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Abstract

In this paper, we study a class of p-Laplacian problems with impulsive condi-
tions depending on a real parameter λ. Using variational methods and Bonnano’s
critical points theorem [4], we give some appropriate conditions on the nonlinear
term and the impulsive functions to find a range of the control parameter for
which the impulsive problem admits at least one nontrivial solution.

1 Introduction

In this work, we study the existence of nontrivial solutions for the following p-Laplacian
problem with the impulsive conditions

−(ρ(x)φp(u
′))′ + s(x)φp(u) = λf(x, u(x)), a.e. x ∈ (a, b),

α1u
′(a+)− α2u(a) = 0, β1u

′(b−) + β2u(b) = 0,

∆(ρ(xj)φp(u
′(xj))) = λIj(u(xj)), j = 1, 2, . . . , n,

(1)

where φp(t) = |t|p−2t and a, b ∈ R with a < b, p > 1, α1, α2, β1, β2 and λ are positive
constants, ρ, s ∈ L∞([a, b]) with ρ0 := ess infx∈[a,b] ρ(x) > 0, s0 := ess infx∈[a,b] s(x) >
0, ρ(a+) = ρ(a) > 0, ρ(b−) = ρ(b) > 0, f : [a, b] × R → R, Ij : R → R are continuous
for j = 1, . . . , n, and x0 = a < x1 < x2 < · · · < xn < xn+1 = b. We note that

∆(ρ(xj)φp(u
′(xj))) = ρ(x+

j )φp(u
′(x+

j ))− ρ(x−j )φp(u
′(x−j )),

where z(y+) and z(y−) denote the right and left limits of z(y) at y respectively.
The theory of impulsive differential equations has become an important area of

investigation in the past two decades because of their applications to various prob-
lems arising in communications, control technology, electrical engineering, population
dynamics, biotechnology processes, chemistry and biology (see [2, 3, 8, 12, 14]).
There have been many papers to study impulsive problems by variational method

and critical point theory, we refer the reader to [13, 15, 20, 23] and references cited
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therein. In [19] Tian and Ge obtained suffi cient conditions that guarantee the exis-
tence of at least two positive solutions of a p-Laplacian boundary value problem with
impulsive effects

−(ρ(t)φp(u
′(t)))′ + s(t)φp(u(t)) = f(t, u(t)), a.e. t ∈ (a, b),

αu′(a+)− βu(a) = A, γu′(b−) + σu(b) = B,

∆(ρ(ti)φp(u
′(tj))) = Ii(u(ti)), i = 1, 2, . . . , l,

where a, b ∈ R with a < b, p > 1, φp(t) = |t|p−2t, ρ, s ∈ L∞([a, b]) with ess inft∈[a,b] ρ(t) >
0, ess inft∈[a,b] s(t) > 0, 0 < ρ(a), ρ(b) < +∞, A ≤ 0, B ≥ 0, α, β, γ, σ are positive
constants, Ii ∈ C([0,+∞), [0,+∞)) for i = 1, . . . , l, f ∈ C([a, b] × [0,+∞), [0,+∞)),
f(t, 0) 6= 0 for t ∈ [a, b], t0 = a < t1 < t2 · · · < tl < tl+1 = b.

In [1], by virtue of Ricceri’s three critical points theorem [18], Bai and Dai studied
the existence of at least three solutions for the following p-Laplacian impulsive problem

−(ρ(t)φp(u
′(t)))′ + s(t)φp(u(t)) = λf(t, u(t)), a.e. t ∈ (a, b),

α1u
′(a+)− α2u(a) = 0, β1u

′(b−) + β2u(b) = 0,

∆(ρ(ti)φp(u
′(tj))) = Ii(u(ti)), i = 1, 2, . . . , l.

In [5], Bonnano et al. considered the second-order impulsive differential equations with
Dirichlet boundary conditions, depending on two real parameters

−u′′(t) + a(t)u′(t) + b(t)u(t) = λg(t, u(t)), t ∈ [0, T ] , t 6= tj ,

u(0) = u(T ) = 0,

∆u′(tj) = u′(t+j )− u′(t−j ) = µIj(u(tj)), j = 1, 2, ..., n,

where λ, µ > 0, g : [0, T ]×R→ R, a, b ∈ L∞([0, T ]) satisfy the conditions ess inft∈[0,T ] a(t)
≥ 0, ess inft∈[0,T ] b(t) ≥ 0, 0 = t0 < t1 < t2 < · · · < tn < tn+1 = T , ∆u′(tj) =

u′(t+j )−u′(t−j ) = limt→t+j
u′(t)− limt→t−j

u′(t), and Ij : R→ R are continuous for every
j = 1, 2, . . . , n. Under an appropriate growth condition of the nonlinear function, and a
small perturbations of impulsive terms, they established the existence of at least three
solutions by choosing µ in a suitable way and for every λ lying in a precise interval.

