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Abstract

The problem of estimating coeffi cient differences for the subclass C ⊂ S of
convex functions appears not to have been considered. The method of [11] seems
not to be applicable to C. The object of the present paper is to give sharp estimates
for the difference of coeffi cients of the univalent functions defined in the unit disk
U.

1 Introduction and Preliminaries

Let A be the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1)

which are analytic in the open unit disk U := {z ∈ C : |z| < 1} and normalized by the
conditions f(0) = 0, f ′(0) = 1. Let S denote the class of all functions in A which are
univalent in U.

It is well-known that for f ∈ A the condition

<
(
zf ′(z)

f(z)

)
> 0 (z ∈ U)

is necessary and suffi cient for starlikeness (and univalence) in the unit disk U. Also,
necessary and suffi cient for f ∈ A to be convex in the unit disk is that

<
(

1 +
zf ′′(z)

f ′(z)

)
> 0.

These families of functions, denoted respectively by S∗ and C, were discovered by
Robertson [15](also see [4]).
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For n ≥ 2, Hayman [8] showed the difference of successive coeffi cients is bounded
by an absolute constant i.e.

||an+1| − |an|| ≤ A.

Using different technique, Milin [14] showed that A < 9. Ilina [9] improved this to
A < 4.26. Further, Grispan [7] restricted to A < 3.61. For starlike function S∗, Leung
[11] proved that the best possible bound A = 1. On the other hand, it is known that
for the class S, A cannot be reduced to 1.When n = 2, Golusin [5, 6], Jenkins [10] and
Duren [4] showed that for f ⊂ S − 1 ≤ |a3| − |a2| ≤ 1.029 · · · and that both upper and
lower bounds in (1) are sharp.
Recently, Darus and Ibrahim [3] introduced a differential operator

Dk,αλ,δ : A −→ A

by

Dk,αλ,δ f(z) = z +

∞∑
n=2

[nα + (n− 1)nαλ]kC(δ, n)anz
n (2)

where

C(δ, n) =
Γ(n+ δ)

Γ(n)Γ(δ + 1)
.

and k, α ∈ N0 := N ∪ {0}, λ, δ ≥ 0.

It should be remarked that the operator Dk,αλ,δ is a generalization of many other
linear operators studied by earlier researchers. Namely:

• for α = 1 λ = 0, δ = 0 or α = δ = 0, λ = 1, the operator Dk,10,0 ≡ D
k,0
1,0 ≡ Dk is

the popular Salagean operator [17];

• for k = 0, the operator D0,αλ,δ ≡ Dδ has been studied by Ruscheweyh (see [16]);

• for α = 0, δ = 0, the operator Dk,0λ,0 ≡ Dkλ has been studied by Al-Oboudi (see
[1]),

• for α = 0, the operator Dk,0λ,δ ≡ Dkλ,δ has been studied by Darus and Ibrahim (see
[2]).

Making use of the differential operator Dk,αλ,δ , we introduce a new subclass of analytic
functions as follows:

DEFINITION 1. A function f ∈ A is said to be in the classMk,t
λ,δ(α) if it satisfies

the inequality

<
(

(1− t)z(Dk,αλ,δ f(z))′ + tz(Dk+1,αλ,δ f(z))′

(1− t)Dk,αλ,δ f(z) + t Dk+1,αλ,δ f(z)

)
> 0 (3)

where z ∈ U; 0 ≤ t ≤ 1, k, α ∈ N0, λ, and δ ≥ 0.
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Note that by taking t = k = δ = 0 and t = α = 1, k = λ = δ = 0 for the class
Mk,t

λ,δ(α), we have the classes S∗ and C respectively.

The purpose of the present study is to estimate the coeffi cient difference for the
function classMk,t

λ,δ(α) when n = 2 and n = 3.

2 Main Results

In order to derive our main results, we recall the following lemmas.

We denote by P a class of analytic functions in U with p(0) = 1 and <(p(z)) > 0.

LEMMA 1 (see [4]). Let the function p ∈ P be given by the series

p(z) = 1 + c1z + c2z
2 + · · · (z ∈ U). (4)

Then, the sharp estimate
|ck| ≤ 2 (k ∈ N) (5)

holds.

LEMMA 2 (cf. [12], also see [13]). Let the function p ∈ P be given by the series
(4). Then

2c2 = c21 + x(4− c21) (6)

for some x, |x| ≤ 1 and

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z (7)

for some z and |z| ≤ 1.

We now state and prove the following results.

