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Abstract

In this paper we consider a quasilinear parabolic system of the form:

A(t)|ut|m−2ut − Lu+

∫ t

0

g(t− s)Lu(s)ds = 0

in a bounded domain Ω, A(t) is a bounded and positive definite matrix, Ω ⊂
Rn(n ≥ 1), initial data (u0, u1) are given functions belonging to suitable spaces
and g a continuously differentiable decaying function. We use the lemma of Mar-
tinez to establish a general decay result. This improves the result obtained by
Messaoudi and Tellab [3].

1 Introduction

In this paper we consider

A(t)|ut|m−2ut − Lu+

∫ t

0

g(t− s)Lu(s)ds = 0, m > 2, (1)

subjected to the following boundary conditions

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (2)

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (3)

where Ω is a bounded open subset of Rn(n ≥ 1), A(t) is a bounded and positive definite
matrix,

Lu = −div(M∇u) = −
N∑

i,j=1

∂

∂xi

(
ai,j(x)

∂u

∂xi

)
.

∗Mathematics Subject Classifications: 35L05, 35L15, 35L70, 93D15.
†Department of Mathematics, USTO University, 31000 Oran, Algeria
‡Laboratory ACEDP, Djillali Liabes University, 22000 Sidi Bel Abbes, Algeria

56



M. Ferhat and A. Hakem 57

The matrix M = (ai,j(x)), where ai,j ∈ C1(Ω), is symmetric and there exists a
constant a0 > 0 such that for all x ∈ Ω and ζ = (ζ1, ζ2, ....., ζN ) ∈ RN , we have∑N
i,j=1 ai,j(x)ζjζi ≥ a0|ζ|2. Also,

a(u(t), υ(t)) =

N∑
i,j=1

ai,j(x)
∂u(t)

∂xj

∂υ(t)

∂xi
dx =

∫
Ω

M∇u(t).∇υ(t)dx,

and

a1 = max

(
N∑
i=1

‖ai,j‖2∞

)
.

The values of u are taken in Rn and A ∈ C(R+) is a bounded square matrix satisfying

c0|υ|2 ≤ (A(t)υ, υ) ≤ c1|υ|2, ∀t ∈ R+, υ ∈ Rn. (4)

The initial data (u0, u1) are given functions belonging to suitable spaces and g a con-
tinuously differentiable decaying function. To motivate our work, let us recall some
results regarding quasilinear parabolic system. This type of equation arises from a
variety of mathematical models in engineering and physical sciences. For example, in
the study of a heat conduction in materials with memory, the classical Fourier’s law is
replaced by the following form (cf. [7]):

q = −d∇u−
∫ t

−∞
k(x, t)u(x, s)ds,

where u is the temperature, d is the diffusion coeffi cient and the integral term rep-
resents the memory effect in the material. The study of this type of equations has
drawn a considerable attention and many results have been obtained, see ([2, 3, 6, 9]).
From a mathematical point of view one would expect that the integral term should be
dominated by the leading term in the equation. Messaoudi and Tellab [3] studied the
following system

A(t)|ut|m−2ut −∆u+

∫ t

0

g(t− s)∆u(s)ds = 0,

with the same conditions in (2)—(3) and obtained an energy decay result although the
memory term makes more complex situation. Berrimi and Messaoudi [6] showed that
if A satisfies

(A(t)υ, υ) ≥ c0|υ|2, ∀t ∈ R+, υ ∈ Rn

then the solutions with small initial energy decay exponentially for m = 2 and polyno-
mially if m > 2. Very recently for a framework of blow-up in finite time Liu and Chen
[2] studied the following system

A(t)|ut|m−2ut −∆u+

∫ t

0

g(t− s)∆u(s)ds = |u|p−2u,

with the same conditions in (2)—(3) and proved a blow-up result for both positive and
negative initial energy under suitable conditions on g and p. Motivated by the previous
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works, in the present paper we investigate problem (1) in which we generalize the results
obtained in [3], supposing new conditions with which the stability is assured, by using
the lemma of Martinez.
Our work is organized as follows. In section 2, we present some preliminaries and

some lemmas. In section 3, the decay property is derived. Our result improves the one
in Messaoudi and Tellab [3].

2 Preliminary Results

In this section, we present some material needed for the proof of our main result. For
the relaxation function g we assume

(A0) g : R+ → R+ is a bounded C1 function satisfying

g(0) > 0, 1−
∫ ∞

0

g(s)ds = l < 1,

and there exists a nonincreasing differentiable function ξ : R+ → R+ satisfying

g′(t) ≤ −ξ(t)g(t), t ≥ 0;

∫ +∞

0

ξ(s)ds = +∞.

(A1) We also assume that

2 ≤ m ≤ 2n

n− 2
if n ≥ 3; m ≥ 2, if n = 1, 2.

REMARK 1. The same as in [3], there are many functions satisfying (A0). Exam-
ples of such functions are

g1(t) = e−(t+1)α , 0 < α ≤ 1 and g2(t) = (1 + t)ε, ε < −1.

We will also be using the embedding

H1
0 (Ω) ↪→ Lp(Ω), H1

0 (Ω) ↪→ Lm(Ω).

