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Abstract

In the paper we investigate the distribution of zeros as well as the uniqueness
problems of certain type of difference polynomials sharing a small function with
finite weight. The research findings also include IM analogues of the theorem
in which the small function is allowed to be shared ignoring multiplicities. The
results of the paper improve and generalize the recent results due to Bhoosnur-
math and Kabbur [International Journal of Analysis and Applications, 2(2013),
124-136].

1 Introduction, Definitions and Results

In this paper, a meromorphic function means meromorphic in the whole complex plane.
We shall adopt the standard notations in Nevanlinna’s value distribution theory of
meromorphic functions as explained in [9, 11, 18]. It will be convenient to let E denote
any set of positive real numbers of finite linear measure, not necessarily the same at
each occurrence. For a nonconstant meromorphic function h, we denote by T'(r,h)
the Nevanlinna characteristic of h and by S(r,h) any quantity satisfying S(r,h) =
o{T(r, W)} (r — 00,7 & ).

Let f and g be two nonconstant meromorphic functions and a € C U {oo}. If the
zeros of f —a and g — a coincide in locations and multiplicity, we say that f and g
share the value a CM (counting multiplicities). On the other hand, if the zeros of
f —a and g — a coincide only in their locations, then we say that f and g share the
value a IM (ignoring multiplicities). We say f and g share a function h CM or IM if
f—h and g — h share 0 CM or IM respectively. For a positive integer p, we denote by
N, (7, a; f) the counting function of a-points of f, where an a-point of multiplicity m is
counted m times if m < p and p times if m > p. A meromorphic function «(z 0, 00)
is called a small function with respect to f, if T'(r,a) = S(r, f). We define difference
operators A.f(2) = f(z+¢) — f(z) and A" f(z) = A"~ (A.f(z)) where c is a nonzero
complex number and n > 2 is a positive integer. In particular, if ¢ = 1, we use the
usual difference notation A.f(z) = Af(z).

A lot of research works on entire and meromorphic functions whose differential
polynomials share certain value or fixed points have been done by many mathematicians
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34 Value Distribution and Uniqueness of Difference Polynomials

in the world (see [5, 6, 15, 16, 17]). Recently, value distribution in difference analogue
has become a subject of great interest among the researchers. In 2006, R. G. Halburd
and R. J. Korhonen [7] established a version of Nevanlinna theory based on difference
operators. The difference logarithmic derivative lemma, given by R. G. Halburd and R.
J. Korhonen [8] in 2006, Y. M. Chiang and S. J. Feng [4] in 2008 plays an important role
in considering the difference analogues of Nevanlinna theory. With the development of
difference analogue of Nevanlinna theory, many mathematicians paid their attention
on the distribution of zeros of difference polynomials. In 2007, I. Laine and C. C. Yang
[12] proved the following result for difference polynomials.

THEOREM A. Let f be a transcendental entire function of finite order and ¢ be a
nonzero complex constant. Then for n > 2, f™(z)f(z + ¢) assumes every nonzero value
a € C infinitely often.

In 2010, X. G. Qi, L. Z. Yang and K. Liu [14] proved the following uniqueness result
which corresponded to Theorem A.

THEOREM B. Let f and g be two transcendental entire functions of finite order,
and ¢ be a nonzero complex constant, and let n > 6 be an integer. If f"(2)f(z+c¢) and
9" (2)g(z + ¢) share the value 1 CM, then either fg = t; or f = tag for some constants
t; and t, satisfying t7T1 = ¢ = 1.

In the same year, J. L. Zhang [19] considered the zeros of one certain type of
difference polynomial and obtained the following result.

THEOREM C. Let f be a transcendental entire function of finite order, a(2)( 0)
be a small function with respect to f and ¢ be a nonzero complex constant. If n > 2
is an integer, then f™(2)(f(z) —1)f(z + ¢) — a(z) has infinitely many zeros.

In the same paper the author also proved the following uniqueness result which
corresponds to Theorem C.

THEOREM D. Let f and g be two transcendental entire functions of finite order,
and «a(z)(# 0) be a small function with respect to both f and g. Suppose that ¢ is
a nonzero complex constant and n > 7 is an integer. If f"(2)(f(z) — 1)f(z + ¢) and
9" (2)(g9(z) — 1)g(z + ¢) share a(z) CM, then f = g.