THEOREM 1. Let f given by (1) be in the class Mk,t
λ,δ(α). If 3A3

4 ≤ A2 ≤ 3A1

2 ,
then

||a3| − |a2|| ≤
4A21 +A22

4A21A2
, (8)

and

||a4| − |a3|| ≤
A22 +A23
A2A23

, (9)

where
A1 = 2αk(1 + λ)k(δ + 1) [1 + (2α(1 + λ)− 1)t] ,

A2 = 3αk(1 + 2λ)k
(δ + 1)(δ + 2)

2
[1 + (3α(1 + 2λ)− 1)t] ,

and

A3 = 4αk(1 + 3λ)k
(δ + 1)(δ + 2)(δ + 3)

6
[1 + (4α(1 + 3λ)− 1)t] .
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PROOF. Let the function f(z) represented by (1) be in the class Mk,t
λ,δ(α). By

geometric interpretation, there exists a function h ∈ P given by (4) such that

(1− t)z(Dk,αλ,δ f(z))′ + tz(Dk+1,αλ,δ f(z))′

(1− t)Dk,αλ,δ f(z) + t Dk+1,αλ,δ f(z)
= h(z). (10)

Replacing Dk,αλ,δ f(z), Dk+1,αλ,δ f(z), (Dk,αλ,δ f(z))′, and (Dk+1,αλ,δ f(z))′ by their equivalent
expressions and the equivalent expression for h(z) in series (10), we have

(1− t)z
{

1 +

∞∑
n=2

n[nα + (n− 1)nαλ]kC(δ, n)anz
n−1

}

+ tz

{
1 +

∞∑
n=2

n[nα + (n− 1)nαλ]k+1C(δ, n)anz
n−1

}

= (1− t)
{
z +

∞∑
n=2

[nα + (n− 1)nαλ]kC(δ, n)anz
n

}

+ t

{
z +

∞∑
2

[nα + (n− 1)nαλ]k+1C(δ, n)anz
n

}
(11)

Equating the coeffi cients of like power of z2, z3 and z4 respectively on both sides of
(11), we have

2A1a2 = c1 +A1a2,

3A2a3 = c2 + c1A1a2 +A2a3,

4A3a4 = c3 +A1a2c2 +A2a3c1 +A3a4,

where A1, A2 and A3 are given in the statement of theorem.
After simplifying, we get

a2 =
c1
A1
, a3 =

c2
2A2

+
c21

2A2
, and a4 =

c3
3A3

+
c1c2
2A3

+
c31

6A3
. (12)

Since
||an+1| − |an|| ≤ |an+1 − an| ,

we need to consider |a3 − a2| and |a3 − a4|.
Taking into account (12) and Lemma 2 we obtain

|a3 − a2| =
∣∣∣∣ c22A2

+
c21

2A2
− c1
A1

∣∣∣∣
=

∣∣∣∣ 1

2A2

(
c21
2

+
x

2
(4− c21)

)
+

c21
2A2

− c1
A1

∣∣∣∣
=

∣∣∣∣ 3

4A2
c21 −

c1
A1

+
x

4A2
(4− c21)

∣∣∣∣ . (13)
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We can assume without loss of generality that c1 > 0. For convenience of notation, we
take c1 = c (c ∈ [0, 2]) (see equation (5)). Applying triangle inequality and replacing
|x| by µ in the right hand side of (13) and using the inequality A2 ≤ 3A1

2 , it reduces to

|a3 − a2| ≤
c

A1
− 3c2

4A2
+

4− c2
4A2

µ = F (c, µ) (0 ≤ µ = |x| ≤ 1), (14)

where

F (c, µ) =
c

A1
− 3c2

4A2
+

4− c2
4A2

µ. (15)

We assume that the upper bound for (14) occurs at an interior point of the {(µ, c) :
µ ∈ [0.1] and c ∈ [0, 2]}. Differentiating (15) partially with respect to µ, we get

∂F

∂µ
=

4− c2
4A2

. (16)

From (16) we observe that ∂F
∂µ > 0 for 0 < µ < 1 and for fixed c with 0 < c < 2.

Therefore F (c, µ) is an increasing function of µ, which contradicts our assumption
that the maximum value of F occurs at an interior point of the set {(µ, c) : µ ∈
[0, 1] and c ∈ [0, 2]}. So, fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c)(say).

Therefore replacing µ by 1 in (15), we obtain

G(c) =
c

A1
+

1

A2
(1− c2), (17)

G′(c) =
1

A1
− 2c

A2
(18)

and

G′′(c) = − 2

A2
< 0.