Recently, the authors in [10] studied the following nonlinear perturbed problem
−(ρ(t)φp(u

′(t)))′ + s(t)φp(u(t)) = λf(t, u(t)) + µg(t, u(t)), a.e. t ∈ (a, b),

α1u
′(a+)− α2u(a) = 0, β1u

′(b−) + β2u(b) = 0,

∆(ρ(ti)φp(u
′(tj))) = Ii(u(ti)), i = 1, 2, . . . , l.

They utilized Bonnano’s theorem [6], to establish precise values of λ and µ for which
the above problem admits at least three weak solutions.
Motivated by the above mentioned works, our goal in this paper is to obtain some

suffi cient conditions to guarantee that problem (1) admits at least one nontrivial solu-
tion when the parameter λ lies in different intervals. Our analysis is mainly based on
the critical point theorems obtained by Bonanno [4]. This theorem has been used in
several works to obtain existence results for different kinds of problems. For review on
the subject, we refer the reader to [7, 9, 11].
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2 Preliminaries

Our main tools are two consequences of a local minimum theorem ([4], Theorem 3.1)
which is a more general version of the Ricceri variational principle (see [17]). Given a
set X and two functionals Φ,Ψ : X → R, we put

β(r1, r2) := inf
u∈Φ−1(]r1,r2[)

(
supv∈Φ−1(]r1,r2[) Ψ(v)

)
−Ψ(u)

r2 − Φ(u)
, (2)

ρ1(r1, r2) := sup
u∈Φ−1(]r1,r2[)

Ψ(u)−
(

supv∈Φ−1(]−∞,r1[) Ψ(v)
)

Φ(u)− r1
, (3)

and

ρ(r) := sup
u∈Φ−1(]r,+∞[)

Ψ(u)−
(

supv∈Φ−1(]−∞,r[) Ψ(v)
)

Φ(u)− r (4)

for all r, r1, r2 ∈ R, with r1 < r2.

THEOREM 1 ([4], Theorem 5.1). Let X be a reflexive real Banach space, Φ : X →
R be a sequentially weakly lower semicontinuous, coercive and continuously Gateaux
differentiable function whose Gateaux derivative admits a continuous inverse on X∗,
and Ψ : X → R be a continuously Gateaux differentiable function whose Gateaux
derivative is compact. Put Iλ = Φ − λΨ and assume that there are r1, r2 ∈ R, with
r1 < r2, such that

β(r1, r2) < ρ1(r1, r2), (5)

where β, ρ1 are given by (2) and (3). Then, for each λ ∈
]

1
ρ1(r1,r2) ,

1
β(r1,r2)

[
, there

is a u0,λ ∈ Φ−1(]r1, r2[) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and
I ′λ(u0,λ) = 0.

THEOREM 2 ([4], Theorem 5.3). Let X be a real Banach space; Φ : X → R
be a continuously Gateaux differentiable function whose Gateaux derivative admits a
continuous inverse on X∗.Ψ : X → R be a continuously Gateaux differentiable function
whose Gateaux derivative is compact. Fix infX Φ < r < supX Φ and assume that

ρ(r) > 0, (6)

where ρ is given by (4), and for each λ > 1
ρ(r) the function Iλ = Φ − λΨ is coercive.

Then, for λ > 1
ρ(r) , there is a u0,λ ∈ Φ−1(]r,+∞[) such that Iλ(u0,λ) ≤ Iλ(u) for all

u ∈ Φ−1(]r,+∞[) and I ′λ(u0,λ) = 0.

Let X be the Sobolev space W 1,p([a, b]) equipped with the norm

‖u‖ :=

(∫ b

a

ρ(x) |u′(x)|p dx+

∫ b

a

s(x)|u(x)|pdx
)1/p

,
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which is equivalent to the usual one. We define the norm in C0([a, b]) as

‖u‖∞ = max
x∈[a,b]

|u(x)|.

Since p > 1, X is compactly embedded in C0([a, b]).

LEMMA 1 ([19], lemma 2.6). For u ∈ X, we have ‖u‖∞ ≤M‖u‖, where

M = 21/q max

{
(b− a)−1/p

s
1/p
0

,
(b− a)1/q

ρ
1/p
0

}
,

1

p
+

1

q
= 1.