In 2013, S. S. Bhoosnurmath and S. R. Kabbur [2] considered the zeros of difference
polynomial of the form f™(2)(f™(z) —1)f(z+ ¢), where n, m are positive integers and
¢ is a nonzero complex constant and obtained the following theorem.

THEOREM E. Let f be an entire function of finite order and «(z)(# 0) be a small
function with respect to f. Suppose that c is a nonzero complex constant and n, m are
positive integers. If n > 2, then f™(2)(f™(z) — 1)f(z + ¢) — a(z) has infinitely many
Z€eros.
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The following two theorems are the uniqueness results corresponding to Theorem
E proved by S. S. Bhoosnurmath and S. R. Kabbur [2].

THEOREM F. Let f and g be two transcendental entire functions of finite order,
and a(z)(# 0) be a small function with respect to f and g. Suppose that c is a
nonzero complex constant and n, m are positive integers such that n > m + 6. If
fr(2)(f™(z) — 1) f(z 4+ ¢) and g"(2)(g"™ (%) — 1)g(z + ¢) share a(z) CM, then f = tg
where ¢t = 1.

THEOREM G. Let f and g be two transcendental entire functions of finite order,
and «(z)(# 0) be a small function with respect to f and g. Suppose that c is a
nonzero complex constant and n, m are positive integers satisfying n > 4m + 12. If
" (2)(f™(2) — 1)f(z + ¢) and g"(2)(g™(2) — 1)g(z + ¢) share a(z) IM, then f = tg
where t"* = 1.

An increment to uniqueness theory has been to considering weighted sharing instead
of sharing IM or CM, this implies a gradual change from sharing IM to sharing CM.
This notion of weighted sharing has been introduced by I. Lahiri around 2001, which
measure how close a shared value is to being shared CM or to being shared IM. The
definition is as follows.

DEFINITION 1 (]10]). Let k be a nonnegative integer or infinity. For a € CU {oc0}
we denote by Fy(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m < k and k+1 times if m > k. If Ex(a; f) = Ex(a;g), then we say
that f, g share the value a with weight k.

The definition implies that if f, g share the value a with weight k, then zy is an
a-point of f with multiplicity m(< k) if and only if it is an a-point of g with multiplicity
m(< k) and zp is an a-point of f with multiplicity m(> k) if and only if it is an a-point
of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly
if f, g share (a, k) then f, g share (a,p) for any integer p, 0 < p < k. Also we note that
f, g share the value a IM or CM if and only if f, g share (a,0) or (a,c0) respectively.

If o is a small function of f and g, then f, g share o with weight k means that
f — a, g — a share the value 0 with weight k.

Regarding the results of Bhoosnurmath and Kabbur [2] it is natural to ask the
following questions which are the motivation of the paper.

QUESTION 1. What can be said if we consider the difference polynomials of the
form (f7(2)(f™(2) = Df(z +¢)* and (f*(2)(f(2) = )™ f(z +¢))*) where k(> 0) is
an integer ?

QUESTION 2. Is it possible to relax in any way the nature of sharing the small
function in Theorem F keeping the lower bound of n fixed ?
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In the paper, our main concern is to find the possible answer of the above questions.
The following are the main results of the paper.

THEOREM 1. Let f be a transcendental entire function of finite order and «(z)(#
0) be a small function with respect to f. Suppose that ¢ is a nonzero complex constant,
n(> 1), m(> 1) and k(> 0) are integers. If n > k + 2, then (f™(2)(f™(z) — 1)f(z +
¢))®) — a(z) has infinitely many zeros.

THEOREM 2. Let f be a transcendental entire function of finite order and a(z)(#
0) be a small function with respect to f. Suppose that ¢ is a nonzero complex constant,
n(>1), m(> 1) and k(> 0) are integers. If n > k+2 when m < k+1 and n > 2k—m+3
when m > k 4 1, then (f*(2)(f(z) — 1)™ f(z + ¢))*) — a(z) has infinitely many zeros.

THEOREM 3. Let f and g be two transcendental entire functions of finite order,
and «a(z)(# 0) be a small function with respect to f and g. Suppose that ¢ is a nonzero
complex constant, n(> 1), m(> 1) and k(> 0) are integers satisfying n > 2k + m + 6.
IF (fr(2)(f™(2) — Df(z + )P and (g"(z)(g™(2) — 1g(z + €)™ share (a,2), then
f =tg where t™ = 1.

