K_{4}(1,4,4,4,2,6), & K_{4}(1,4,4,6,2,6), & K_{4}(1,4,4,2,3,7), \\
K_{4}(1,4,4,6,3,7), & K_{4}(1,4,4,6,3,8), & K_{4}(1,4,4,3,5,8), \\
K_{4}(1,4,4, i, i+1, i+5), & K_{4}(1,4,4, i+2, i, i+4), &
\end{array}
$$

where $i \geq 3$.
THEOREM 17. Let K_{4}-homeomorphs $K_{4}(2,3,4, d, e, f)$ with girth 9 is not χ-unique if and only if G is isomorphic to

$$
\begin{array}{lll}
K_{4}(2,3,4,1,5,8), & K_{4}(2,3,4,2,4,8), & K_{4}(2,3,4,2,6,8) \\
K_{4}(2,3,4, e+4, e, 1), & K_{4}(2,3,4,6, e, 1), & K_{4}(2,3,4,1,7, f)
\end{array}
$$

where $e \geq 6$ and $f \geq 4$.
THEOREM 18. K_{4}-homeomorphs $K_{4}(1,2,6, d, e, f)$ with girth 9 is not χ-unique if and only if it is isomorphic to

$$
\begin{array}{lll}
K_{4}(1,2,6,6,3,4), & K_{4}(1,2,6,9,3,5), & K_{4}(1,2,6,5,5,5), \\
K_{4}(1,2,6,4,5,8), & K_{4}(1,2,6,3,4,10), & K_{4}(1,2,6,5,3,8), \\
K_{4}(1,2,6,4, s, 4), & K_{4}(1,2,6, f+2,4, f), & K_{4}(1,2,6, i, i+7, i+1), \\
K_{4}(1,2,6, i+2, i, i+6), & K_{4}(1,2,6, i, i+1, i+3), & K_{4}(1,2,6, i+2, i+2, i),
\end{array}
$$

where $i \geq 1, s \geq 4, f \geq 4$.
Now, we present the necessary and sufficient conditions for all families of K_{4}-homeomorphs graph with girth 9 to be χ-unique.

THEOREM 19. Let G be a K_{4}-homeomorphs graph with girth 9 . Then G is not χ-unique if and only if G is isomorphic to

$K_{4}(2,3,4,1,5,8)$,	or	$K_{4}(2,3,4,2,4,8)$,	or	$K_{4}(2,3,4,2,6,8)$,
$K_{4}(1,4,4,4,2,6)$,	or	$K_{4}(1,4,4,2,3,7)$,	or	$K_{4}(1,4,4,6,2,6)$,
$K_{4}(1,4,4,6,3,7)$,	or	$K_{4}(1,4,4,6,3,8)$,	or	$K_{4}(1,4,4,3,5,8)$,
$K_{4}(1,2,6,9,3,5)$,	or	$K_{4}(1,2,6,5,5,5)$,	or	$K_{4}(1,2,6,4,5,8)$,
$K_{4}(1,2,6,5,3,8)$,	or	$K_{4}(1,3,5,2,8,3)$,	or	$K_{4}(1,3,5,4,9,4)$,
$K_{4}(1,3,5,5,7,4)$,	or	$K_{4}(1,3,5,7,2,7)$,	or	$K_{4}(1,3,5,7,8,2)$,
$K_{4}(1,3,5, i, i+6, i+1)$,	or	$K_{4}(1,3,5, i, i+1, i+4)$,	or	$K_{4}(1,3,5, i+2, i, i+5)$,
$K_{4}(1,3,5, i+2, i+3, i)$,	or	$K_{4}(1,2,6, i, i+7, i+1)$,	or	$K_{4}(1,2,6, i+2, i, i+6)$,
$K_{4}(1,2,6, i, i+1, i+3)$,	or $\quad K_{4}(1,2,6, i+2, i+2, i)$,	or	$K_{4}(2,3,4, e+4, e, 1)$,	
$K_{4}(2,3,4,6, e, 1)$,	or $\quad K_{4}(1,3,5,5, e, 2)$,	or	$K_{4}(1,3,5, e+3,2, e)$,	
$K_{4}(2,3,4,1,7, f)$,	or $\quad K_{4}(1,2,6,4, f, 4)$,	or	$K_{4}(1,2,6, f+2,4, f)$,	
$K_{4}(1,3,5,2, f, f+4)$,	or	$K_{4}(1,4,4, s, s+1, s+5)$,	or $\quad K_{4}(1,4,4, s+2, s, s+4)$,	

where $i \geq 1, e \geq 6, f \geq 4$ and $s \geq 3$.
PROOF. The result follows directly from Theorems 13-18.