Throughout the sequel, we assume that the functions f and Ij satisfy the following
assumptions:

(F) f : [a, b]×R→ R is an L1-Carathéodory function namely: t→ f(t, x) is measur-
able for every x ∈ R, x→ f(t, x) is continuous for almost every t ∈ [a, b], and for
every % > 0 there exists a function l% ∈ L1([a, b]) such that

sup
|ξ|≤%

|f(x, ξ) ≤ l%(x) for a.e.x ∈ [a, b].

(H) The impulsive functions Ij have sublinear growth, i.e., there exist constants
aj , bj > 0 and σj ∈ [0, p− 1) such that

|Ij(x)| ≤ aj + bj |x|σj for all x ∈ R, j = 1, 2, . . . , n.

DEFINITION 1. We say that u ∈ X is a weak solution of problem (1) if, for v ∈ X,∫ b

a

ρ(x)φp(u
′(x))v′(x)dx+

∫ b

a

s(x)φp(u(x))v(x)dx+ ρ(a)φp

(
α2u(a)

α1

)
v(a)

+ρ(b)φp

(
β2u(b)

β1

)
v(b)− λ

∫ b

a

f(x, u(x))v(x)dx−
n∑
j=1

Ij(u(xj))v(xj)

 = 0.

Now, Put

F (x, ξ) =

∫ ξ

0

f(x, t)dt for all (x, ξ) ∈ [a, b]× R.

We introduce the functional Iλ : X → R defined, for each u ∈ X, by

Iλ(u) = Φ(u)− λΨ(u),

where 
Φ(u) = 1

p‖u‖
p +

ρ(a)αp−12

pαp−11

|u(a)|p +
ρ(b)βp−12

pβp−11

|u(b)|p,

Ψ(u) =
∫ b
a
F (x, u)dx−

∑n
j=1

∫ u(xj)

0
Ij(t)dt.

(7)
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By the property of f and the continuity of Ij (j = 1, 2, ..., n), we have that Φ and Ψ
are well defined and Gâteaux differentiable functionals, whose Gâteaux derivatives at
u ∈ X are given by

Φ′(u)v =

∫ b

a

ρ(x)φp(u
′(x))v′(x)dx+

∫ b

a

s(x)φp(u(x))v(x)dx

+ ρ(a)φp

(
α2u(a)

α1

)
v(a) + ρ(b)φp

(
β2u(b)

β1

)
v(b)

and

Ψ′(u)v =

∫ b

a

f(x, u)vdx−
n∑
j=1

Ij(u(xj))v(xj)

for all v ∈ X.

We need the following Proposition in the proofs of our main results.

PROPOSITION 1 ([10], Proposition 2.4). Let T : X → X∗ be defined by

T (u)h =

∫ b

a

ρ(x)φp(u
′(x))h′(x)dx+

∫ b

a

s(x)φp(u(x))h(x)dx

+ ρ(a)φp

(
α2u(a)

α1

)
h(a) + ρ(b)φp

(
β2u(b)

β1

)
h(b),

for every u, h ∈ X. Then the operator T admits a continuous inverse on X∗.

3 Main Results

For the sake of convenience, we put

k :=
2(p+ 1)ρ0

2p(p+ 1)||ρ||∞ + (p+ 2)(b− a)p||s||∞
(8)

and

Γc :=

n∑
j=1

[
aj
c

+

(
bj

σj + 1

)
cσj−1

]
and µ(d) =

(
ρ0d

pMp

k(b− a)p−1

)2/p

,

where aj , bj , σj are given by (H), M is given in Lemma 1 and c, d are two positive
constants. Moreover, given a nonnegative constant η and a positive constant θ such
that

ηp

Mp
6= ρ0(1 + C1)θp

k(b− a)p−1
, where C1 = Mp

(
ρ(a)αp−1

2

αp−1
1

+
ρ(b)βp−1

2

βp−1
1

)
.

We set

Aθ(η) :=

∫ b
a

max|t|≤η F (x, t)dx+ η2Γη + µ(θ)Γµ(θ) −
∫ b
a+b
2
F (t, θ) dt

ηp

Mp
− ρ0(1 + C1)θp

k(b− a)p−1

.
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THEOREM 3. Assume that there exists a nonnegative constant η1 and two positive
constants η2 and θ with

ηp1 <
ρ0M

p

(b− a)p−1
θp <

k

(1 + C1)
ηp2, (9)

such that

(A1) Aθ(η2) < Aθ(η1),

(A2) F (x, t) ≥ 0 for every (x, t) ∈ [a, a+b
2 ]× [0, θ].