REMARK 1. Theorem 3 improves and generalizes Theorem F.

THEOREM 4. Let f and g be two transcendental entire functions of finite order,
and «(z)(# 0) be a small function with respect to f and g. Suppose that c is a nonzero
complex constant, n(> 1), m(> 1) and k(> 0) are integers satisfying n > 2k +m + 6
when m < k41 and n > 4k —m+10 when m > k+1. If (f*(2)(f(2) = 1) f(z +¢))®
and (9" (2)(g9(2) — 1)™g(z 4 ¢))*) share (a,2), then either f = g or f and g satisfy the
algebraic equation R(f,g) = 0 where R(f,g) is given by

R(wy,we) = wi(wy — )™ wy(z + ¢) — wh (wy — 1) ws(z + ¢).

THEOREM 5. Let f and g be two transcendental entire functions of finite order,
and «a(z)(# 0) be a small function with respect to f and g. Suppose that c is a nonzero
complex constant, n(> 1), m(> 1) and k(> 0) are integers satisfying n > 5k +4m+12.
If (f™(2)(f™(2) = ) f (2 +¢))*) and (g"(2) (g™ (2) — 1)g(z +¢))*) share a(z) IM, then
f =tg where t™ = 1.

REMARK 2. Theorem 5 improves and generalizes Theorem G.

THEOREM 6. Let f and g be two transcendental entire functions of finite order,
and a(z)(# 0) be a small function with respect to f and g. Suppose that c is a nonzero
complex constant, n(> 1), m(> 1) and k(> 0) are integers satisfying n > 5k +4m + 12
when m < k+1 and n > 10k —m+19 when m > k+1. If (f"(2)(f(2) —1)™ f(z4¢))®
and (¢"(2)(g(z) — 1)™g(z + ¢))® share a(z) IM, then the conclusions of Theorem 4
hold.
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2 Lemmas

Let F' and G be two nonconstant meromorphic functions defined in the complex plane
C. We denote by H the following function:

o F'O2F N\ (G 2G
S \F F-1 G G-1)°

LEMMA 1 ([13]). Let f be a meromorphic function of finite order p and let ¢( 0)
be a fixed nonzero complex constant. Then

N(r,00; f(z + ¢)) < N(r,00; ) + 8(r, f),

outside a possible exceptional set of finite logarithmic measure.

LEMMA 2 ([3]). Let f be an entire function of finite order and F' = f"(z)(f™(z) —
1)f(z + ¢). Then

T(r, F) = (n+m+1T(r, ) + S(r, f).

Arguing in a similar manner as in Lemma 2.6 ([3]) we obtain the following lemma.

LEMMA 3. Let f be an entire function of finite order and F = f"(2)(f(z) —
1)™f(z +¢). Then

T(T’,F):(n+m+1)T(7’,f)+S(T,f).

LEMMA 4 ([20]). Let f be a nonconstant meromorphic function, and p, k be two
positive integers. Then

Ny (r,0: f®) T (v, f9) = T(r, ) + Npsr(r,0; f) + S, f) (1)

and
Ny (7.0: £0) < kN (r,00: £) + Nya(r, 05 £) + S, ). (2)

LEMMA 5 ([10]). Let f and g be two nonconstant meromorphic functions sharing
(1,2). Then one of the following cases holds:

(i) T(r) < Na(r,0; f) + Na(r,0; g) + Na(r,00; f) + Na(r,00; g) + S(r),
(i) f=g,
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where T'(r) = max{T'(r, f),T(r,g)} and S(r) = of{T(r)}.

LEMMA 6 ([1]). Let F and G be two nonconstant meromorphic functions sharing
the value 1 IM and H # 0. Then

T(r,F) < Ny(r,0; F)+ Na(r,0;G) + Nao(r,00; F') + Na(r, 00; G)
+2N(r,0; F) + N(r,0;G) + 2N(r,00; F) + N(r,00; G)
+S(r, F)+ S(r,G),

and the same inequality holds for T'(r, G).

