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Abstract

In this work, we study the existence of a family of eigenvalues for a nonho-
mogeneous problem involving variable exponents in RN by using the variational
approach.

1 Introduction

Large number of papers was devoted to study elliptic equations and variational prob-
lems with variable exponent. They were of considerable importance in the theory of
partial differential equations. Some of these problems come from different areas of
applied mathematics and physics such as Micro Electro-Mechanical systems, surface
diffusion on solids or image processing and restoration. For more inquiries on modeling
physical phenomena involving p(x)-growth condition, we refer to [1—10].
Motivated by the works [11, 12], we consider the following problem

−∆p(x)u = ∆q(x)u+ λm(x) |u|r(x)−2
u in RN , (1)

where
∆p(x)u = div(|u|p(x)−2u)

is the p(x)-Laplacian operator and p, q : RN −→ R are Lipschitz continuous functions
with

1 < p− := inf
RN

p(x) ≤ p(x) ≤ sup
RN

p(x) := p+ < N, N ≥ 3,

where m is a positive weight for a.e x ∈ RN such that

m ∈ L∞(RN ) ∩ Lγ(x)(RN )

with

γ(x) =
q∗(x)

q∗(x)− r(x)
.

Suppose that
1 < q(x) < r− = inf

RN
r(x) ≤ r+ = sup

RN
r(x) < p(x) (2)
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12 The Spectrum of Laplacian with Variable Expoment

and

r+ < q∗(x) with q∗(x) =
Nq(x)

N − q(x)
. (3)

Define

λ1 = inf
u∈W 1,p(x)(RN )∩W 1,q(x)(RN ),u 6=0

∫
RN

[
1

p(x) |∇u|
p(x)

+ 1
q(x) |∇u|

q(x)
]
dx∫

RN
m(x)
r(x) |u|

r(x)
dx

,

and

λ̄ = inf
u∈W 1,p(x)(RN )∩W 1,q(x)(RN ),u6=0

∫
RN

[
|∇u|p(x)

+ |∇u|q(x)
]
dx∫

RN
m(x) |u|r(x)

dx
.

We state our main result.

THEOREM 1. Assume that conditions (2) and (3) hold. Then we have:

(i) λ1 > 0 and λ ∈ [λ1,+∞[ is an eigenvalue of the problem (1).

(ii) There exists λ̄ ∈]0, λ1] such that λ ∈]0, λ̄[ is not an eigenvalue of problem (1).

DEFINITION 1. We say that λ ∈ R is an eigenvalue of the problem (1) if there
exists u ∈W 1,p(x)(RN ) ∩W 1,q(x)(RN ) \ {0} such that∫

RN
|∇u|p(x)−2∇u∇vdx+

∫
RN
|∇u|q(x)−2∇u∇vdx = λ

∫
RN

m(x) |u|r(x)−2
uvdx,

for all v ∈W 1,p(x)(RN ) ∩W 1,q(x)(RN ) \ {0}.

When p(x) = q(x) = 2 and m(x) = 1, the problem (1) is a normal Schrodinger
equation (see [13, 14]). The case m = 1 and p(x) = q(x) in a bounded domain has been
studied by Fan, Zhang and Zhao in [15, 16]. The case of an indefinite weight m 6= 1 in
RN with p(x) = q(x) was considered by [11].
This article is organized as follows. In section 2, we give the necessary notations

and preliminaries. We include some useful results involving the variable exponents
Lebesgue and Sobolev spaces in order to facilitate the reading of the paper. Finally, in
section 3, we prove the main result.

2 Preliminary Notes

In order to deal with the problem (1), we need some theory of variable exponent Sobolev
Space. For convenience, we only recall some basic facts which will be used later.
Define the variable exponent Lebesgue space Lp(x)(RN ) by

Lp(x)(RN ) =

{
u : RN → R measurable :

∫
RN
|u|p(x)

dx <∞
}
.
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Then Lp(x)(Ω) endowed with the norm

|u|p(x) = inf

{
λ > 0 :

∫
RN

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1

}
becomes a separable and reflexive Banach space.
Define the variable exponent Sobolev space W 1,p(x)(RN ) by

W 1,p(x)(RN ) = {u ∈ Lp(x)(RN ) : ∇u ∈ Lp(x)(RN )}

equipped with the norm

‖u‖p(x) = inf

{
λ > 0 :

∫
RN

∣∣∣∣∇uλ
∣∣∣∣p(x)

dx ≤ 1

}
,

which is also a separable and reflexive Banach space.