Then, for each λ ∈ 1
p

]
1

Aθ(η1) ,
1

Aθ(η2)

[
, problem (1) admits at least one nontrivial weak

solution ū ∈ X such that
ηp1
pMp

< Φ(ū) <
ηp2
pMp

.

PROOF. Let Φ and Ψ be the functionals defined in (7). It is well known that Φ is
coercive and sequentially weakly lower semicontinuous. From Proposition 1, of course,
Φ′ admits a continuous inverse on X∗. Moreover, Ψ has a compact derivative, it results
sequentially weakly continuous. Hence Φ and Ψ satisfy all regularity assumptions
requested in Theorem 1. So, our aim is to verify condition (5). To this end, let

r1 =
ηp1
pMp

, r2 =
ηp2
pMp

, and u0(x) =

{
2θ
b−a (x− a), x ∈ [a, a+b

2 [,

θ, x ∈ [a+b
2 , b].

(10)

Clearly u0 ∈ X. Moreover, one has

‖u0‖p =
2pθp

(b− a)p

∫ a+b
2

a

ρ(x)dx+
2pθp

(b− a)p

∫ a+b
2

a

(x− a)ps(x)dx+ θp
∫ b

a+b
2

s(x)dx.

Using (8), we observe that

ρ0θ
p

(b− a)p−1
≤ ‖u0‖p ≤

ρ0θ
p

k(b− a)p−1
. (11)

From the definition of Φ, we have

1

p
‖u‖p ≤ Φ(u) ≤ 1

p
(1 + C1) ‖u‖p.

In particular, we infer

ρ0θ
p

p(b− a)p−1
≤ Φ(u0) ≤ (1 + C1)

ρ0θ
p

pk(b− a)p−1
. (12)

Hence, it follows from (9) that

r1 < Φ(u0) < r2.
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Now, let u ∈ X such that u ∈ Φ−1(]−∞, r2[). By Lemma 1, we obtain

|u(x)| ≤ η2 for each x ∈ [a, b]. (13)

Moreover, thanks to (H), we get∣∣∣∣∣∣
n∑
j=1

∫ u(tj)

0

Ij(x) dx

∣∣∣∣∣∣ ≤
n∑
j=1

(
aj‖u‖∞ +

bj
σj + 1

‖u‖σj+1
∞

)
, (14)

which combined with (13) yields that

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) = sup
u∈Φ−1(]−∞,r2[)

∫ b

a

F (x, u)dx−
n∑
j=1

∫ u(xj)

0

Ij(t)dt


≤

∫ b

a

max
|t|≤η2

F (x, t)dx+

n∑
j=1

(
aj‖u‖∞ +

bj
σj + 1

‖u‖σj+1
∞

)

≤
∫ b

a

max
|t|≤η2

F (x, t)dx+ η2
2Γη2 . (15)

Arguing as before, we obtain

sup
u∈Φ−1(]−∞,r1[)

Ψ(u) ≤
∫ b

a

max
|t|≤η1

F (x, t)dx+ η2
1Γη1 . (16)

On the other hand, due to Lemma 1, (H), (A2) and (11), we have

Ψ(u0) ≥
∫ b

a+b
2

F (t, θ) dt−
n∑
j=1

∫ u0(xj)

0

Ij(t)dt

≥
∫ b

a+b
2

F (t, θ) dt−
n∑
j=1

(
aj‖u0‖∞ +

bj
σj + 1

‖u0‖σj+1
∞

)

≥
∫ b

a+b
2

F (t, θ) dt− µ(θ)Γµ(θ). (17)

Therefore, from (12) and (15)—(17), we get

β(r1, r2) ≤

(
supu∈Φ−1(]r1,r2[) Ψ(u)

)
−Ψ(u0)

r2 − Φ(u0)

≤

∫ b
a

max|t|≤η2 F (x, t)dx+ η2
2Γη2 + µ(θ)Γµ(θ) −

∫ b
a+b
2
F (t, θ) dt

ηp2
pMp −

ρ0(1 + C1)θp

pk(b− a)p−1

= pAθ(η2).
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We also obtain

ρ1(r1, r2) ≥
Ψ(u0)−

(
supu∈Φ−1(]−∞,r1[) Ψ(u)

)
Φ(u0)− r1

≥

∫ b
a+b
2
F (t, θ) dt− µ(θ)Γµ(θ) − η2

1Γη1 −
∫ b
a

max|t|≤η1 F (x, t)dx

ρ0(1 + C1)θp

pk(b− a)p−1
− ηp1

pMp

= pAθ(η1).

