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Abstract

The aim of this note is to establish sequential formulas for the Pareto subd-
ifferential (weak and proper) of the sum of two convex vector valued mappings.
An application is given dealing with sequential effi ciency optimality conditions
for constrained convex vector optimization problem.

1 Introduction

Sequential convex subdifferential calculus have received a great deal of interest from
the scientific community in recent years (see [1, 2, 6, 7, 11]). One knows that a
qualification condition is required for any exact subdifferential calculus rule and also
for deriving optimality conditions related to a constrained optimization problem. In the
absence of constraint qualification, sequential calculus constitutes an alternative way
for establishing formulas for the subdifferential as the sum or the composition of convex
functions in terms of the subdifferential of data functions at nearby points. In this note,
our main object is to establish formulas for the sequential Pareto subdifferential (weak
and proper) of the sum of two convex vector mappings. This enables us to derive
sequential effi ciency optimality conditions in terms of subgradients and normal cones,
which characterize weak (resp. proper) effi cient solution of constrained convex vector
optimization problem.
The rest of the work is written as follows. In section 2, we present some basic

definitions and preliminary material. In section 3, we establish the sequential formulas
for the weak and proper Pareto subdifferential of the sum of two convex vector val-
ued mappings. In section 4, we derive sequential effi ciency optimality conditions of
constrained convex vector optimization problem.
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2 Notations, Definitions and Preliminaries

Let X and Y be two Hausdorff topological vector spaces, X∗ and Y ∗ be their respective
topological duals paired in duality by 〈, 〉 and Y+ be a nonempty convex cone of Y with
nonempty interior (int Y+ 6= ∅). Let l(Y+) = Y+ ∩ −Y+ be the lineality of Y+, when
it is nul, the cone Y+ is said to be pointed. In what follows, the convex cone Y+ is not
supposed to be a linear subspace so that it cannot coincide with its lineality. For any
y1, y2 ∈ Y , we define the following ordering relations

y1 ≤Y+ y2 ⇐⇒ y2 − y1 ∈ Y+,
y1 <Y+ y2 ⇐⇒ y2 − y1 ∈ int Y+,

y1 �Y+ y2 ⇐⇒ y2 − y1 ∈ Y+\l(Y+).

We adjoint to Y an artificial element +∞ such that y ≤Y+ +∞, for any y ∈ Y and
y + (+∞) = +∞ for any y ∈ Y ∪ {+∞} and α.(+∞) = +∞ for any α ∈ R+.

The polar cone Y ∗+ of Y+ is the set of y
∗ ∈ Y ∗ such that y∗(Y+) v R+, while the

strict polar cone (Y ∗+)◦ of Y+ is the set of y∗ ∈ Y ∗ such that

y∗(Y+�l(Y+)) v R+�{0}.

Since convexity and lower semi-continuity play an important role in the sequel, let us
recall the concept of cone convex mappings and the concept of lower semi-continuity
in the sense of Penot-Théra.

DEFINITION 2.1.

1) A mapping F : X −→ Y ∪ {+∞} is said to be Y+- convex if for every λ ∈ [0, 1]
and x1, x2 ∈ X,

F (λx1 + (1− λ)x2) ≤Y+ λF (x1) + (1− λ)F (x2)

2) Following [3, 9,10], one says that a mapping F : X −→ Y ∪ {+∞} is lower semi-
continuous (l.s.c) at x̄ ∈ dom F := {x ∈ X : F (x) ∈ Y } if for any neighborhood
V of F (x̄) in Y , there exists a neighborhood U of x̄ such that

F (U) ⊆ (V + Y+) ∪ {+∞}; (1)

When F (x̄) = +∞, F is said to be lower semi-continuous (l.s.c) at x̄ if for any
y ∈ Y , any neighborhood V of y, there exists a neighborhood U of x̄ such that
(1) is satisfied.

REMARK 2.1.

1) In the case when Y = R, Y+ = [0,+∞[ we recover the notion of scalar semi-
continuity.
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2) Let us note that it was shown in [10] that if F : X −→ Y ∪ {+∞} is l.s.c, then
the epigraph

EpiF := {(x, y) ∈ X × Y : F (x) ≤Y+ y}

of F is closed in X×Y , but the converse is false in general (see a counterexample
given in [10]).