Conclusion. In this paper, we have completely determined the chromaticity of all families of K_{4}-homeomorphs with girth 9 . The problem on chromaticity of such graphs with girth equal and more than 10 still remains open. Another problem to consider is to investigate the chromaticity of K_{4}-homeomorphs with exactly two paths of length greater than $s, s \geq 3$.

Acknowledgement. The authors would like to thank the referee for valuable and constructive comments.

References

[1] S. Catada-Ghimire and R. Hasni, New result on chromaticity of K_{4}-homeomorphic graphs, Int. J. Comp. Math., 91(2014), 834-843.
[2] C. Y. Chao and L. C. Zhao, Chromatic polynomials of a family of graphs, Ars Combin., 15(1983), 111-129.
[3] X. E. Chen and K. Z. Ouyang, Chromatic classes of certain 2-connected ($n, n+2$)-graphs homeomorphs to K_{4}, Discrete Math., 172(1997), 17-29.
[4] Z. Y. Guo and E. G. Whitehead Jr., Chromaticity of a family of K_{4}-homeomorphs, Discrete Math., 172(1997), 53-58.
[5] R. Hasni, A. Ahmad and F. Mustapha, Chromatic equivalence of K_{4}-homeomorphs with girth 9, Int. J. Pure Appl. Maths, 81(2012), 347-357.
[6] N. S. A. Karim, R. Hasni and G. C. Lau, Chromaticity of a family of K_{4}-homeomorphs with girth 9, AIP Conference Proceedings, Vol. 1605(2014), 563-567 (view online: http://dx.doi.org/10.1063/1.4903019).
[7] N. S. A. Karim, R. Hasni and G. C. Lau, Chromaticity of a family of K_{4}-homeomorphs with girth 9 II, Malaysian J. Math. Sci., 9(2015), 367-396.
[8] N. S. A. Karim, R. Hasni and G. C. Lau, New result on chromaticity of $K_{4^{-}}$ homeomorphic graphs with girth 9, Bull. Iranian Math. Soc., accepted for publication.
[9] K. M. Koh and K. L. Teo, The search for chromatically unique graphs, Graphs Combin., 6(1990), 256-285.
[10] K. M. Koh and K. L. Teo, The search for chromatically unique graphs, II, Discrete Math., 172(1997), 59-78.
[11] G. C. Lau and Y. H. Peng, Chromatic uniqueness of certain complete tripartite graphs, Acta Math. Sinica (English Series), 27(2011), 919-926.
[12] W. M. Li, Almost every K_{4}-homeomorphs is chromatically unique, Ars Combin., 23(1987), 13-36.
[13] Y. L. Peng and R. Y. Liu, Chromaticity of a family of K_{4}-homeomorphs, Discrete Math., 258(2002), 161-177.
[14] Y. L. Peng, Some new results on chromatic uniqueness of K_{4}-homeomorphs, Discrete Math., 228(2004), 177-183.
[15] Y. L. Peng, Chromatic uniqueness of a family of K_{4}-homeomorphs, Discrete Math., 308(2008), 6132-6140.
[16] Y. L. Peng, A family of chromatically unique K_{4}-homeomorphs, Ars Combin., 105(2012), 491-502.
[17] H. Z. Ren, On the chromaticity of K_{4}-homeomorphs, Discrete Math., 252(2002), 247257.
[18] W. Shi, Y.-I. Pan and Y. Zhao, Chromatic uniqueness of K_{4}-homeomorphs with girth 8, J. Math Research Applications, 32(2012), 269-280.
[19] W. Shi, On the critical group and chromatic uniqueness of a graph, Master Thesis, University of Science and Technology of China, P.R. China, 2011.
[20] E. G. Whitehead Jr. and L. C. Zhao, Chromatic uniqueness and equivalence of $K_{4}{ }^{-}$ homeomorphs, Journal of Graph Theory, 8(1984), 355-364.
[21] S. Xu, A lemma in studying chromaticity, Ars Combin., 32(1991), 315-318.
[22] S. Xu, Chromaticity of a family of K_{4}-homeomorphs, Discrete Math., 117(1993), 293297.

[^0]: *Mathematics Subject Classifications: 05C15.
 \dagger Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
 \ddagger School of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
 ${ }^{\S}$ Faculty of Computer and Mathematical Sciences, University Teknologi MARA (Segamat Campus), 85000 Segamat, Johor, Malaysia