So, by our assumption it follows that β(r1, r2) < ρ1(r1, r2). Hence, from Theorem 1 for

each λ ∈ 1
p

]
1

Aθ(η1) ,
1

Aθ(η2)

[
, the functional Iλ admits at least one critical point u such

that

ηp1
pMp

< Φ(u) <
ηp2
pMp

,

and the proof of Theorem 3 is achieved.

Now, we point out the following consequence of Theorem 3.

THEOREM 4. Assume that there exist two constants η and θ with

ρ0M
p

(b− a)p−1
θp <

k

(1 + C1)
ηp,

such that assumption (A2) in Theorem 3 holds. Furthermore, suppose that

∫ b
a

max|t|≤η F (x, t)dx+ η2Γη

ηp
<

k(b− a)p−1

ρ0M
p(1 + C1)

∫ b
a+b
2
F (t, θ) dt− µ(θ)Γµ(θ)

θp
. (18)

Then, for each

λ ∈ 1

p

 ρ0θ
pMp(1 + C1)∫ b

a+b
2
F (t, θ) dt− µ(θ)Γµ(θ)

,
ηpk(b− a)p−1∫ b

a
max|t|≤η F (x, t)dx+ η2Γη

 ,
problem (1) admits at least one nontrivial weak solution u such that |u(x)| < η for all
x ∈ [a, b].

PROOF. Our aim is to apply Theorem 3. To this end we pick η1 = 0 and η2 = η.
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From (18), one has

Aθ(η) =

∫ b
a

max|t|≤η F (x, t)dx+ η2Γη + µ(θ)Γµ(θ) −
∫ b
a+b
2
F (t, θ) dt( η

M

)p
− ρ0(1 + C1)θp

k(b− a)p−1

<

[
1− ρ0θ

pMp(1+C1)
ηpk(b−a)p−1

] [∫ b
a

max|t|≤η F (x, t)dx+ η2Γη

]
( η
M

)p
− ρ0(1 + C1)θp

k(b− a)p−1

=

∫ b
a

max|t|≤η F (x, t)dx+ η2Γη( η
M

)p <

∫ b
a+b
2
F (t, θ) dt− µ(θ)Γµ(θ)

ρ0(1 + C1)θp

k(b− a)p−1

= Aθ(0).

Hence, Theorem 3 ensures the existence of nontrivial weak solution u of problem (1)
such that

1

p
‖u‖p ≤ Φ(u) <

ηp

pMp
,

and clearly by Lemma 1, |u(x)| < η for all x ∈ [a, b].

Finally, we also give an application of Theorem 2.

THEOREM 5. Assume that there exist two constants η̄ and θ̄ with

η̄p <
ρ0M

p

(b− a)p−1
θ̄
p
,

such that ∫ b

a

max
|t|≤η̄

F (x, t)dx+ η̄2Γη̄ <

∫ b

a+b
2

F (x, θ̄)dx− µ(θ̄)Γµ(θ̄), (19)

and

lim sup
|ξ|→+∞

F (x, ξ)

|ξ|p ≤ 0 uniformly in x. (20)

Then, for each λ > λ, where

λ =

η̄p

Mp −
ρ0(1 + C1)θ̄

p

k(b− a)p−1

p
[∫ b
a

max|t|≤η̄ F (x, t)dx+ η̄2Γη̄ + µ(θ̄)Γµ(θ̄) −
∫ b
a+b
2
F (x, θ̄)dx

] ,
problem (1) admits at least one nontrivial weak solution u such that ||u|| > η̄

M(1+C1)1/p
.

PROOF. The functionals Φ and Ψ given by (7) satisfy all regularity assumptions
requested in Theorem 2. Moreover, by standard computations, condition (20) implies
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that Iλ, λ > 0, is coercive. To apply Theorem 2, it suffi ces to verify condition (6).
Indeed, put u0(x) as in (10) and r = η̄p

pMp . Arguing as in the proof of Theorem 3 we
obtain

ρ(r) ≥
Ψ(u)−

(
supv∈Φ−1(]−∞,r[) Ψ(v)

)
Φ(u)− r

≥

∫ b
a+b
2
F (t, θ̄) dt− µ(θ̄)Γµ(θ̄) − η̄2Γη̄ −

∫ b
a

max|t|≤η̄ F (x, t)dx

ρ0(1 + C1)θ̄
p

pk(b− a)p−1
− η̄p

pMp

.

So, from our assumption it follows that ρ(r) > 0. Hence, in view of Theorem 2 for each
λ > λ, Iλ admits at least one local minimum u such that

η̄p

pMp
< Φ(u) ≤ 1

p
(1 + C1)||u||p,

and our conclusion is achieved.
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