3) A sequential characterization of the vector lower semi-continuity was studied in
[4].

In what follows, we will need a stability result linked to the composition operation
of mappings. Given a function g : Y −→ R∪ {+∞} and define the composite function
g ◦ F : X −→ R ∪ {+∞} as follows (see [9])

(g ◦ F )(x) :=

{
g(F (x)) if x ∈ dom F,

supy∈Y g(y) otherwise.
(2)

Let us recall that g : Y −→ R ∪ {+∞} is said to be Y+-nondecreasing if for any
y1, y2 ∈ Y, we have

y1 ≤Y+ y2 =⇒ g(y1) ≤ g(y2).

PROPOSITION 2.2 ([4, 9]). Let us assume that the mapping F : X −→ Y ∪{+∞}
is lower semi-continuous and that the function g : Y −→ R∪{+∞} is Y+-nondecreasing
and lower semi-continuous. Then the function g ◦ F is lower semi-continuous.

REMARK 2.2.

1) Proposition 2.2 fails to hold if the lower semi-continuity is replaced by the weaker
assumption that EpiF is closed (see a counterexample given in [8]).

2) It is more usual to set (g ◦ F )(x) = +∞ for x ∈ X\dom F, but, with such a
definition, Proposition 2.2 is no longer true (see a counterexample given in [4,
9]).

3) In the sequel, we shall need the lower semi-continuity of the mapping y∗◦F for any
y∗ ∈ Y ∗+. For this, let us observe that for any y∗ ∈ Y ∗+, y∗ is Y+-nondecreasing
and lower semi-continuous and according to (2), y∗ ◦ F = 0 for y∗ = 0, and
(y∗ ◦ F )(x) = +∞ for y∗ 6= 0 and F (x) = +∞. Now, if F : X −→ Y ∪ {+∞} is
lower semi-continuous and by using Proposition 2.2, we easily obtain that y∗ ◦F
is lower semi-continuous.

Consider now the vector optimization problem

(P ) min
x∈C

F (x),
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where F : X −→ Y ∪ {+∞} is a given mapping and C is a nonempty subset of X. A
point x̄ ∈ dom F ∩ C is said to be
I effi cient solution of problem (P ) if @x ∈ C, F (x) �Y+ F (x̄).
I weak effi cient solution (w-effi cient solution) of problem (P ) if @x ∈ C, F (x) <Y+

F (x̄).
I proper effi cient solution (p-effi cient solution) of problem (P ) if

∃Ŷ+ ( Y convex cone such that Y+ \ l(Y+) v intŶ+, @x ∈ C, F (x) �Ŷ+ F (x̄).

The sets of effi cient points, weakly and properly effi cient points will be denoted respec-
tively by Ee(F,C), Ew(F,C) and Ep(F,C).

REMARK 2.3.

1) We have Ep(F,C) v Ee(F,C) v Ew(F,C).

2) It is easy to see that if x̄ ∈ dom F ∩ C is a strong solution of the problem (P ) i.e.
F (x̄) ≤ F (x) for any x ∈ dom F ∩ C then every effi cient solution of the problem
(P ) is a strong solution i.e. Ee(F,C) is exactly the set of strong solutions of
problem (P ).

These notions enable us to define the weak and proper subdifferential of a vector
valued mapping F : X −→ Y ∪ {+∞} at x̄ ∈ dom F as follows

• weak subdifferential

∂wF (x̄) := {A ∈ L(X,Y ) : @x ∈ X, F (x)− F (x̄) <Y+ A(x− x̄)}.

• proper subdifferential

∂pF (x̄) := {A ∈ L(X,Y ) : ∃Ŷ+ ( Y convex cone such that

Y+ \ l(Y+) v intŶ+, @x ∈ X, F (x)− F (x̄) �Ŷ+ A(x− x̄)}.

where L(X,Y ) is the space of linear continuous operators from X to Y .

In what follows, for simplicity we shall regroup in one notation σ-effi cient solution, Eσ(F,C), ∂σF (x̄)
for σ ∈ {w, p} and

Y σ+ :=

{
Y ∗+ \ {0} if σ = w,

(Y ∗+)◦ if σ = p.