LEMMA 1 ([2]). Let E : R+ → R+ be a nonincreasing function and ψ : R+ → R+

be a C2 increasing function with ψ(0) = 0 and limt→∞ ψ(t) = +∞. Assume that there
exists c > 0 for which ∫ T

S

E(t)ψ′(t)dt ≤ cE(S), ∀S ≥ 0.

Then
E(t) ≤ αE(0)e−(

∫ t
0
ξ(s)ds), ∀t ≥ 0,
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where α and ω are positive constants.

LEMMA 2 (Sobolev-Poincaré’s inequality). Let 2 ≤ m ≤ 2n
n−2 . The inequality

‖u ‖m≤ cs‖∇u‖2 for u ∈ H1
0 (Ω)

holds with some positive constant cs.

LEMMA 3 ([3]). For u(., t) ∈ H1
0 (Ω), we have∫

Ω

(∫ t

0

g(t− s)(u(x, t)− u(x, s))ds

)2

dx ≤ (1− l)cs
2

a0
(g ◦ u)(t),

where cs is the Poincaré constant and l is given in (A1), and

(g ◦ u)(t) =

∫ t

0

g(t− s)
∫

Ω

a(u(x, t)− u(x, s), u(x, t)− u(x, s))dxds.

3 Asymptotic Behavior

In this section, we consider the energy decay of solutions associated to the system
(1)—(3). Similarly as in [7] we give a definition of a weak solution of the system (1)—(3).

DEFINITION 1. A weak solution of (1)—(3) is a function u(x, t) such that

u(x, t) ∈ C
(
[0, T ); [H1

0 (Ω)]n
)
∩ C1 ((0, T ); [Lm(Ω)]n) ,

which satisfies∫ t

0

∫
Ω

A(s)|us(s)|m−2us(x, s)φ(x, s)dsdx+

∫ t

0

∫
Ω

Lu(x, s)φ(x, s)dsdx

+

∫ s

0

∫ t

0

∫
Ω

g(t− ν)φ(x, s)Lu(x, ν)dνdxds = 0,

for all t ∈ [0, T ] and φ ∈ C
(
[0, T ); [H1

0 (Ω)]n
)
.

REMARK 2. Similar to ([3, 9]), we assume the existence of a solution. For the
linear case (m = 2), one can easily establish the existence of a weak solution by the
Galerkin method. In the one-dimensional case (n = 1), the existence is established, in
a more general setting, by Yin [9].

Now we define the "modified" energy equation related with problem (1)—(3) by

E(t) =
1

2
(g ◦ u)(t) +

1

2

(
1−

∫ t

0

g(s)ds

)
a(u(t), u(t)).
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LEMMA 4. Let u(x, t) be the solution of (1)—(3). Then the energy equation satisfies

E′(t) ≤ 1

2
(g′ ◦ u)(t)− 1

2
g(t)a(u(t), u(t))−

∫
Ω

A(t)|ut(t)|mdx.

PROOF. By multiplying (1) by ut(t), and integrating over Ω we get∫
Ω

A(t)|ut(t)|mdx−
1

2

d

dt
a(u(t), u(t)) +

∫
Ω

∫ t

0

g(t− s)M∇u(s)∇ut(t)dsdx = 0. (5)

Note that

a(u(t), ut(t)) =
1

2

d

dt
a(u(t), u(t)),

following the ideas of [10], we can obtain∫ t

0

g(t− s)
∫

Ω

M∇u(s)∇ut(t)dxds

=

N∑
i,j=1

∫ t

0

∫
Ω

g(t− s)ai,j(x)
∂u(s)

∂xj

∂ut(t)

∂xi
dxds

=

N∑
i,j=1

∫ t

0

∫
Ω

g(t− s)ai,j(x)
∂u(t)

∂xi

∂ut(t)

∂xi
dxds

−
N∑

i,j=1

∫ t

0

∫
Ω

g(t− s)ai,j(x)

(
∂u(t)

∂xi
− ∂ut(s)

∂xj

)
∂ut(t)

∂xi
dxds

=
1

2

∫ t

0

g(t− s)
(
d

dt
a(u(t), u(t))

)
ds

−1

2

∫ t

0

g(t− s)
(
d

dt
a(u(t)− u(s), u(t)− u(s))

)
ds

=
1

2

d

dt

(∫ t

0

g(t− s)a(u(t), u(t)

)
ds

−1

2

d

dt

(∫ t

0

g(t− s)a(u(t)− u(s), u(t)− u(s))

)
ds

−1

2
g(t)a(u(t), u(t)) +

1

2

∫ t

0

g′(t− s)a(u(t)− u(s), u(t)− u(s))ds

= −1

2

d

dt
(g ◦ u)(t) +

1

2
(g′ ◦ u)(t) +

1

2

d

dt

[
a(u(t), u(t))

∫ t

0

g(s)ds

]
−1

2
g(t)a(u(t), u(t)), (6)

where

(g ◦ u)(t) =

∫ t

0

g(t− s)a(u(x, t)− u(x, s), u(x, t)− u(x, s))ds.
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By (5) and (6), we obtain

E′(t) ≤ −1

2
(g′ ◦ u)(t)− 1

2
g(t)a(u(t), u(t))−

∫
Ω

A(t)|ut(t)|mdx ≤ 0.

