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Abstract
A method is proposed to approximate the wave solutions of local delayed

reaction-diffusion models of single species populations. Using an extended differ-
ential transform method, it is shown that the boundary value problem associated
with the wave equation and logistic birth function can be transformed into a
nonlinear system of algebraic equations. The solution of the truncated nonlinear
system may represent the approximate wave solution of the model.

1 Introduction

In the present work we consider the following scalar delayed Reaction-Diffusion model

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
− du(x, t) + b(u(x, t− τ)), (1)

where u(x, t) is the population density of a single species at time t and position x;
τ ≥ 0 is a delay term representing the maturation time of individuals; b(w) is the
nonlinear birth function; D is the diffusion coeffi cient; and d is the death rate. Model
(1) has been extensively investigated including the asymptotic behavior of solutions
[15], Hopf bifurcation [15, 16], solutions of the corresponding Dirichlet problem [17]
and the traveling wave solutions [11, 15, 18]. In the absence of diffusion, the work by
Gurney et al. [9] considers the specific birth function b(u) = pue−au, where a Hopf
bifurcation point is obtained for τ . Furthermore, the local and global stability of (1)
has been discussed in various studies (see [8, 14] and the references therein). Model
(1) has also been extended to include nonlocality [19] and various two-dimensional
spatial domains [6, 13, 20], where the existence and behavior of traveling wave solutions
[2, 5, 19] has been investigated. A solution u(x, t) of (1) is a traveling wave solution, if
it is in the form of

u(x, t) = φ(x+ ct) = φ(z), z = x+ ct, (2)

where c is the speed of propagation and z is the wave variable. Then substituting φ(z)
into (1) and replacing z with t, the wave equation corresponding to (1) is given by

Dφ′′(t)− cφ′(t)− dφ(t) + b(φ(t− cτ)) = 0. (3)
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To be biologically meaningful, the wave solution φ(t)must be bounded and nonnegative
for all t ∈ R. Also, a wave solution of (1) is a solution of (3) which satisfies the
boundary conditions limt→−∞ φ(t) = φ1 and limt→∞ φ(t) = φ2, where φ1 and φ2
are the equilibria of (3). Wave solutions of delay diffusive population models have
been center of attention for several decades [3, 19, 20]. Although the existence and
uniqueness of the wave solutions have been extensively studied, less efforts have been
made towards wave approximations. By approximating wave solutions we will be able
to investigate impacts of model parameters on the behavior of the wave solutions. For
instance, it has been numerically shown that the wave solution may become humped-
shaped when the monotonicity condition is violated [12]. An approximate wave solution
may provide a better understanding of the behavior of the wave solutions in the spatial
domain [3, 4]. The main goal of this short note is to apply a differential transform
method to approximate the wave equation (3) with the above-mentioned boundary
conditions. In particular, the Differential Transform Method (DTM) [21] has been
recently extended for solving delay differential equations [10]. Thus, the wave solution
can be approximated to any desired degree of exactness by transforming the wave
equation to an algebraic system of nonlinear equations.

2 Extended Differential Transform Method

DEFINITION 1. The differential transform of a function ψ(z) at a point z0 is
defined by

Ψ(k) =
1

k!

[
dk

dz
ψ(z)

]
z=z0

, (4)

where ψ is analytic at z0.

DEFINITION 2. The inverse of the differential transform Ψ(k) is defined by

ψ(z) =

∞∑
k=0

Ψ(k)(z − z0)k. (5)

Let the small and capital letters represent the original and transformed functions,
respectively. Then using (4) and (5), the differential transforms have the following
properties (see [1, 10, 21] for the proofs).

1. If φ(t) = f(t)± g(t), then Φ(k) = F (k)±G(k).

2. If φ(t) = γf(t), then Φ(k) = γF (k), where γ is a constant.

3. If φ(t) = dnf(t)/dtn, then Φ(k) = [(k + n)!/k!]F (k + n).

4. If φ(t) = f(t)g(t), then Φ(k) =

k∑
k1=0

F (k1)G(k − k1).
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5. If φ(t) = f(t+ a), then

Φ(k) =

∞∑
h1=k

(
h1
k

)
ah1−kF (h1) where

(
h1
k

)
=

h1!

k!(h1 − k)!
.