An important property follows immediately from the above definitions

x̄ ∈ Eσ(F,X)⇐⇒ 0 ∈ ∂σF (x̄) (σ ∈ {w, p}).

In the sequel, we will need the concept of the strong subdifferential of F at x̄ ∈ dom F
given by

∂sF (x̄) := {A ∈ L(X,Y ) : A(x− x̄) ≤Y+ F (x)− F (x̄), ∀x ∈ X}.
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When F is a function, ∂sF (x̄) reduces to the well-known scalar Fenchel subdifferential

∂F (x̄) := {x∗ ∈ X∗ : F (x)− F (x̄) ≥ 〈x∗, x− x̄〉, ∀x ∈ X}.

A vector mapping F : X −→ Y ∪ {+∞} is said to be σ-regular subdifferentiable
(σ ∈ {w, p}), if

∂(y∗ ◦ F )(x̄) = y∗ ◦ ∂sF (x̄), ∀y∗ ∈ Y σ+ , ∀x̄ ∈ dom F

where it is understood that the set y∗ ◦ ∂sF (x̄) := {y∗ ◦A : A ∈ ∂sF (x̄)}.

REMARK 2.4. One can easily show that (Y ∗+)◦ v Y ∗+ \ {0}. Hence we have F is
w-regular subdifferentiable implies F is p-regular subdifferentiable.

The following scalarization result will be needed.

THEOREM 2.3 ([5]). Let X and Y be two Hausdorff topological vector spaces. Let
F : X −→ Y ∪{+∞} be Y+-convex vector valued mapping. For σ ∈ {w, p} and x̄ ∈ X,
we have

∂σF (x̄) =
⋃

y∗∈Y σ+

{A ∈ L(X,Y ) : y∗ ◦A ∈ ∂(y∗ ◦ F )(x̄)}.

When σ = p, we assume that Y+ is pointed.

In the sequel, (X, ‖.‖X) is a reflexive Banach space and (X∗, ‖.‖X∗) its topological
dual. Let (x∗n)n∈N be a sequence inX∗ (resp. (xn)n∈N be a sequence inX) and x∗ ∈ X∗

(resp. x ∈ X). We write x∗n
‖.‖X∗−→ x∗ (resp. xn

‖.‖X−→ x) if ‖x∗n − x∗‖X∗ −→ 0 when
n −→ +∞ (resp. ‖xn − x‖X −→ 0 when n −→ +∞).
For establishing our main result, let us recall a sequential general formula without

qualification conditions for the subdifferential of the sum of two proper lower semi-
continuous convex functions defined on a reflexive Banach space.

THEOREM 2.4 ([11]). Let X be a reflexive Banach space. Let f1, f2 : X −→
R ∪ {+∞} be two proper convex and lower semi-continuous functions. Then for any
x̄ ∈ dom f1 ∩ dom f2 we have x∗ ∈ ∂(f1 + f2)(x̄) if and only if there exist (x1,n, x2,n) ∈
dom f1 × dom f2, x

∗
1,n ∈ ∂f1(x1,n) and x∗2,n ∈ ∂f2(x2,n) such that

x∗1,n + x∗2,n
‖.‖X∗−→ x∗, x1,n

‖.‖X−→ x̄, x2,n
‖.‖X−→ x̄ (n −→ +∞),

f1(x1,n)− 〈x∗1,n, x1,n − x̄〉 − f1(x̄) −→ 0 (n −→ +∞),

and
f2(x2,n)− 〈x∗2,n, x2,n − x̄〉 − f2(x̄) −→ 0 (n −→ +∞).

REMARK 2.5. The above theorem holds if we take the convergence of the sequence

x∗1,n + x∗2,n
‖.‖X∗−→ x∗ with respect to the weak star convergence σ(X∗, X) instead of the

norm convergence ‖.‖X∗ (see [11]).
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3 Sequential Formula for Pareto Subdifferential of
the Sum of Two Convex Vector Valued Mappings

In this section, we state the sequential Pareto subdifferential (weak and proper) of the
sum of two convex vector valued mappings.