THEOREM 1. Let (u0, u1) ∈ (H1
0 (Ω))2 be given. Suppose that (A0)—(A1) and (4)

hold. Then there exist two positive constants w and K, depending on the initial data
and c0 for which the solution of (1)—(3) satisfies

E(t) ≤ Ke−w
∫ t
0
ξ(s)ds.

PROOF. From now on, we denote by ci various positive constants which may be
different at different occurrences. We multiply the equation (1) by ξ(t)u, integrate over
Ω× (S, T ), and use the boundary conditions to get∫ T

S

∫
Ω

ξ(t)A(t)|ut(t)|m−2ut(t)u(t)dxdt−
∫ T

S

ξ(t)a(u(t), u(t))dtdx

+

∫ T

S

ξ(t)

∫
Ω

M∇u(t)

∫ t

0

g(t− s)∇u(s)dsdx = 0. (7)

We then estimate

−
∫

Ω

ξ(t).M∇u(t)

∫ t

0

g(t− s)∇u(s)dsdx

=

∫
Ω

ξ(t).M

∫ t

0

g(t− s)(∇u(t)−∇u(s))∇u(t)dsdx

−
∫ t

0

g(s)ds.ξ(t)a(u(t), u(t)), (8)

by substituting (8) in (7) and adding the following term in (7)

1

2

∫ T

S

ξ(t)(g ◦ u)(t)− 1

2

∫ T

S

ξ(t)(g ◦ u)(t). (9)

So (7) becomes∫ T

S

ξ(t)E(t)dt = −
∫ T

S

∫
Ω

ξ(t)A(t)|ut(t)|m−2ut(t)u(t)dxdt

−
∫ T

S

∫
Ω

ξ(t)M.

∫ t

0

g(t− s)(∇u(t)−∇u(s)).∇u(t)dsdxdt

+

∫ T

S

ξ(t)(g ◦ u)(t)dt. (10)
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By Lemma 4, equation (4), the boundedness of A(t) and condition (A1), we see that,
∀β > 0,∫

Ω

A(t)|ut(t)|m−2ut(t)u(t)dx ≤ β

∫
Ω

|u(t)|mdx+ cβ

∫
Ω

|ut(t)|mdx

≤ βcms ‖∇u(t)‖m + cβ

∫
Ω

|ut(t)|mdx

≤ βcms

(
2E(0)

l

)m−2
2

E(t)−
(
cβ
c0

)
E′(t).

Then∫ T

S

∫
Ω

A(t)|ut(t)|m−2ut(t)u(t)dxdt ≤
(
βcms

(
2E(0)

l

)m−2
2

)∫ T

S

E(t)ξ(t)dt

−
(
cβ
c0

)∫ T

S

E′(t)ξ(t)dt, ∀β > 0. (11)

We also have ∫
Ω

∫ t

0

Mg(t− s)(∇u(t)−∇u(s))∇u(t)dsdx

=

N∑
i,j=1

∫ t

0

g(t− s)
∫

Ω

aij(x)
∂u(t)

∂xj

(
∂u(t)

∂xi
− ∂u(s)

∂xi

)
dxds

≤ µ

N∑
i,j=1

∫
Ω

(∫ t

0

aij(x)
∂u(t)

∂xj
ds

)2

dx

+
1

µ

N∑
i,j=1

∫
Ω

(∫ t

0

g(t− s)
(
∂u(s)

∂xi
− ∂u(t)

∂xi

)
ds

)2

dx

≤ µ

a0

max

N∑
i,j=1

‖aij‖2∞

 a(u(t), u(t)) +
N

4a0µ
(1− l)(g ◦ u)(t)

≤ µ

a0

 N∑
i,j=1

‖aij‖2∞

E(t) +
N

4a0µ
(1− l)(g ◦ u)(t), (12)

and using the fact that

|ξ(t)(g ◦ u)(t)| = ξ(t)(g ◦ u)(t) ≤ β(g ◦ u)(t) ≤ β(−E′(t)),

we obtain ∫ T

S

ξ(t)(g ◦ u)(t)dt ≤
∫ T

S

β(−E′(t))dt ≤ CE(S). (13)
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By combining (10)—(13), we easily deduce the following1− βcms
(

2E(0)

l

)m−2
2

−

(α+ 1)

max
i≤i≤N

N∑
i,j=1

‖aij‖2∞

+
N

4a0µ
(1− l)


×
∫ T

S

ξ(t)E(t)dt

≤
(
cβ
c0
ξ(0) + eβ

)
E(S).

Finally, we get ∫ T

S

ξ(t)E(t)dt ≤ CE(S), ∀S ≥ 0,

by choosing β, δ2, ε small enough and by the hypothesis l < 1. By letting T go to
infinity, one can easily see that (A0) is satisfied with ψ(t) =

∫ t
0
ξ(s)ds. This completes

the proof.
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