For optimum value of G(c), consider G′(c) = 0. It implies that c = A2

2A1
. Therefore,

the maximum value of G(c) is 4A2
1+A

2
2

4A2
1A2

which occurs at c = A2

2A1
. From the expression

(17), we get

Gmax = G

(
A2
2A1

)
=

4A21 +A22
4A21A2

. (19)

Form (14) and (19), we have

|a3 − a2| ≤
4A21 +A22

4A21A2
,
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which proves the assertion (8) of Theorem 2. Using the same technique, we will prove
(9). From (12) and an application of Lemma 2 we have

|a4 − a3| =
∣∣∣∣ c33A3

+
c1c2
2A3

+
c31

6A3
− c2

2A2
− c21

2A2

∣∣∣∣
=

∣∣∣∣ 1

12A3
{c31 + 2(4− c21)c1x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z}

+
c1

4A3
{c21 + x(4− c21)}+

c31
6A3

− 1

4A2
{c21 + x(4− c21)} −

c21
2A2

∣∣∣∣
=

∣∣∣∣ ∣∣∣∣ c312A3
− 3

4A2
c21 +

5c1
12A3

(4− c21)x−
c1(4− c21)x2

12A3

+
1

6A3
(4− c21)(1− |x|2)z −

1

4A2
(4− c21)x

∣∣∣∣ ∣∣∣∣ (20)

As earlier, we assume without loss of generality that c1 = c with 0 ≤ c ≤ 2. Applying
triangle inequality and replacing |x| by µ in the right hand side of (20) and using the
fact that A3 ≤ 4A2

3 , it reduces to

|a4 − a3| ≤
c3

2A3
− 3c2

4A2
+

5c

12A3
(4− c2)µ+

c(4− c2)µ2
12A3

+
1

6A3
(4− c2)(1− µ2) +

1

4A2
(4− c2)µ

=H(c, µ), (21)

where

H(c, µ) =
c3

2A3
− 3c2

4A2
+

5c

12A3
(4− c2)µ+

c(4− c2)µ2
12A3

+
1

6A3
(4− c2)(1− µ2) +

1

4A2
(4− c2)µ. (22)

Suppose thatH(c, µ) in (22) attains its maximum at an interior point (c, µ) of [0, 2]X[0, 1].
Differentiating (22) partially with respect to µ, we have

∂H

∂µ
=

5c

12A3
(4− c2) +

c(4− c2)µ
6A3

− 1

3A3
(4− c2)µ+

1

4A2
(4− c2)

= − 1

12A3
(c2 − 4)

[
c(5 + 2µ)− 4µ+

3A3
A2

]
.

Now ∂H
∂µ = 0 which implies

c =
4
(
µ− 3A3

4A2

)
2µ+ 5

< 0 (0 < µ < 1),

which is false since c > 0. Thus H(c, µ) attains its maximum on the boundary of
[0, 2]X[0, 1]. Thus for fixed c, we have

max
0≤µ≤1

H(c, µ) = H(c, 1) = J(c)(say).
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Therefore, replacing µ by 1 in (22) and simplifying we get

J(c) =
2c

A3
+

1

A2
− c2

A2
, J ′(c) =

2

A3
− 2c

A2
and J ′′(c) = − 2

A2
< 0. (23)

For an optimum value of J(c), consider J ′(c) = 0 which implies c = A2

2A1
. Therefore,

the maximum value of J(c) occurs at c = A2

A3
. From the expression (23) we obtain

Jmax = J

(
A2
A3

)
=
A22 +A23
A2A23

. (24)

From (21) and (24), we have

|a4 − a3| ≤
A22 +A23
A2A23

.

The proof of Theorem 2 is thus completed.
Taking t = α = 1, λ = δ = k = 0 in theorem 2 we get Corollary 1.

COROLLARY 1. Let f given by (1) be in the class C. Then

||a3| − |a2|| ≤
25

38
and ||a4| − |a3|| ≤

25

38
.

Both the inequalities are sharp.

Putting t = k = δ = 0 in theorem 2 we get Corollary 2.

COROLLARY 2. Let f given by (1) be in the class S∗. Then

||a3| − |a2|| ≤
5

4
and ||a4| − |a3|| ≤ 2.

Both the inequalities are sharp.

Concluding Remark. Since (6) and (7) provide expressions only for the coeffi -
cients a2, a3 and a4, the method in this paper cannot be used for n > 4. However it is
possible that the bounds (8) and (9) holds for all n > 2.

Acknowledgements. We record our sincere thanks to the referees for the valuable
suggestions, to improve the results.
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