THEOREM 3.1. Let X be a reflexive Banach space, Y be a normed space and
Y+ be a nonempty convex cone of Y . Let F1, F2 : X −→ Y ∪ {+∞} be two proper,
Y+-convex and lower semi-continuous vector valued mappings. Suppose, in addition,
that Y+ is pointed as σ = p. Then for x̄ ∈ dom F1 ∩ dom F2, A ∈ ∂σ(F1 + F2)(x̄) if
and only if there exist y∗ ∈ Y σ+ , (xi,n, x

∗
i,n) ∈ dom Fi ×X∗ (i = 1, 2) satisfying

xi,n
‖.‖X−→ x̄ and x∗i,n ∈ ∂(y∗ ◦ Fi)(xi,n)

such that
x∗1,n + x∗2,n

‖.‖X∗−→ y∗ ◦A

and
(y∗ ◦ Fi)(xi,n)− 〈x∗i,n, xi,n − x̄〉 −→ (y∗ ◦ Fi)(x̄) (n −→ +∞).

PROOF. Let A ∈ ∂σ(F1+F2)(x̄). By applying the scalarization Theorem 2.3, there
exists some y∗ ∈ Y σ+ such that

y∗ ◦A ∈ ∂(y∗ ◦ F1 + y∗ ◦ F2)(x̄).

Since F1 and F2 are proper, convex and lower semi-continuous, it follows according
to Remark 2.2, that the scalar functions y∗ ◦ F1 and y∗ ◦ F2 are proper, convex
and lower semi-continuous and since dom Fi = dom (y∗ ◦ Fi) (i = 1, 2), we have
x̄ ∈ dom (y∗ ◦ F1) ∩ dom (y∗ ◦ F2) and hence by virtue of Theorem 2.4, there exist

(xi,n, x
∗
i,n) ∈ dom Fi ×X∗ (i = 1, 2) satisfying xi,n

‖.‖X−→ x̄ and x∗i,n ∈ ∂(y∗ ◦ Fi)(xi,n)
such that

x∗1,n + x∗2,n
‖.‖X∗−→ y∗ ◦A

and
(y∗ ◦ Fi)(xi,n)− 〈x∗i,n, xi,n − x̄〉 −→ (y∗ ◦ Fi)(x̄) (n −→ +∞).

THEOREM 3.2. Let X be a reflexive Banach space, Y be a normed space and
Y+ be a nonempty convex cone of Y . Let F1, F2 : X −→ Y ∪ {+∞} be two proper,
Y+-convex and lower semi-continuous vector valued mappings. Suppose that F1 and
F2 are σ-regular subdifferentiables on X and, in addition, that Y+ is pointed as σ = p.
Then for x̄ ∈ dom F1 ∩dom F2, A ∈ ∂σ(F1 +F2)(x̄) if and only if there exist y∗ ∈ Y σ+ ,
(xi,n, x

∗
i,n) ∈ X × X∗ (i = 1, 2), Ai,n ∈ ∂sFi(xi,n) satisfying xi,n

‖.‖X−→ x̄ and x∗i,n =
y∗ ◦Ai,n such that

y∗ ◦A1,n + y∗ ◦A2,n
‖.‖X∗−→ y∗ ◦A
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and

(y∗ ◦ Fi)(xi,n)− < y∗ ◦Ai,n, xi,n − x̄ >−→ (y∗ ◦ Fi)(x̄) (n −→ +∞).

PROOF. Following the proof of Theorem 3.1 and by using the σ-regular subdiffer-
entiability of Fi (i = 1, 2), we have ∂(y∗ ◦ Fi)(xi,n) = y∗ ◦ ∂sFi(xi,n) for any y∗ ∈ Y σ+ .
So, there exists some Ai,n ∈ ∂sFi(x̄) (i = 1, 2) such that x∗i,n = y∗ ◦Ai,n and hence we
obtain

y∗ ◦A1,n + y∗ ◦A2,n
‖.‖X∗−→ y∗ ◦A

and
(y∗ ◦ Fi)(xi,n)− 〈y∗ ◦Ai,n, xi,n − x̄〉 −→ (y∗ ◦ Fi)(x̄) (n −→ +∞).