LEMMA 7. Let f and g be two entire functions, and n(> 1), m(> 1), k(> 0) be
integers, and let

F = (") ("(z) = Df(z + )W, @ = (9" (2)(9™ (=) = Dg(z + )™

If there exists nonzero constants ¢; and ¢z such that N(r,e;;F) = N(r,0;G) and

N(r,co;G) = N(r,0; F), then n < 2k +m + 3.

PROOF. We put Fy = f(2)(f™(2) —1)f(z+c) and G1 = g"(2)(¢g™(2) —1)g(z+c).
By the second fundamental theorem of Nevanlinna we have

T(r, F) (T,O;F)—&—]Y(r,cl;F)—f—S(r,F)

< N
< N(r,0;F)+ N(r,0,G) + S(r, F). (3)

Using (3), Lemmas 2 and 4, we obtain

T(r,F) — N(r,0; F) + Np11(r,0; Fy) + S(r, f)
N(r,0;G) + Nigi1(r,0; Fy) + S(r, f)

Ngy1(r,0; F1) + Ngya(r,0; G1) + S(r, f) + S(r, g9)
(k+m+2)(T(r, f)+T(r,9)) +S(r, f) + S(r,g9). (4)

(n+m+1)T(r, f)

IN

IN A IA

Similarly,
(n+m+1)T(r,g) < (k+m+2)(T(r,f)+T(r,g)) +S(r, ) + S(r,9). (5)
Combining (4) and (5) we obtain
(n—2k —m —=3)(T(r, ) + T(r,g)) < S(r, f) + S(r,9),
which gives n < 2k +m + 3. This proves the lemma.

LEMMA 8. Let f and g be two entire functions, n(> 1), m(> 1), k(> 0) be integers,
and let

F=(f"(2)(f(z) = )" f(z+ )™, G = (9" (2)(9(2) = )" g(z + ) *).
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If there exists nonzero constants ¢; and co such that N(r,c;; F) = N(r,0;G) and

N(r,co;G) = N(r,0; F), then n <2k +m+3 for m < k+1and n <4k —m + 5 for
m>k+1.

PROOF. By the same reasoning as in the proof of Lemma 7 we can easily deduce
the result. Here we omit the details.

LEMMA 9 ([2]). Suppose that f and g are two transcendental entire functions of
finite order, ¢(# 0) is a fixed nonzero complex constant, and n, m are positive integers.
Ifn>m+5 and

™2 = Df(z+¢) = g"(2)(g™(2) = Dg(z +¢),

then f =tg, where t™ = 1.

NOTE 1. Though the authors [2] claimed that the conclusion of Lemma 9 holds
for n > m + 6, from the proof of it one can easily checked that it is true for n > m +5.

3 Proof of the Theorem

PROOF OF THEOREM 1. Let Fy = f™(2)(f™(z) —1)f(2+c¢). Then F} is a transcen-

dental entire function. If possible, we assume that Fl(k — a(z) has only finitely many
zeros. Then we have
N(r,a; Fy")) = Oflogr} = S(r. f). (6)

Using (1), (6) and Nevanlinna’s three small function theorem we obtain

IN

N(r,0; FM) 4 N(r,a; FFY 4+ S(r, f)
T(r, F*) — T(r, F) + Npyr (r,0; F1) + S(r, f). (7)

T(r, F?)

IN

Applying Lemma 2 we obtain from (7)

(n—l—m—l—l)T(r,f) Nk+1(T70;F1)+S(Taf)

<
< (k+m+2)T(r,f)+ S(r, f).

This gives
(n—k=1T(r f) <S(r ),

a contradiction with the assumption that n > k + 2. This proves the theorem.

PROOF OF THEOREM 2. Let Fy = f™*(2)(f(2) — 1)™f(2 + ¢). Then F; is also a

transcendental entire function. If possible, suppose that FQ(k) — a(z) has only finitely
many zeros. Then we have

N(r, o FQ(k)) = O{logr} = S(r, f). (8)
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Now using (1), (8) and Nevanlinna’s three small function theorem we obtain

N, 0; FM) 4 N(r,a; FSF) + S(r, f)
T(r, F\*) — T(r, Fy) + N1 (r,0; Fy) + S(r, f). (9)

T(r, F§M)

IN

IN

Applying Lemma 3, we obtain from (9)
(n+m+1)T(r, f) < Ngt1(r,0; F) + S(r, f). (10)
If m < k+ 1, we deduce from (10) that
(n—k—=1)T(r, f) <5(r, f),

a contradiction with the assumption that n > k + 2.
If m > k + 1, by (10) we obtain

(n+m72k72)T(T7f) < S(Taf),
a contradiction with the assumption that n > 2k — m + 3. This proves Theorem 2.