PROPOSITION 1 (cf. [17]). Let ρ(u) =
∫
RN
|∇u|p(x)

dx and u ∈ W 1,p(x)(RN ).
Then the following statements hold.

(1) If ‖u‖p(x) ≥ 1, then ‖u‖p(x)
p− ≤ ρ(u) ≤‖u‖p(x)

p+ .

(2) If ‖u‖p(x) ≤ 1, then ‖u‖p(x)
p+ ≤ ρ(u) ≤‖u‖p(x)

p− .

(3) limn→∞ ‖un‖p(x) = 0 (resp +∞) if, and only if, limn→∞ ρ(un) = 0 (resp +∞).

REMARK 1. We have similar results (1) and (2) of Propositiion 1 for ρ1(u) =∫
RN
|u|p(x)

dx.

PROPOSITION 2 (cf. [17]). For any u ∈ Lp(x)(RN ) and v ∈ Lp′(x)(RN ), we have∣∣∣∣∫
RN

uvdx

∣∣∣∣ ≤ 2 |u|p(x) |v|p′(x)

with
1

p(x)
+

1

p′(x)
= 1.

PROPOSITION 3 (cf. [17]). Suppose that p is Lipschitz continuous, q : RN → R is
a measurable function and p(x) ≤ q(x) ≤ p∗(x), ∀x ∈ RN . Then there is a continuous
embedding

W 1,p(x)(RN ) ↪→ Lq(x)(RN ).

If Ω is a bounded open subset of RN with cone property, then the embedding

W 1,p(x)(Ω) ↪→↪→ Lq(x)(Ω)
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is compact.

In what follows, for simplicity let

W = W 1,p(x)(RN ) ∩W 1,q(x)(RN ),

which will be endowed with the following norm

‖u‖ = ‖u‖p(x) + ‖v‖q(x) ,

which makes W a Banach space separable and reflexive and denote by
∫

=
∫
RN

. The
assertions of Proposition 1 remain valid with the norm ‖·‖ .

PROPOSITION 4 (cf. [5]). Suppose that p, q are are Lipschitz continuous functions
and r is a measurable function. If q(x) ≤ r(x) ≤ p(x), then Lp(x)(RN )∩Lq(x)(RN ) ↪→
Lr(x)(RN ) with a continuous embedding.

Analogously, we have the following interesting result (see [5]).

PROPOSITION 5. Under the assumptions of Proposition 4, we have a continuous
embedding from W into Lr(x)(RN ).

3 Proof of the Main Result

First, by the assumption (2) we can see that

|∇u|p(x)
+ |∇u|q(x) ≥ |∇u|r

+

, |∇u|p(x)
+ |∇u|q(x) ≥ |∇u|r

−

and
|u|r

+

+ |u|r
−
≥ |u|r(x)

.

The continuous embedding from W 1,ri(RN ) into Lr
i

(RN ), i = ±, implies that there
exist two positive constants C1, C2 such that∫

|∇u|r
+

dx ≥ C1

∫
|u|r

+

dx and
∫
|∇u|r

−
dx ≥ C1

∫
|u|r

−
dx.

Then there exists C > 0 such that

2

∫ [
|∇u|p(x)

+ |∇u|q(x)
]
dx ≥ C

∫ (
|u|r

+

+ |u|r
−)

dx ≥ C

|m|∞

∫
m(x) |u|r(x)

dx

and thus∫
p+

(
1

p(x)
|∇u|p(x)

+
1

q(x)
|∇u|q(x)

)
dx ≥ Cr−

2|m|∞

∫
m(x)

r(x)
|u|r(x)

dx.

So λ1 > 0. Similarly, we get λ̄ > 0.
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Before embarking in the proof of Theorem 1, we need some auxiliar lemmas. Let

I(u) =

∫
1

p(x)
|∇u|p(x)

dx+

∫
1

q(x)
|∇u|q(x)

dx

and

J(u) =

∫
1

r(x)
m(x) |u|r(x)

dx.