For M > 0 suffi ciently large, we may replace the original boundary conditions with
their approximations. Specifically, the boundary value problem corresponding to wave
equation (3) is given by{

Dφ
′′
(t)− cφ

′
(t)− dφ(t) + b(φ(t− cτ)) = 0,

φ(−M) = φ1 and φ(M) = φ2,
(6)

where φ1 and φ2 are the steady states of the wave equation (3). A major benefit of the
extended DTM is that the method does not require the history function and it only
requires the boundary values at the two ends. By rescaling the problem, −M and M
are transformed to 0 and 1. In particular, let z = t/2M + 1/2 and ψ(z) = φ(t), then
the wave equation (6) is transformed to{

Dψ
′′
(z)− 2cMψ

′
(z)− 4dM2ψ(z) + 4M2b(ψ(z − cτ

2M )) = 0,

ψ(0) = φ1 and ψ(1) = φ2.
(7)

To apply the extended DTM we consider the well-known logistic birth function given
by b(ψ) = pψ(1− ψ

kc
), where p is the growth rate and the kc is the carrying capacity.

THEOREM 1. The differential transform of φ(t) = f1(t+ a)f2(t+ b) with a, b ∈ R
is given by

Φ(k) = lim

k∑
k1=0

N∑
h1=k

N∑
h2=k−k1

(
h1
k1

)(
h2

k − k1

)
ah1−k1bh2−k+k1F1(h1)F2(h2),

for N →∞.

PROOF. Let the differential transforms of f1(t), f2(t), f(t) = f1(t + a) and g(t) =
f2(t+ b) at t = t0 be F1(k), F2(k), F (k) and G(k), respectively. Using the property (4)
the differential transform of φ(t) is given by

Φ(k) =

k∑
k1=0

F (k1)G(k − k1). (8)

From property (5) we get

F (k1) =

N∑
h1=k1

(
h1
k1

)
ah1−k1F1(h1) for N →∞. (9)
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Similarly,

G(k − k1) =

N∑
h2=k−k1

(
h2

k − k1

)
bh2−k+k1F2(h2) for N →∞. (10)

The proof is completed by substituting (9) and (10) into (8).
Using the properties (1)—(5) and Theorem 1, the differential transform of problem

(7) with the logistic birth function is given by

D(k + 2)(k + 1)Ψ(k + 2)− 2cM(k + 1)Ψ(k + 1)

−4dM2Ψ(k) + 4pM2
N∑

h1=k

(
h1
k

)(
−cτ
2M

)h1−k
Ψ(h1)

−4pM2

kc

k∑
k1=0

N∑
h1=k

N∑
h2=k−k1

(
h1
k1

)(
h2

k − k1

)(
−cτ
2M

)h1+h2
Ψ(h1)Ψ(h2)

= 0, (11)

for N → ∞ and subject to the boundary conditions ψ(0) = φ1 and ψ(1) = φ2. We
may truncate the infinite sums in (11) by letting N = M and k = 0, 1, . . . ,M − 2,
where M is the positive constant chosen in (6) and (7). Using the boundary condi-
tions, equation (11) corresponds to a homogeneous nonlinear system ofM−1 equations
with M − 1 unknowns (i.e. Ψ(k) for k = 1, . . . ,M − 1). Note that Ψ(0) and Ψ(M)
are known through the given boundary conditions. Then the nonlinear system can be
symbolically solved using Matlab or Maple software. Each solution set {Ψ(k)}Mk=0 is
plugged into equation (5) with z0 = 0 and the desired approximated wave solution can
be found. In a broad context, the above mentioned approach provides a basis to imple-
ment techniques of solving nonlinear homogeneous systems for finding approximations
of the wave solutions.
Remarks by the Editor in Chief: It appeasrs that by assuming analytic solutions of

(3), one may arrive at (11) also. See [7].
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