REMARK 3.1. Let us note that Theorem 3.2 may be used if one of the vector
mapping F1 or F2 is σ-regular subdifferentiable.

4 Sequential Effi ciency for Constrained Vector Op-
timization

In this section we are concerned with the vector optimization problem

(P ) min
x∈C

F (x)

where F : X −→ Y ∪{+∞} is a proper, Y+-convex and lower semi-continuous mapping
and C is a nonempty convex closed subset of X.
By introducing the vector indicator mapping of the nonempty subset C ⊆ X,

δvC : X −→ Y ∪ {+∞},

δvC(x) =

{
0 if x ∈ C,
+∞ otherwise,

the problem (P ) becomes equivalent to the unconstrained vector minimization problem

min
x∈X

(F (x) + δvC(x))

in the following sense.

LEMMA 4.1.

1) Let F : X −→ Y ∪ {+∞}, then Eσ(F,C) = Eσ(F + δvC , X) (σ ∈ {w, p}).

2) If C is closed then δvC is lower semi-continuous.
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PROOF. The proof of statement 1) can be found in [5]. 2) If x̄ ∈ C, let V be
any neighborhood of δvC(x̄) = 0 in Y . By choosing U := X as a neighborhood of
x̄ in X and by distinguishing the cases u ∈ C, u ∈ X \ C (u ∈ U), the inclusion
δvC(U) ⊂ (V + Y+) ∪ {+∞} follows immediately. Now if x̄ ∈ X \ C, let y ∈ Y and V
any neighborhood of y. By putting U := X \ C which is an open neighborhood of x̄
(since C is closed), one can easily check δvC(U) ⊂ (V + Y+) ∪ {+∞}.

The vector indicator mapping appears to possess properties like the scalar one. By
considering the normal cone of C at x̄ ∈ C in a vector sense

Nv
C(x̄) := {A ∈ L(X,Y ) : A(x− x̄) ≤Y+ 0, ∀x ∈ C},

it is easy to see that Nv
C(x̄) = ∂sδvC(x̄). If Y = R, the vector normal cone reduces to

the usual normal cone

NC(x̄) := {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ 0, ∀x ∈ C}.

In fact, the presence of the vector indicator mapping enables us to state the following
sequential optimality conditions characterizing a σ-effi cient solution (σ ∈ {w, p}) of the
problem (P ).

THEOREM 4.2. Let X be a reflexive Banach space, Y be a normed space and Y+
be a nonempty convex cone of Y . Let F : X −→ Y ∪ {+∞} be a proper, Y+-convex
and lower semi-continuous mapping and C be a nonempty convex closed subset of X.
Suppose, in addition, that Y+ is pointed as σ = p. Then, x̄ ∈ dom F∩C is a σ-effi cient
solution of problem (P ) if and only if there exist y∗ ∈ Y σ+ , (x1,n, x

∗
1,n) ∈ dom F×X∗

and (x2,n, x
∗
2,n) ∈ C ×NC(x2,n) satisfying

xi,n
‖.‖X−→ x̄ (i = 1, 2) and x∗1,n ∈ ∂(y∗ ◦ F )(x1,n)

such that
x∗1,n + x∗2,n

‖.‖X∗−→ 0,

(y∗ ◦ F )(x1,n)− 〈x∗1,n, x1,n − x̄〉 −→ (y∗ ◦ F )(x̄) (n −→ +∞),

〈x∗2,n, x2,n − x̄〉 −→ 0 (n −→ +∞).

PROOF. By virtue of Lemma 4.1, we can write

x̄ ∈ Eσ(F,C)⇐⇒ x̄ ∈ Eσ(F + δvC , X)⇐⇒ 0 ∈ ∂σ(F + δvC)(x̄)

and also we have δvC is lower semi-continuous. The vector mappings F and δ
v
C satisfy to-

gether all the hypotheses of Theorem 3.1, thus we deduce 0 ∈ ∂σ(F+δvC)(x̄) if and only
if there exist y∗ ∈ Y σ+ , (x1,n, x