The following lemma plays a crucial role in our different lines.

LEMMA 1.

(i) The functional I is weakly lower semi-continuous, that is, un ⇀ u implies that
I(u) ≤ lim infn I(un).

(ii) The functional J is weakly-strongly continuous, that is, un ⇀ u implies that
J(un)→ J(u).

PROOF. (i) Using the convexity of the functional I, we see that the assertion is
immediate. (ii) Assume that un ⇀ u in W, which is reflexive. Then {un} is a bounded
sequence. By Proposition 3, we have

W ↪→ Lq
∗(x)(RN ).

So we obtain a boundedness of
{
|un|q∗(x)

}
. So, there is a positive constant M > 0

such that

max
n

{∣∣∣|un|r(x)
∣∣∣
q∗(x)
r(x)

,
∣∣∣|u|r(x)

∣∣∣
q∗(x)
r(x)

}
≤M.

Taking Ωk = {x ∈ RN : |x| < k}. Further, m ∈ Lγ(x)(RN ) implies that

|m|Lγ(x)(RN\Ωk) → 0 as k → +∞.

Giving ε > 0, we may find k1 > 0 large enough such that

|m|Lγ(x)(RN\Ωk1 ) <
ε

8M
.

It follows from the compact embedding W 1,r(x)(Ωk1) ↪→↪→ Lr(x)(Ωk1), that∫
Ωk1

m(x)|un|r(x))dx→
∫

Ωk1

m(x)|u|r(x)dx,

because m ∈ L∞(RN ). Hence, there exists n1 > 0 such that for n ≥ n1,∣∣∣∣∣
∫

Ωk1

m(x)|un|r(x)dx−
∫

Ωk1

m(x)|u|r(x)dx

∣∣∣∣∣ < ε

2
.
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In view of Proposition 2, we get

|J(un)− J(u)| ≤
∣∣∣∣∣
∫

Ωk1

[
m(x)|un|r(x) −m(x)|u|r(x)

]
dx

+

∫
RN\Ωk1

[m(x)|un|r(x) −m(x)|u|r(x)]dx

∣∣∣∣∣
≤ ε

2
+

∫
RN\Ωk1

m(x)
[
|un|r(x)

+ |u|r(x)
]
dx

≤ ε

2
+ 2|m|Lγ(x)(RN\Ωk1 )

[∣∣∣|un|r(x)
∣∣∣
q∗(x)
r(x)

+
∣∣∣|u|r(x)

∣∣∣
q∗(x)
r(x)

]
≤ ε

2
+
ε

2
= ε.

Consequently, J(un)→ J(u).

LEMMA 2. We have the following limits,

lim
‖u‖→+∞

I(u)

J(u)
= +∞

and

lim
‖u‖→0

I(u)

J(u)
= +∞. (4)

PROOF. When ‖u‖ → 0, we have ‖u‖q(x) → 0. The preceding Proposition 1 to-
gether with Proposition 4 and 5 imply

I(u)

J(u)
=

∫
1

p(x) |∇u|
p(x)

dx+
∫

1
q(x) |∇u|

q(x)
dx∫

m(x) 1
r(x) |u|

r(x)
dx

≥
1
q+ ‖u‖

q+

q(x)

c |m|∞ ‖u‖
r±

q(x)

,

where c > 0. Since r− > q+, then the first relation hold. For the seconde assertion, let

K(u) =

∫
1

p(x)
|∇u|p(x)

dx.

If ‖u‖p(x) ≥ 1, then we have

1

p+
‖u‖p

−

p(x) ≤ K(u) ≤ 1

p−
‖u‖p

+

p(x) .

If ‖u‖p(x) ≤ 1, then we have

1

p+
‖u‖p

+

p(x) ≤ K(u) ≤ 1

p−
‖u‖p

−

p(x) .
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In this case, we set

C0 ≥
1

p+
‖u‖p

−

p(x) −
1

p+
‖u‖p

+

p(x) ≥ 0.

Then
K(u) ≥ 1

p+
‖u‖p

−

p(x) − C0.