PROOF OF THEOREM 3. Let Fy = f™(2)(f™(2)—1)f(z+¢), G1 = g"(2)(¢™(2)—
(k) (k)

Dg(z+¢), F = % and G = % Then F and G are transcendental meromorphic

functions that share (1,2) except the zeros and poles of a(z). Using (1) and Lemma 2

we get

Na(r,0; F) Na(r, 05 (F1) ™) + S(r, f)

T(r, (Fl)(k)) —(n+m+1)T(r, f) + Ngyo(r,0; F1) + S(r, f)
T(r,F) = (n+m+1)T(r, f) + Neta(r, 0; F1) + S(r, f).

IA A CIA

From this we get
(m+m+0)T(r,f) < T, F)+ Ngya(r,0; F1) — No(r,0; F) + S(r, f).  (11)
Again by (2) we have

NQ(nO;Fl(k)) +S(r, f)
Niio(r,0; F1) + S(r, f). (12)

NQ(T70;F) S
<

Suppose, if possible, that (i) of Lemma 5 holds. Then using (12) we obtain from (11)

(m+m+1DT(r,f) < Na(r,0;G)+ Ny(r,o00; F') + Nao(r,00; G) + Niyao(r,0; F1)
+S(r, f) + S(r,g)
< Niyo(r,0; Fy) + Ngyo(r,0;Gr) + S(r, f) + S(r, g)
< (k+m+3){T(r, f)+T(r,g)} + S(r, f) + S(r,9). (13)

In a similar manner we obtain

(n+m+1)T(r,g) < (k+m+3){T(r f) + T(r,g)} + S, f) + S(r.g). (1)
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(13) and (14) together gives
(TL— 2k —m — 5){T(7“,f) +T(T,g)} < S(T‘, f) +S(Tag)v

contradicting with the fact that n > 2k+m+6. Therefore, by Lemma 5 we have either
FG=1or F=G. Let FG=1. Then

(f"(2)(f™(2) = D f (2 + ) PUg"(2) (g™ (2) = Dg(z + ) = a?
ie. (f"E)=DU @)+ + e+ D (z+0)P
(9"(2)(9(2) = D™ " (2) + g™ 2(2) + ... + Dg(z + ¢))®) = 2.

It can be easily viewed from above that N(r,0; f) = S(r, f) and N(r,1; f) = S(r, f).
Thus we obtain

5(0, ) +6(1, f) + 6(o0, f) = 3,
which is not possible. Therefore, we must have F' = G, and then

("™ (2) = Dz + )W = (g"(2)(9" (2) = Dg(=z + ) *).

Integrating above we obtain

(™= = Df =+ )P = (g"(2) (g™ (2) = Dglz + )V + e,

where ¢_1 is a constant. If ¢y_1 # 0, using Lemma 7 it follows that n < 2k +m + 1,
a contradiction. Hence c;_1 = 0. Repeating the process k-times, we deduce that

Y22 = Df(z+¢) = g"(2)(g™(2) — Dg(z +¢),

which by Lemma 9 gives f = tg, where t is a constant satisfying ¢t"* = 1. This proves
Theorem 3.

PROOF OF THEOREM 4. Let Fy = f™*(2)(f(2) = 1) f(z2+¢), G1 = g"(2)(9(z) —

)™g(z+c¢), F = % and G = % Then F' and G are transcendental meromorphic
functions that share the value 1 with weight two except possibly the zeros and poles of
a(z). Arguing in a manner similar to the proof of Theorem 3 we obtain either F'G = 1
or FF=@G. If FF = G, then applying the same technique as in the proof of Theorem 3
and using Lemma 8 we obtain

[r(2)(f(z) = 1) f(z 4+ ¢) = g"(2)(9(2) = 1)"g(2 + c). (15)
Set h = 5. If h is a constant, then substituting f = gh in (15), we deduce that
gz + o) g™ (Rt 1) — mC g™ N AT — 1) 4.+ (=)™ (AT = 1)] = 0.