∗
1,n) ∈ dom F × X∗ and (x2,n, x

∗
2,n) ∈ dom δvC ×X∗ =

C ×X∗, satisfying xi,n
‖.‖X−→ x̄ (i = 1, 2) and

x∗1,n ∈ ∂(y∗ ◦ F )(x1,n) and x∗2,n ∈ ∂(y∗ ◦ δvC)(x2,n) (3)
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such that

x∗1,n + x∗2,n
‖.‖X∗−→ 0,

(y∗ ◦ F )(x1,n)− 〈x∗1n, x1,n − x̄〉 −→ (y∗ ◦ F )(x̄) (n −→ +∞),

and
(y∗ ◦ δvC)(x2,n)− 〈x∗2,n, x2,n − x̄〉 −→ (y∗ ◦ δvC)(x̄) (n −→ +∞). (4)

As y∗ ◦ δvC = δC for any y∗ ∈ Y σ+ , it follows from (3) that

x2,n ∈ C and x∗2,n ∈ ∂δC(x2,n) = NC(x2,n)

and therefore (4) becomes equivalent to

〈x∗2,n, x2,n − x̄〉 −→ 0 (n −→ +∞)

which completes the proof.

By using the same arguments as in the proof of Theorem 4.2 and the equality
NC(x̄) = y∗ ◦ Nv

C(x̄) obtained from the fact that the vector indicator mapping δvC is
w-regular subdifferentiable (see [5]), we can easily derive the following result.

THEOREM 4.3. Let X be a reflexive Banach space, Y be a normed space and Y+
be a nonempty convex cone of Y . Let F : X −→ Y ∪ {+∞} be proper, Y+-convex and
lower semi-continuous and C be a nonempty convex closed subset of X. Suppose, in
addition, that Y+ is pointed as σ = p. Then, x̄ ∈ dom F ∩ C is a σ-effi cient solution of
problem (P ) if and only if there exist y∗ ∈ Y σ+ , (x1,n, x

∗
1,n) ∈ dom F×X∗, (x2,n, x

∗
2,n) ∈

C ×NC(x2,n) and An ∈ Nv
C(x2,n) satisfying

xi,n
‖.‖X−→ x̄ (i = 1, 2), x∗2,n = y∗ ◦An and x∗1,n ∈ ∂(y∗ ◦ F )(x1,n)

such that

x∗1,n + y∗ ◦An
‖.‖X∗−→ 0,

(y∗ ◦ F )(x1,n)− 〈x∗1,n, x1,n − x̄〉 −→ (y∗ ◦ F )(x̄) (n −→ +∞),

and
〈y∗ ◦An, x2,n − x̄〉 −→ 0 (n −→ +∞).

If F is furthermore σ-regular subdifferentiable, it follows from Theorem 4.2 the next
result.

THEOREM 4.4 Let X be a reflexive Banach space, Y be a normed space and
Y+ be a nonempty convex cone of Y . Let F : X −→ Y ∪ {+∞} be proper, Y+-
convex, lower semi-continuous and σ-regular subdifferentiable. Let C be a nonempty
convex closed subset of X. Suppose, in addition, that Y+ is pointed as σ = p. Then,
x̄ ∈ dom F ∩ C is a σ-effi cient solution of problem (P ) if and only if there exist
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y∗ ∈ Y σ+ , (x1,n, x
∗
1,n) ∈ dom F × X∗, (x2,n, x

∗
2,n) ∈ C × NC(x2,n), A1,n ∈ ∂sF (x1,n)

and A2,n ∈ Nv
C(x2,n) satisfying

x∗1,n = y∗ ◦A1,n, x∗2,n = y∗ ◦A2,n,

xi,n
‖.‖X−→ x̄ (i = 1, 2) and x∗1,n ∈ ∂(y∗ ◦ F )(x1,n)

such that

y∗ ◦A1,n + y∗ ◦A2,n
‖.‖X∗−→ 0,

(y∗ ◦ F )(x1,n)− 〈y∗ ◦A1,n, x1,n − x̄〉 −→ (y∗ ◦ F )(x̄) (n −→ +∞),

and
〈y∗ ◦A2,n, x2,n − x̄〉 −→ 0 (n −→ +∞).

REMARK 4.1. The study of the sequential Pareto subdifferential (weak and proper)
of a convex composed operator will appear in a forthcoming paper.
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