We entail that
K(u) ≥ 1

p+
‖u‖p

−
− C0, ∀u ∈W 1,p(x)(RN ).

Thereby, there exists C1 > 0 such that

I(u) =

∫
1

p(x)
|∇u|p(x)

dx+

∫
1

q(x)
|∇u|q(x)

dx

≥ 1

p+
‖u‖p

−

p(x) +
1

q+
‖u‖q

−

q(x) − C1,

whenever u ∈W.
On the other hand, according to Proposition 4 there exists C3 > 0 such that

J(u) =

∫
1

r(x)
m(x) |u|r(x)

dx ≤ C3(‖u‖r
+

+ ‖u‖r
−

).

Afterwards, we have

I(u)

J(u)
=

∫
1

p(x) |∇u|
p(x)

dx+
∫

1
q(x) |∇u|

q(x)
dx∫

1
r(x)m(x) |u|r(x)

dx

≥
1
p+ ‖u‖

p−

p(x) + 1
q+ ‖u‖

q−

q(x) − C1

C3(‖u‖r+ + ‖u‖r−)
,

since r+ < p−, we infer that I(u)
J(u) → +∞ when ‖u‖ → +∞.

Proof of Theorem 1. We show that λ1 is an eigenvalue of (1). By the definition
of λ1, there exists {un} ⊂W \ {0} such that

λ1 = lim
n

I(un)

J(un)
.

Here {un} is bounded in W, because the coercivity of
I(un)

J(un)
, and thus there exists

u ∈W satisfying un ⇀ u, so

I(u) ≤ lim inf
n

I(un) and J(un)→ J(u).

Whether u 6= 0, then λ1 = I(u)
J(u) and it is done. Otherwise, assume that u = 0,

so I(un) → 0 as n → +∞. We have I(un) = I(un)
J(un)J(un), passing to limit we get
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I(un)→ 0 as n→ +∞, along with ‖un‖ → 0, hence I(un)
J(un) → +∞ which is paradoxical.

We conclude that for any v ∈W we have

∂

∂ε

I(u+ εv)

J(u+ εv)

∣∣∣∣
ε=0

= 0.

By a straightforward computation we have[∫ (
|∇u|p(x)−2 + |∇u|q(x)−2

)
∇u∇vdx

]
J(u) =

[∫
m(x)|u|r(x)uvdx

]
I(u), ∀v ∈W.

Consequently, λ1 is an eigenvalue of problem (1).
Now, we are to prove that any λ > λ1 is an eigenvalue of (1). Set

L(u) = I(u)− λJ(u).

From Lemma 1, we know that I is weakly lower semi-continuous and J is weakly-strongly
continuous, which yields L is weakly lower semicontinuous.

If we return to relation (4), it is clear that L is of class C1 and coercive, therefore,
L admits a global minimum u∗ in W, which is a critical point for L. We claim that u∗
is nontrivial. Indeed, by the characterization of λ1, there exists v ∈W \ {0} such that
λ1 = I(v)

J(v) , since λ > λ1, accordingly L(v) < 0, thence u∗ 6= 0.

Hereinafter, we check that any λ ∈]0, λ̄[ is not an eigenvalue of problem (1). First,
we may observe that λ̄ ≤ λ1, because λ̄ ≤ r+

p−λ1 and r+ < p−.

Next, let λ ∈]0, λ̄[, by contradiction we assume that λ is an eigenvalue, then there
exists v ∈W \ {0} which satisfies∫ (

|∇v|p(x)
+ |∇v|q(x)

)
dx = λ

∫
m(x) |u|r(x)

dx.

On the other hand, according to definition of λ̄ we obtain

λ̄ ≤

∫ (
|∇v|p(x)

+ |∇v|q(x)
)
dx∫

m(x) |v|r(x)
dx

= λ,

which is contradictory and then the proof is achieved.

REMARK 2. When λ ≤ 0, for all u ∈W \ {0} we have

I ′λ(u)u =

∫
|∇u|p(x)

dx+

∫
|∇u|q(x)

dx− λ
∫
m(x) |u|r(x)

dx > 0,

and then the problem (1) has no solution.
Whether m < 0, we may consider that the eigenvalue λ < 0, and the similar

argument works.
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