Since g is a transcendental entire function, we have g(z + ¢) # 0. So from above we
obtain

g (R — 1) — MO g™ T AT = 1) 4 4 () (R - 1) =0,
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which implies h = 1 and hence f = g. If h is not a constant, then it follows from (15)
that f and g satisfy the algebraic equation R(f,g) = 0 where R(f,g) is given by

R(wy,ws) = wi(w; — 1)Mwy(z + ¢) — wl (way — 1) wa(z + ¢).

If FG = 1, proceeding in a like manner as in the proof of Theorem 3 we arrive at a
contradiction. This completes the proof of Theorem 4.

PROOF OF THEOREM 5. Let F, G, F} and G; be defined as in the proof of
Theorem 3. Then F and G are transcendental meromorphic functions that share the
value 1 IM except the zeros and poles of a(z). We assume, if possible, that H # 0.
Using Lemma 6 and (12) we obtain from (11)

(n+m+1)T(r,f) < Na(r,0;G) + Na(r,00; F) + Na(r,00; G) + 2N (r,0; F) + N(r,0; G)

+Nyyo(r,0; Fy) +2N(r,00; F) 4+ N(r,00; G) + S(r, f) + S(r, g)
Ni1a(r,0; F1) + Niyo(r,0; G1) + 2Ngy1(r, 0; F1)
+Nit1(r,0;G1) + S(r, f) + S(r, g)

Bk+3m+17)T(r,f)+ 2k+2m+5)T(r,g)

+S(r, f)+ S(r,9)

IN

IN

< (5k+5m+12)T(r) + S(r). (16)

Similarly,
(n+m+1)T(r,g9) < (5k +5m + 12)T(r) + S(r). (17)

(16) and (17) together yields
(n—5k —4m —11)T(r) < S(r),

which is a contradiction with the assumption that n > 5k + 4m + 12. We now assume

that H = 0. Then
F" 2F' G" 2G"
<F’F—1><G’G—1> =0

Integrating both sides of the above equality twice we get

1 A

Foig-1 P (18)

where A(# 0) and B are constants. From (18) it is obvious that F, G share the value
1 CM and hence they share (1,2). Therefore n > 2k + m + 6. We now discuss the
following three cases separately.

Case 1. Suppose that B # 0 and A = B. Then from (18) we obtain

1 BG

F-1 G-1 (19)

If B = —1, then from (19) we obtain F'G = 1, which is a contradiction as in the proof
of Theorem 3.
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If B # —1, from (19), we have + = (Hg% and so N (r, H%; G) = N(r,0; F). Using
(1), (2) and the second fundamental theorem of Nevanlinna, we deduce that

_ _ 1 _
T(hG) < N(r0:G)+ N (n i 5iG) + Noosi) 4 5(6)
< N(r,0;F)+ N(r,0;G) + N(r,00; G) + S(r,G)
< Ngya(r,0; F1) +T(r, G) + Niya(r, 05 Gh)
—(n+m+1)T(r,g) + S(r,g).
This gives

(m+m+1)T(r,g) <(k+m+2){T(r,f)+T(r,9)} + S(r,g).
Thus we obtain
(n =2k —m=31{T(r, /) +T(r,g)} < S(r, f) + S(r,9),
which is a contradiction as n > 2k +m + 6.

Case 2. Let B 7£,0 and A # B. Then from (18) we get F' = % and so

N(r, Bgﬁfl ;G) = N(r,0; F). Proceeding in a manner similar to case 1 we can arrive
at a contradiction.

Case 3. Let B = 0 and A # 0. Then from (18) we get F' = €H4=1 and G =
AF — (A—1). If A # 1, it follows that N (r, 272, F) = N(r,0;G) and N(r,1— 4;G) =
N(r,0; F). Now applying Lemma 7 it can be shown that n < 2k + m + 3, which is a
contradiction. Thus A =1 and then F = G. Now the result follows from the proof of
Theorem 3. This completes the proof of Theorem 5.

PROOF OF THEOREM 6. Arguing in a like manner as in the proof of Theorem
5, the conclusion of Theorem 6 follows. Here we omit the details.
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